第46讲平面向量数量积的计算方法 高中数学常见题型解法归纳反馈训练(含答案)
- 格式:docx
- 大小:249.95 KB
- 文档页数:5
专题二 平面向量的数量积1.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直.2.平面向量的数量积(1)定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.投影向量:向量a 在向量b 上的投影向量为|a |cos θb |b |=(a ·b )b |b |2. (2)坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.3.平面向量数量积的运算律(1)a ·b =b ·a (交换律);(2)λa ·b =λ(a ·b )=a ·(λb )(结合律);(3)(a +b )·c =a ·c +b ·c (分配律).4.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2.(2)(a +b )2=a 2+2a ·b +b 2.(3)(a -b )2=a 2-2a ·b +b 2.考点一 求平面向量数量积【方法总结】平面向量数量积的两种求法(1)若已知向量的模和夹角时,则利用定义法求解,即a ·b =|a ||b |cos<a ,b >.若未知向量的模和夹角时,则可通过向量加法(减法)的三角形法则转化为已知模和夹角的向量的数量积进行求解;(2)若已知向量的坐标时,则利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.若未知向量的坐标时,如已知图形为矩形、正方形、直角梯形、等边三角形、等腰三角形或直角三角形时,则可建立平面直角坐标系求出未知向量的坐标进行求解.【例题选讲】[例1](1)(2018·全国Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a ·(2a -b )=( )A .4B .3C .2D .0答案 B 解析 a·(2a -b )=2|a|2-a·b =2×1-(-1)=3.(2)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( )A .0B .4C .-92D .-172答案 D 解析 由题意得2k -1-4k =0,解得k =-12,即m =⎝⎛⎭⎫-2,-12,所以m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (3)如图,已知非零向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)·BC →=0,且|AB →-AC →|=23,|AB →+AC →|=26,点D 是△ABC 中边BC 的中点,则AB →·BD →=________.答案 -3 解析 由(AB →|AB →|+AC →|AC →|)·BC →=0得BC →与∠A 的平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=|AB →||BD →|cos(π-B )=AD 2+BD 2·3·(-cos B )=33×(-33)=-3. (4)(2016·天津)如图,已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B .18C .14D .118答案 B 解析 由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC →|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18. (5)(2018·天津)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A .-15B .-9C .-6D .0答案 C 解析 连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON→-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6.(6)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( )A .16B .12C .8D .-4答案 A 解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t =83,即E ⎝⎛⎭⎫0,83,AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. (7)已知在直角三角形ABC 中,∠ACB =90°,AC =BC =2,点P 是斜边AB 上的中点,则CP →·CB →+CP →·CA→=________.答案 4 解析 由题意可建立如图所示的坐标系.可得A (2,0),B (0,2),P (1,1),C (0,0),则CP →·CB→+CP →·CA →=(1,1)·(0,2)+(1,1)·(2,0)=2+2=4.(8)如图,△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,P 为线段OC 的中点,则AP →·OP→=( )A .1B .116C .14D .-12答案 B 解析 法一:因为△AOB 为直角三角形,OA =1,OB =2,C 为斜边AB 的中点,所以OC →=12OA →+12OB →,所以OP →=12OC →=14(OA →+OB →),则AP →=OP →-OA →=14OB →-34OA →,所以AP →·OP →=14(OB →-3 OA →)·14(OA →+OB →)=116(OB →2-3OA →2)=116. 法二:以O 为坐标原点,OB →的方向为x 轴正方向,OA →的方向为y 轴正方向建立平面直角坐标系(如图),则A (0,1),B (2,0),C ⎝⎛⎭⎫1,12,P ⎝⎛⎭⎫12,14,所以OP →=⎝⎛⎭⎫12,14,AP →=⎝⎛⎭⎫12,-34,故AP →·OP →=12×12-34×14=116.(9)如图,平行四边形ABCD 中,AB =2,AD =1,A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →=________.答案 1 解析 因为DM →=DA →+AM →=DA →+13AB →,DB →=DA →+AB →,所以DM →·DB →=(DA →+13AB →)·(DA →+AB →)=|DA →|2+13|AB →|2+43DA →·AB →=1+43-43AD →·AB →=73-43|AD →|·|AB →|·cos 60°=73-43×1×2×12=1. (10)如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB +DC )·(AC +BD )=________.答案 5 解析 由于AB →=AC →+CB →,DC →=DB →+BC →,所以AB →+DC →=AC →+CB →+DB →+BC →=AC →-BD →.(AB→+DC →)·(AC →+BD →)=(AC →-BD →)·(AC →+BD →)=|AC →|2-|BD →|2=9-4=5.(11)在平面四边形ABCD 中,已知AB =3,DC =2,点E ,F 分别在边AD ,BC 上,且AD →=3AE →,BC →=3BF →,若向量AB →与DC →的夹角为60°,则AB →·EF →的值为________.答案 7 解析 EF →=EA →+AB →+BF → ①,EF →=ED →+DC →+CF → ②,由AD →=3AE →,BC →=3BF →,有2EA →+ED →=0,,2BF →+CF →=0,,①×2+②得2AB →+DC →=3EF →,所以EF →=23AB →+13DC →,则AB →·EF →=AB →·(23AB →+13DC →)=23AB →2+13AB →·DC →=23×32+13×3×2cos 60°=7. (12)如图,在四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,设AD →·BC →=m ,AC →·BD →=n .若AB =2,EF =1,CD =3,则( )A .2m -n =1B .2m -2n =1C .m -2n =1D .2n -2m =1答案 D 解析 AC →·BD →=(AB →+BC →)·(-AB →+AD →)=-AB →2+AB →·AD →-AB →·BC →+AD →·BC →=-AB →2+AB →·(AD →-BC →)+m =-AB →2+AB →·(AB →+BC →+CD →-BC →)+m =AB →·CD →+m .又EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →,两式相加,再根据点E ,F 分别是边AD ,BC 的中点,化简得2EF →=AB →+DC →,两边同时平方得4=2+3+2AB →·DC →,所以AB →·DC →=-12,则AB →·CD →=12,所以n =12+m ,即2n -2m =1,故选D . (13)(2017·浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3答案 C 解析 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG=GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|,而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →,即I 1>I 3.∴I 3<I 1<I 2.(14)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( ) A .3 B .4 C .-3 D .-4答案 C 解析 如图,连接CO ,∵点C 是弧AB 的中点,∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝⎛⎭⎫-12-12×4=-3.【对点训练】1.已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________.2.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a·(a -2b )=________. 3.已知|a |=6,|b |=3,向量a 在b 方向上的投影是4,则a ·b 为( )A .12B .8C .-8D .24.设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( )A .-6B .10C .5D .105.(2014·全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )A .1B .2C .3D .56.在边长为1的等边三角形ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( )A .-32B .0C .32D .3 7.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B 3C 3上有10个不同的点P 1,P 2,…,P 10,记m i =AB 2→·AP i → (i =1,2,…,10),则m 1+m 2+…+m 10的值为( )A .180B .603C .45D .1538.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( )A .-32B .-23C .23D .329.在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC →=________.10.已知P 是边长为2的正三角形ABC 的边BC 上的动点,则AP →·(AB →+AC →)=________.11.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A .89B .109C .259D .26912.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于( )A .32B .3C .3D .23 13.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →的值为( )A .23B .32C .33D .3 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.15.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=( )A .10B .9C .8D .616.在△ABC 中,已知AB →·AC →=92,|AC →|=3,|AB →|=3,M ,N 分别是BC 边上的三等分点,则AM →·AN →的值是 ( )A .112B .132C .6D .7 17.在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC 所在平面内一点,则当P A →2+PB →2+PC →2取得最小值时,AP →·BC →=________.18.已知在△ABC 所在平面内有两点P ,Q ,满足P A →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为______. 19.(2013·全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD =________.20.已知平行四边形ABCD 中,AB =1,AD =2,∠DAB =60°,则AC →·AB →=( )A .1B .3C .2D .2321.在平行四边形ABCD 中,|AB →|=8,|AD →|=6,N 为DC 的中点,BM →=2MC →,则AM →·NM →=( )A .48B .36C .24D .1222.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20B .15C .9D .623.在四边形ABCD 中,AB →=DC →,P 为CD 上一点,已知|AB →|=8,|AD →|=5,AB →与AD →的夹角为θ,且cos θ=1120,CP →=3PD →,则AP →·BP →=________. 25.在平面四边形ABCD 中,|AC |=3,|BD |=4,则(AB →+DC →)·(BC →+AD →)=________.26.如图,在四边形ABCD 中,AB =6,AD =2,DC →=13AB →,AC 与BD 相交于点O ,E 是BD 的中点,若AO →·AE → =8,则AC →·BD →=( )A .-9B .-293C .-10D .-32327.设△ABC 的外接圆的圆心为P ,半径为3,若P A →+PB →=CP →,则P A →·PB →=( )A .-92B .-32C .3D .9 28.如图,B ,D 是以AC 为直径的圆上的两点,其中AB =t +1,AD =t +2,则AC →·BD →=( )A .1B .2C .tD .2t考点二 已知平面向量数量积,求参数的值或判断多边形的形状【例题选讲】[例1](1)在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R .若BQ ·CP =-2,则λ等于( )A .13B .23C .43D .2 答案 B 解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB→2=4(λ-1)-λ=3λ-4=-2,即λ=23. (2)已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP =λAB ,AQ =(1-λ) AC ,λ∈R ,若BQ ·CP =-32,则λ=( ) A .12 B .1±22 C .1±102 D .-3±222答案 A 解析 ∵BQ =AQ -AB =(1-λ) AC -AB ,CP =AP -AC =λAB -AC ,又BQ ·CP =-32,|AB |=|AC |=2,A =60°,AB ·AC =|AB |·|AC |cos 60°=2,∴[(1-λ) AC -AB ]·(λAB -AC )=-32,即λ|AB |2+(λ2-λ-1) AB ·AC +(1-λ)| AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. (3)已知菱形ABCD 的边长为6,∠ABD =30°,点E ,F 分别在边BC ,DC 上,BC =2BE ,CD =λCF .若AE →·BF →=-9,则λ的值为( )A .2B .3C .4D .5答案 B 解析 依题意得AE →=AB →+BE →=12BC →-BA →,BF →=BC →+1λBA →,因此AE →·BF →=(12BC →-BA →)(BC →+1λBA →)=12BC →2-1λBA →2+⎝⎛⎭⎫12λ-1BC →·BA →,于是有⎝⎛⎭⎫12-1λ×62+⎝⎛⎭⎫12λ-1×62×cos 60°=-9.由此解得λ=3,故选B . (4)已知菱形ABCD 边长为2,∠B =π3,点P 满足AP →=λAB →,λ∈R ,若BD →·CP →=-3,则λ的值为( ) A .12 B .