第三章信道
- 格式:pdf
- 大小:486.53 KB
- 文档页数:41
信息论与编码理论-第3章信道容量-习题解答-071102(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除17 / 233。
1设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4.06.0)(21x x X P X 通过一干扰信道,接收符号为Y={y1,y2},信道转移矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43416165,求: (1)信源X 中事件x 1和事件x 2分别包含的自信息量;(2)收到消息y j (j=1,2)后,获得的关于x i (i=1,2)的信息量;(3)信源X 和信宿Y 的信息熵;(4)信道疑义度H (X/Y )和噪声熵H(Y/X );(5)接收到信息Y 后获得的平均互信息量.解:1)bit x p x I bitx p x I 322.14.0log )(log )( 737.06.0log )(log )(22222121=-=-==-=-=2)资料内容仅供您学习参考,如有不当之处,请联系改正或者删除18 / 23bit y p x y p y x I bit y p x y p y x I bit y p x y p y x I bit y p x y p y x I x y p x p x y p x p y p x y p x p x y p x p y p 907.04.04/3log )()/(log );( 263.16.04/1log )()/(log );( 263.14.06/1log )()/(log );( 474.06.06/5log )()/(log );(4.0434.0616.0)/()()/()()(6.0414.0656.0)/()()/()()(222222221212122212221211121122212122121111===-===-=======⨯+⨯=+==⨯+⨯=+=3)symbolbit y p y p Y H symbolbit x p x p X H j j j ii i / 971.010log )4.0log 4.06.0log 6.0()(log )()(/ 971.010log )4.0log 4.06.0log 6.0()(log )()(22=+-=-==+-=-=∑∑4)symbolbit Y H X Y H X H Y X H Y X H Y H X Y H X H symbolbit x y p x y p x p X Y H i ji j i j i / 715.0971.0715.0971.0 )()/()()/()/()()/()(/ 715.0 10log )43log 434.041log 414.061log 616.065log 656.0( )/(log )/()()/(2=-+=-+=∴+=+=⨯⨯+⨯+⨯+⨯-=-=∑∑资料内容仅供您学习参考,如有不当之处,请联系改正或者删除18 / 235)symbol bit Y X H X H Y X I / 256.0715.0971.0)/()();(=-=-=3。
第三章信道与噪声通信原理电子教案第3章信道与噪声学习目标:信道的数学描述方法;恒参信道/随参信道及其传输特性;加性高斯白噪声;信道容量的概念。
重点难点:调制信道模型;编码信道模型;恒参信道对信号传输的影响;加性高斯白噪声;Shannon信道容量公式。
随参信道对信号传输的影响;起伏噪声;噪声等效带宽;连续信道的信道容量“三要素”。
随参信道特性的改善。
课外作业: 3-5,3-11,3-16,3-19,3-20本章共分4讲《通信原理》第九讲知识要点:信道等义、广义信道、狭义信道,调制信道和编码信道。
§3.1 信道定义与数学模型1、信道定义信道是指以传输媒质为基础的信号通道。
信道即允许信号通过,又使信号受到限制和损害。
研究信道的目的:建立传播预测模型;为实现信道仿真器提供基础。
狭义信道仅指信号的传输媒质,这种信道称为狭义信道;广义信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这种信道称为广义信道。
狭义信道按照传输媒质的特性可分为有线信道和无线信道两类。
有线信道包括明线、对称电缆、同轴电缆及光纤等。
广义信道按照它包括的功能,可以分为调制信道、编码信道等。
图3-1 调制信道和编码信道2、信道的数学模型信道的数学模型用来表征实际物理信道的特性,它对通信系统的分析和设计是十分方便的。
下面我们简要描述调制信道和编码信道这两种广义信道的数学模型。
1. 调制信道模型图3-2 调制信道模型二端口的调制信道模型其输出与输入的关系有一般情况下,可表示为信道单位冲击响应与输入信号的卷积,即或其中,依赖于信道特性。
对于信号来说,可看成是乘性干扰,而为加性干扰。
在实际使用的物理信道中,根据信道传输函数的时变特性的不同可以分为两大类:一类是基本不随时间变化,即信道对信号的影响是固定的或变化极为缓慢的,这类信道称为恒定参量信道,简称恒参信道;另一类信道是传输函数随时间随机快变化,这类信道称为随机参量信道,简称随参信道。