-12 C .13 D .-13答案 A 解析 法一:由题意可得BA →·BC →=2×2cos π3=2,BD →·CP →=(BA →+BC →) ·(BP →-BC →)=(BA →+BC →)·[(AP →-AB →)-BC →]=(BA →+BC →)·[(λ-1)·AB →-BC →]=(1-λ)BA →2-BA →·BC →+(1-λ)BA →·BC →-BC →2=(1-λ)·4-2+2(1-λ)-4=-6λ=-3,∴λ=12,故选A .法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,3),D (-1,3).令P (x ,0),由BD →·CP →=(-3,3)·(x -1,-3)=-3x +3-3=-3x =-3得x =1.∵AP →=λAB →,∴λ=12.故选A . (5)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C 解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .(6)若△ABC 的三个内角A ,B ,C 的度数成等差数列,且(AB →+AC →)·BC →=0,则△ABC 一定是( )A .等腰直角三角形B .非等腰直角三角形C .等边三角形D .钝角三角形答案 C 解析 因为(AB →+AC →)·BC →=0,所以(AB →+AC →)·(AC →-AB →)=0,所以AC →2-AB →2=0,即|AC →|=|AB→|,又A ,B ,C 度数成等差数列,故2B =A +C ,A +B +C =3B =π,所以B =π3,故△ABC 是等边三角形. (7)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( )A .矩形B .正方形C .菱形D .梯形答案 C 解析 因为AB →+CD →=0,所以AB →=-CD →=DC →,所以四边形ABCD 是平行四边形.又(AB →-AD →)·AC →=DB →·AC →=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.(8)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A .23 B .-23 C .56 D .-56答案 B 解析 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23. 考点三 平面向量数量积的最值(范围)问题【方法总结】数量积的最值或范围问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将数量积表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)若a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最大值为________.答案 1+2 解析 依题意可设a =(1,0),b =(0,1),c =(cos θ,sin θ),则(a -c )·(b -c )=1-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎫θ+π4,所以(a -c )·(b -c )的最大值为1+2. (2)(2016·浙江)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.答案 12解析 由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |,由于上式对任意单位向量e 都成立.∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b .即6≥5+2a ·b ,∴a ·b ≤12.∴a ·b 的最大值为12. (3)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1 答案 B 解析 方法一 (解析法) 建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),图①则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B . 方法二 (几何法) 如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又当点P 在线段AD 上时,|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B . (4)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=A B →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( )A .13B .15C .19D .21答案 A 解析 建立如图所示的平面直角坐标系,则B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ),A P →=A B →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4),∴P (1,4),PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t ·4t =13,当且仅当t =12时等号成立.∴PB →·PC →的最大值等于13.(5)如图,已知P 是半径为2,圆心角为π3的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为_____.答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),设P (2cos θ,2sin θ)⎝⎛⎭⎫π3≤θ≤2π3,则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ),其中0<tan φ=36<33,所以0<φ<π6,当θ=π2-φ时,PC →·P A →取得最小值,为5-213. 另解:设圆心为O ,AB 的中点为D ,由题得AB =2×2×sin π6=2,∴AC =3.取AC 的中点M ,由题得⎩⎪⎨⎪⎧P A →+PC →=2PM →,PC →-P A →=AC →,两方程平方相减并化简得PC →·P A →=PM →2-14AC →2=PM →2-94,要使PC →·P A →取最小值,则需PM最小,当圆弧AB ︵的圆心与点P ,M 共线时,PM 最小.易知DM =12,∴OM =⎝⎛⎭⎫122+(3)2=132,所以PM 有最小值为2-132,代入求得PC →·P A →的最小值为5-213. (6)(2020·天津)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.答案 16 132 解析 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6,所以AD →=16BC →,即λ=16.在四边形ABCD 中,作AO⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a ,0),不妨设点N 在点M 右侧,则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN→=a 2-a +274=⎝⎛⎭⎫a -122+132.所以当a =12时,DM →·DN →取得最小值132. (7) (2020·新高考Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A 解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).另解 AB →的模为2,根据正六边形的特征,可以得到AP →在AB →方向上的投影的取值范围是(-1,3),结合向量数量积的定义式,可知AP →·AB →等于AB →的模与AP →在AB →方向上的投影的乘积,所以AP →·AB →的取值范围是(-2,6),故选A .(8)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92 解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,∵|PO→|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94,即(P A →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92,当且仅当|PO →|=|PC→|=32时,等号成立,故最小值为-92. 【对点训练】1.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则P A →·PB →的最大值为( ) A .9 B .16 C .18 D .252.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且 满足|MN →|=2,则BM →·BN →的取值范围为( )A .⎣⎡⎦⎤32,2B .⎝⎛⎭⎫32,2C .⎣⎡⎭⎫32,2D .⎣⎡⎭⎫32,+∞ 3.在等腰三角形ABC 中,AB =AC =1,∠BAC =90°,点E 为斜边BC 的中点,点M 在线段AB 上运动,则ME →·MC →的取值范围是( )A .⎣⎡⎦⎤716,12B .⎣⎡⎦⎤716,1C .⎣⎡⎦⎤12,1 D .[0,1] 4.在△ABC 中,满足AB →⊥AC →,M 是BC 的中点,若O 是线段AM 上任意一点,且|AB →|=|AC →|=2,则OA →·(OB →+OC →)的最小值为________.5.已知在△ABC 中,AB =4,AC =2,AC ⊥BC ,D 为AB 的中点,点P 满足AP →=1a AC →+a -1a AD →,则P A →·(PB →+PC →)的最小值为( )A .-2B .-289C .-258D .-726.如图,线段AB 的长度为2,点A ,B 分别在x 轴的正半轴和y 轴的正半轴上滑动,以线段AB 为一边, 在第一象限内作等边三角形ABC ,O 为坐标原点,则OC →·OB →的取值范围是________.7.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为________;DE ·DC 的最大 值为________.8.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ·EM 的取值范围是( ) A .⎣⎡⎦⎤12,2 B .⎣⎡⎦⎤0,32 C .⎣⎡⎦⎤12,32 D .[]0,1 9.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA , AB ,BC 运动到点C ,在此过程中DE →·CD →的取值范围为________.10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ·AN 的最大值为________.11.在平行四边形ABCD 中,若AB =2,AD =1,AB →·AD →=-1,点M 在边CD 上,则MA →·MB →的最大值为________.12.如图,在直角梯形ABCD 中,DA =AB =1,BC =2,点P 在阴影区域(含边界)中运动,则P A →·BD →的取值范围是( )A .⎣⎡⎦⎤-12,1B .⎣⎡⎦⎤-1,12 C .[-1,1] D .[-1,0]13.如图,在等腰梯形ABCD 中,已知DC ∥AB ,∠ADC =120°,AB =4,CD =2,动点E 和F 分别在线段BC 和DC 上,且BE →=12λBC →,DF →=λDC →,则AE →·BF →的最小值是( )A .46+13B .46-13C .46+132D .46-13214.(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则AE →·BE →的最小值为________.15.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( )A .1+2B .1-2C .2-1D .116.已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,则a ·b 的最大值为________.。
平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2D.-3+2 2变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值.平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2答案 (1)2 (2)D 解析 (1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|P A →|=|PB →|=x ,∠APB =θ, 则tan θ2=1x,从而cos θ=1-tan 2θ21+tan 2θ2=x 2-1x 2+1.P A →·PB →=|P A →|·|PB →|·cos θ =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时取等号,故P A →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|P A →|=|PB →|=1tanθ2.P A →·PB →=|P A →||PB →|cos θ =(1tanθ2)2cos θ=cos 2θ2sin 2θ2·(1-2sin 2θ2)=(1-sin 2θ2)(1-2sin 2θ2)sin 2θ2.令x =sin 2θ2,0<x ≤1,则P A →·PB →=(1-x )(1-2x )x=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故P A →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则P A →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥P A ⇒OA →·P A →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而P A →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故P A →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=(2a )2+b 2+2×|2a |×|b |cos 120° =22×12+22+2×2×1×2×⎝⎛⎭⎫-12=2. (2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25, ∴|P A →+3PB →|的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233. 高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8 D.9答案 B解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系, 则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2, 当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB →=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ. 易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB→2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0, 所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围.解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B ,所以sin A =a sin Bb=3×632=22. 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12. 所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt △ADC 中,CD 2=AC 2-AD 2=75, 在Rt △BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →) =t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2 =256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。
平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2D.-3+2 2变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值.平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2答案 (1)2 (2)D 解析 (1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|P A →|=|PB →|=x ,∠APB =θ, 则tan θ2=1x,从而cos θ=1-tan 2θ21+tan 2θ2=x 2-1x 2+1.P A →·PB →=|P A →|·|PB →|·cos θ=x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时取等号,故P A →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|P A →|=|PB →|=1tanθ2.P A →·PB →=|P A →||PB →|cos θ =(1tanθ2)2cos θ=cos 2θ2sin 2θ2·(1-2sin 2θ2)=(1-sin 2θ2)(1-2sin 2θ2)sin 2θ2.令x =sin 2θ2,0<x ≤1,则P A →·PB →=(1-x )(1-2x )x=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故P A →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则P A →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥P A ⇒OA →·P A →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而P A →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故P A →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=(2a )2+b 2+2×|2a |×|b |cos 120°=22×12+22+2×2×1×2×⎝⎛⎭⎫-12=2. (2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25,∴|P A →+3PB →|的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233. 高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( )A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.9答案 B解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系, 则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2, 当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB →=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ. 易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB→2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0, 所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B ,所以sin A =a sin Bb=3×632=22. 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12. 所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt △ADC 中,CD 2=AC 2-AD 2=75, 在Rt △BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →)=t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2 =256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。
(完整)高中数学高考总复习平面向量的数量积及向量的应用习题及详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学高考总复习平面向量的数量积及向量的应用习题及详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学高考总复习平面向量的数量积及向量的应用习题及详解的全部内容。
高中数学高考总复习平面向量的数量积及向量的应用习题及详解一、选择题1.(文)(2010·东北师大附中)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b 方向上的投影是()A.-4 B.4C.-2 D.2[答案] A[解析] a在b方向上的投影为错误!=错误!=-4。
(理)(2010·浙江绍兴调研)设a·b=4,若a在b方向上的投影为2,且b在a方向上的投影为1,则a与b的夹角等于( )A.错误!B.错误!C。
错误!D。
错误!或错误![答案]B[解析]由条件知,错误!=2,错误!=1,a·b=4,∴|a|=4,|b|=2,∴cos〈a,b>=错误!=错误!=错误!,∴〈a,b>=错误!。
2.(文)(2010·云南省统考)设e1,e2是相互垂直的单位向量,并且向量a=3e1+2e2,b=x e+3e2,如果a⊥b,那么实数x等于( )1A.-错误! B.错误!C.-2 D.2[答案]C[解析] 由条件知|e1|=|e2|=1,e1·e2=0,∴a·b=3x+6=0,∴x=-2。
(理)(2010·四川广元市质检)已知向量a=(2,1),b=(-1,2),且m=t a+b,n=a -k b(t、k∈R),则m⊥n的充要条件是( )A.t+k=1 B.t-k=1C.t·k=1 D.t-k=0[答案] D[解析]m=t a+b=(2t-1,t+2),n=a-k b=(2+k,1-2k),∵m⊥n,∴m·n=(2t-1)(2+k)+(t+2)(1-2k)=5t-5k=0,∴t-k=0.3.(文)(2010·湖南理)在Rt△ABC中,∠C=90°,AC=4,则错误!·错误!等于( ) A.-16 B.-8C.8 D.16[答案] D[解析]因为∠C=90°,所以错误!·错误!=0,所以错误!·错误!=(错误!+错误!)·错误!=|错误!|2+错误!·错误!=AC2=16。
平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2D.-3+22变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值.平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2 D.-3+22答案 (1)2 (2)D 解析 (1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|P A →|=|PB →|=x ,∠APB =θ,则tan θ2=1x,从而cos θ=1-tan 2θ21+tan 2θ2=x 2-1x 2+1.P A →·PB →=|P A →|·|PB →|·cos θ =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时取等号,故P A →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|P A →|=|PB →|=1tan θ2.P A →·PB →=|P A →||PB →|cos θ =(1tan θ2)2cos θ =cos 2θ2sin 2θ2·(1-2sin 2θ2)=(1-sin 2θ2)(1-2sin 2θ2)sin 2θ2.令x =sin 2θ2,0<x ≤1,则P A →·PB →=(1-x )(1-2x )x=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故P A →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则P A →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥P A ⇒OA →·P A →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而P A →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故P A →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=(2a )2+b 2+2×|2a |×|b |cos 120° =22×12+22+2×2×1×2×⎝⎛⎭⎫-12=2. (2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25,∴|P A +3PB |的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233. 高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A.min{|a +b |,|a -b |}≤min{|a |,|b |} B.min{|a +b |,|a -b |}≥min{|a |,|b |} C.max{|a +b |2,|a -b |2}≤|a |2+|b |2 D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.9解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系, 则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2,当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB →=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ.易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0, 所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B ,所以sin A =a sin Bb=3×632=22. 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12. 所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt △ADC 中,CD 2=AC 2-AD 2=75, 在Rt △BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →) =t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2=256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。
平面向量的数量积【学习目标】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系; 【要点梳理】要点一: 平面向量的数量积1. 平面向量数量积(内积)的定义已知两个非零向量a r 与b r ,它们的夹角是θ,则数量cos a b θr r叫a r 与b r 的数量积,记作a b ⋅r r ,即有()cos 0a b a b θθπ⋅=≤≤r r r r.并规定0r 与任何向量的数量积为0.2.一向量在另一向量方向上的投影:cos b θr叫做向量b r 在a r 方向上的投影.要点诠释:1. 两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a b ⋅r r ;今后要学到两个向量的外积a b ⨯r r ,而a b ⋅r r是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若0a ≠,且0a b ⋅=,则0b =;但是在数量积中,若0a ≠r ,且0a b ⋅=r r,不能推出0b =r.因为其中cos θ有可能为0.2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为b r ;当θ=180︒时投影为b -r.要点二:平面向量数量积的几何意义数量积a b ⋅r r 表示a r 的长度||a r 与b r 在a r 方向上的投影cos b θr的乘积,这是a b ⋅r r 的几何意义.图(1)(2)(3)所示分别是两向量,a b r r夹角为锐角、钝角、直角时向量b r 在向量a r 方向上的投影的情形,其中1||cos OB b θ=r ,它的意义是,向量b r 在向量a r 方向上的投影是向量1OB u u u r的数量,即11||aOB OB a =⋅ru u u r r .事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <;当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当00θ=时,由于cos 1θ=,所以1||OB b =;当当0180θ=时,由于cos 1θ=-,所以1||OB b =-.要点三:平面向量数量积的性质 设a r 与b r 为两个非零向量,e r 是与b r同向的单位向量.1.cos e a a e a θ⋅=⋅=r r r r r2.0a b a b ⊥⇔⋅=r r r r3.当a r 与b r 同向时,a b a b ⋅=r r r r ;当a r 与b r 反向时,a b a b ⋅=-r r r r. 特别的2a a a ⋅=r r r 或a a a =⋅r r r4.cos a ba bθ⋅=r r r r5.a b a b ⋅≤r r r r要点四:向量数量积的运算律1.交换律:a b b a ⋅=⋅r r r r2.数乘结合律:()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r3.分配律:()a b c a c b c +⋅=⋅+⋅r r r r r r r要点诠释:1.已知实数a 、b 、c(b≠0),则ab=bc ⇒a=c.但是a b b c ⋅=⋅⇒r r r r a c =r r;2.在实数中,有(a ⋅b)c=a(b ⋅c),但是()()a b c a b c ⋅≠⋅r r r r r r显然,这是因为左端是与c r 共线的向量,而右端是与a r共线的向量,而一般a r 与c r不共线.要点五:向量数量积的坐标表示1.已知两个非零向量11(,)a x y =r ,22(,)b x y =r ,1212a b x x y y ⋅=+r r2.设(,)a x y =r ,则222||a x y =+r或||a =r 3.如果表示向量a r的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x,那么||a =r平面内两点间的距离公式).要点六:向量在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件1122//(0)(,)(,)a b a b b x y x y λλ→→→→→→⇔=≠⇔=(2)证明垂直问题,常用垂直的充要条件 121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r(3)求夹角问题.由向量a r ,b r 数量积可知,若它们的夹角为θ,则||||cos a b a b θ⋅=r r r r,利用cos a ba b θ⋅==⋅r rr r(4)求线段的长度,可以利用a =r或12P P =u u u u r 【典型例题】类型一:平面向量数量积的概念例1.已知a r 、b r 、c r是三个非零向量,则下列命题中正确的个数为( )①a r ·b r =±|a r |·|b r |⇔a r ∥b r ;②a r 、b r 反向⇔a r ·b r =-|a r |·|b r |;③a r ⊥b r ⇔|a r +b r |=|a r -b r |;④|a r |=|b r |⇔|a r ·c r |=|b r ·c r |.A .1个B .2个C .3个D .4个 【答案】C【解析】(1)∵a r ·b r =|a r | |b|cos θ,∴由a r ·b r =±|a r | |b r |及a r 、b r为非零向量可得cos θ=±1,∴θ=0或π,∴a r ∥b r,且以上各步均可逆,故叙述①是正确的.(2)若a r 、b r 反向,则a r 、b r 的夹角为π,∴a r ·b r =|a r | |b r |cos π=―|a r | |b r|且以上各步均可逆,故叙述②是正确的.(3)当a r ⊥b r 时,将向量a r 、b r 的起点确定在同一点,则以向量a r 、b r为邻边作平行四边形,则该平行四边形必为矩形,于是它的两条对角线长相等,即有|a r +b r |=|a r ―b r|.反过来,若|a r +b r |=|a r ―b r |,则以a r 、b r 为邻边的四边形为矩形,∴a r ⊥b r,故叙述③是正确的.(4)当|a r |=|b r |,但a r 与c r 的夹角和b r 与c r 的夹角不等时,就有|a r ·c r |≠|b r ·c r|,反过来的由|a r ·c r |=|b r ·c r |也推不出|a r |=|b r|.故叙述④是不正确的.综上所述,在四个叙述中,前3个是正确的,而第4个是不正确的.【总结升华】需对以上四个叙述逐一判断,依据有两条,一是向量数量积的定义;二是向量加法与减法的平行四边形法则.举一反三:【变式1】如果a r ·b r =a r ·c r ,且a r≠0,那么( )A .b r =c rB .b r =λc rC .b r ⊥c rD .b r 、c r 在a r方向上的投影相等【答案】D类型二:平面向量数量积的运算例2.已知|a r |=4,|b r |=5,当(1)a r ∥b r ,(2)a r ⊥b r ,(3)a r 与b r的夹角为30°时,分别求a r 与b r的数量积.【思路点拨】 已知向量|a r |与|b r |,求a r ·b r,只需确定其夹角θ.【解析】(1)当a r ∥b r时,有θ=0°和θ=180°两种可能.若a r 与b r 同向,则θ=0°,a r ·b r =|a r| |b|cos0°=4×5×1=20;若a r 与b r 反向,则θ=180°,a r ·b r =|a r | |b r|cos180°=4×5×(―1)=―20. (2)当a r ⊥b r 时,θ=90°,a r ·b r =|a r | |b r|cos90°=0.(3)当a r 与b r 的夹角为30°时,a r ·b r =|a r | |b r |cos30°=4×5×2= 【总结升华】(1)在表示向量的数量积时,a r 与b r之间必须用实心圆“·”来连接,而不能用“×”连接,也不能省略.(2)求平面向量数量积的步骤是:①求a r 与b r 的夹角θ,θ∈[0°,180°].②分别求|a r|和|b r |.③求它们的数量积,即a r ·b r =|a r | |b r|·cos θ.举一反三:【变式1】已知|a r |=5,|b r |=4,〈a r ,b r 〉=3π,求(a r +b r )·a r .【答案】35【解析】 (a r +b r )·a r =2||||||cos 3a a ab a a b π⋅+⋅=+r r r r r r r =35例3.(1)若|a r |=4,a r ·b r =6,求b r 在a r方向上的投影;(2)已知|a r |=6,e r为单位向量,当它们之间的夹角θ分别等于60°、90°、120°时,求出a r 在e r方向上的正投影,并画图说明.【答案】(1)32(2)略 【解析】 (1)∵a r ·b r =|a r | |b r |cos θ=6,又|a r|=4,∴4|b r |cos θ=6,∴3||cos 2b θ=r .(2)a r 在e r 方向上的投影为|a r|·cos θ.如上图所示,当θ=60°时,a r 在e r 方向上的正投影的数量为|a r|·cos60°=3; 当θ=90°时,a r 在e r 方向上的投影的数量为|a r|·cos90°=0; 当θ=120°时,a r 在e r 方向上的正投影的数量为|a r|·cos120°=-3.【总结升华】 要注意a r 在b r 方向上的投影与b r 在a r方向上的投影不是不同的.类型三:平面向量模的问题例4.已知|a r |=|b r |=4,向量a r 与b r 的夹角为23π,求|a r +b r |,|a r ―b r |.【解析】因为a r 2=|a r |2=16,b r 2=|b r |2=16,2||||cos 44cos 83a b a b πθ⋅=⋅=⨯⨯=-r r r r ,所以||4a b +===r r .同事可求||a b -====r r【总结升华】关系式a r 2=|a r |2,可使向量的长度与向量的数量积互相转化.因此欲求|a r +b r |,可求(a r +b r )·(a r +b r ),并将此式展开.由已知|a r |=|b r |=4,得a r ·a r =b r ·b r =16,a r ·b r也可求得为―8,将上面各式的值代入,即可求得被求式的值.举一反三:【高清课堂:平面向量的数量积395485 例4】【变式1】已知||2,||5,3a b a b ==⋅=-r r r r ,求||,||a b a b -+r r r r.【解析】222()2425635a b a ab b -=-+=++=r r r r r r,||a b ∴-=r r同理,||a b +=r r【变式2】已知向量,a b r r 满足6,4a b ==r r ,且a b r r 与的夹角为60°,求2a b a b +-r r r r和.【答案】【解析】 Q 6,4a b ==r r,且a b r r 与的夹角为60°12a b ∴⋅=r ra b ∴+===r r ;2a b -===r r 【总结升华】要根据实际问题选取恰当的公式.类型四:向量垂直(或夹角)问题例5.已知,a b r r 是两个非零向量,同时满足a b a b ==-r r r r,求a a b +r r r 与的夹角.【思路点拨】利用cos a ba bθ⋅==⋅r r r r 求出两个向量的夹角.【解析】法一:将a b a b ==-r r r r两边平方得221122a b a b ⋅==r r r r ,a b ∴+==r r则222221()32cos 3a a a a b a a b a a b a a b a aθ+⋅++⋅====++⋅r r r r r r r r r r r r r r r r , 故a a b +r r r 与的夹角为30°. 法二: 数形结合法如图,,,a b a b -r r r r构成一个等边三角形,向量a b +r ra b +r r是向量a r 与向量b r 夹角的角平分线,所以向量a r与向量所成的夹角为30°.【总结升华】注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 举一反三:【变式1】已知向量a r ,b r 满足(a r ―b r )(2a r +b r )= ―4,且|a r |=2,| b r |=4,求〈a r ,b r〉.【答案】120° 【解析】原式=2224a a b b -⋅-=-r r r r ,4a b ∴⋅=-r rcos ,||||a ba b a b ⋅∴=r rr r r r =4182-=-∴〈a r ,b r〉=120°例6.已知a r 、b r 都是非零向量,且a r +3b r 与7a r ―5b r 垂直,a r ―4b r 与7a r ―2b r 垂直.求a r与b r的夹角α.【思路点拨】由题意知,()()3750a b a b +⋅-=r r r r , ()()472a b a b -⋅-r r r r=0,解得|a r |=|b r |.【解析】∵a r +3b r 与7a r ―5b r垂直, ∴(a r +3b r )·(7a r -5b r)=0. ∵a r ―4b r 与7a r ―2b r垂直, ∴(a r ―4b r )·(7a r ―2b r)=0.于是有2222716150 73080 a a b b a a b b ⎧+⋅-=⎪⎨⎪-⋅+=⎩r r r r r r r r ①②由①-②得 2a r ·b r =b r2. ③ 将③代入①得 a r 2=b r2,∴|a r |=|b r |.∴22||1cos 2||||2||a b b a b b α⋅===r r r r r r .∵0°≤α≤180°,∴α=60°.【总结升华】 正确理解和把握向量数量积性质的运用,以及向量夹角的范围,由2a r ·b r =b r 2,不能得出2a r =b r ,同样由a r 2=b r 2,也不能得出a r =b r 或a r =-b r.举一反三:【变式1】已知a r 与b r 为两个不共线的单位向量,k 为实数,若向a r +b r 与向量k a r -b r垂直,则k=________.【答案】【变式2】设非零向量,,,a b c d r rr r ,满足()()d a c b a b c =-r r r r r r r g g ,求证:a d ⊥r r 【证明】[()()]()()()a d a a c b a b c a c a b a b c a =-=-r r r r r r r r r r r r r r r r rQ g g g g g g g g ()()()()0a c a b a c a b =-=r r r r r r r r g g g ga d ∴⊥rr类型五:平面向量数量积的坐标表示及运算例7.已知向量a r 与b r 同向,b r =(1,2),a r ·b r=10.(1)求向量a r的坐标;(2)若c r =(2,-1).求(b r ·c r )·a r. 【解析】 (1)∵a r 与b r 同向,又b r=(1,2), ∴设a r =λb r ,则a r=(λ,2λ).又∵a r ·b r=10,∴1·λ+2·2λ=10,解得λ=2>0. ∵λ=2符合a r 与b r 同向的条件,∴a r=(2,4). (2)∵b r ·c r =1×2+2×(-1)=0,∴(b r ·c r )·a r =0. 【总结升华】(1)注意本题由a r 与b r 共线且同向的设法及验证;(2)通过本题可以看出(b r ·c r )·a r =0,(a r ·b r )·c r =10×(2,―1)=(20,―10),显然(b r ·c r )·a r ≠(a r ·b r )·c r,即向量运算结合律一般不成立.举一反三:【变式1】已知向量1)a =-r和b =r,若a r ·c r =b r ·c r的向量c r 的坐标.【解析】 设c r =(x ,y ),则1)(,)a c x y y ⋅=-⋅=-r r,(,)b c x y x ⋅=⋅=+r r,由a r ·c r =b r ·c r及||c =r,得222y x x y -=++=⎪⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩ 或1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩.所以c =⎝⎭r或c ⎛= ⎝⎭r .【总结升华】涉及向量数量积的坐标运算的问题,关键是熟练掌握数量积的坐标运算公式以及相关的模长公式和夹角公式,在这个过程中还要熟练运用方程的思想;值得注意的是,对于一些向量数量积坐标运算的问题,有时考虑其几何意义可使问题快速获解.例8.已知三个点A (2,1),B (3,2),D (―1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标以及矩形ABCD 两对角线所夹锐角的余弦值.【思路点拨】(1)先用坐标把两条直线用向量表示来,然后利用向量数量积等于零证明.(2)利用向量相等求出C点的坐标,利用cos a ba b θ⋅==⋅r rr r 求出两条对角线的夹角.【答案】(1)略(2)45【解析】(1)∵A (2,1),B (3,2),D (-1,4), ∴(1,1)AB =u u u r ,(3,3)AD =-u u u r.又∵1(3)130AB AD ⋅=⨯-+⨯=u u u r u u u r,∴AB AD ⊥u u u r u u u r,即AB ⊥AD .(2)∵AB AD ⊥u u u r u u u r,四边形ABCD 为矩形,∴AB DC =u u u r u u u r .设C 点坐标为(x ,y ),则由(1,1)AB =u u u r ,(1,4)DC x y =+-u u u r,得1141x y +=⎧⎨-=⎩,即05x y =⎧⎨=⎩.∴C 点坐标为(0,5). 从而(2,4)AC =-u u u r ,(4,2)BD =-u u u r,且||AC =u u u r||BD =u u u r 8816AC BD ⋅=+=u u u r u u u r,设AC u u u r 与BD u u u r 的夹角为θ,则164cos 205||||AC BD AC BD θ⋅===⋅u u u r u u u ru u u r u u u r , ∴求得矩形的两条对角线所夹锐角的余弦值为45. 【总结升华】在求两向量夹角的余弦值时,要注意根据题意选取向量的方向.本题若利用AC DB ⋅u u u r u u u r,求出cos θ<0不符合要求,当遇到这种情况时,要根据三角公式进行变换.举一反三:【变式1】已知a r =(1,1),b r=(0,―2)当k 为何值时, (1)k a r ―b r 与a r +b r共线;(2)k a r ―b r 与a r +b r的夹角为120°.【解析】∵a r =(1,1),b r =(0,―2),k a r ―b r=k (1,1)―(0,―2)=(k ,k+2).a r +b r=(1,1)+(0,―2)=(1,―1).(1)∵k a r -b r 与a r +b r共线,∴k+2―(―k)=0.∴k=-1.(2)∵||ka b -=r r||a b +==r r ,(k a r ―b r )·(a r +b r )=(k ,k+2)·(1,―1)=k ―k ―2=―2,而k a r ―b r 与a r +b r的夹角为120°,∴()()cos120||||ka b a b ka b a b -⋅+︒=++r r r rr r r r ,即12-=化简,整理得k 2+2k ―2=0,解之得1k =-【巩固练习】1.若|m u r |=4,|n r |=6,m u r 与n r 的夹角θ为45°,则m u r ·n r =( )A .12B .C .-D .-122.已知a r ⊥b r ,|a r |=2,|b r |=3且向量3a r +2b r 与k a r -b r 互相垂直,则k 的值为( )A .32-B .32C .32±D .1 3.若b r =(1,1),a b ⋅r r =2,()23a b -=r r ,则a r =( ) A.5 B.5 C.1 D.47 4.若a r =(2,3),b r =(―4,7),则a r 在b r 方向上的投影为( )A B .5 C .5D 5.设a r =(1,―2),b r =(―3,4),c r =(3,2),则(a r +2b r )·c r =( )A .(―15,12)B .0C .―3D .―116.若a r =(λ,2),b r =(―3,5),且a r 与b r 的夹角是钝角,则λ的取值范围是( )A .10,3⎛⎫+∞ ⎪⎝⎭B .10,3⎡⎫+∞⎪⎢⎣⎭C .10,3⎛⎫-∞ ⎪⎝⎭ D .10,3⎛⎤-∞ ⎥⎝⎦ 7.设(sin ,)3a α=r ,1(cos ,)3b α=r ,且//a r b ρ,则锐角α为( ) A .030 B .060 C .075 D .0458.△ABC 中,点O 为BC 的中点,过点O 作直线分别交直线AB 、AC 于不同两点M 、N ,若,AB mAM AC nAN ==u u u r u u u u r u u u r u u u r ,则m+n=( )A.2B.1C.4D.32 9.设,,a b c r r r 均为非零向量,则下面结论:①a b a c b c =⇒⋅=⋅r r r r r r ; ②a c b c a b ⋅=⋅⇒=r r r r r r ;③()a b c a b a c ⋅+=⋅+⋅r r r r r r r ; ④()()a b c a b c ⋅⋅=⋅⋅r r r r r r . 正确的是_________.10.已知<a r ,b r >=30°,|a r |=2,||b =r a r 和向量b r 的数量积a r ·b r =____。
2017届高三数学跨越一本线精品问题四 高考题中向量数量积的若干种求法平面向量的数量积是向量知识中的重要内容,考题中往往会涉及到求值或者取值范围的小题或大题,是高考题的热点和重点,那么如何求平面向量数量积呢?本文从三个方面予以阐述,以期给同学们启发.一、利用“定义”求平面向量数量积cos a b a b θ⋅=⋅⋅,根据几何或代数关系求非零向量的模和夹角是前提。
【例1】【2017届山东菏泽一中宏志部高三上学期月考】若ABC △外接圆的半径为1,圆心为O .2C 0OA +AB +A =且,OA =AB ,则CA CB ⋅等于( )A .32B .3C 。
23D .3【分析】分别由已知条件求出,CA CB及夹角,再cos a b a b θ⋅=⋅⋅,利用求数量积【点评】利用定义求两个非零向量数量积,关键要搞清向量的数量积和模,尤其在求向量夹角时,要判断其起点是否共点.【小试牛刀】若等腰△ABC 底边BC 上的中线长为1,底角B >60º,则BA ·AC 的取值范围是______. 【答案】(-1,-23)【解析】因为等腰△ABC 底边BC 上的中线长为1,底角60B >︒,所以60BAC ∠<︒,所以1cos ,12BAC ⎛⎫∠∈ ⎪⎝⎭,因为12AB AC +=,所以()24AB AC +=,所以2224AB AC AB AC ++⋅=,又AB AC =,所以2224AB AB AC +⋅=,所以22AB AB AC +⋅=,所以22cos 2AB AB BAC +∠=,又因为1cos ,12BAC ⎛⎫∠∈ ⎪⎝⎭,所以241,3AB ⎛⎫∈ ⎪⎝⎭,所以222cos 2,13AB BAC AB ⎛⎫∠=-∈ ⎪⎝⎭,所以22cos 1,3BA AC AB BAC ⎛⎫⋅=-∠∈-- ⎪⎝⎭;故答案为:21,3⎛⎫-- ⎪⎝⎭. 二、利用“坐标”求平面向量数量积 设11(,)a x y =,22(,)b x y =,则1212a b x xy y ⋅=+,用此法求平面向量数量积时,必须先建立恰当的平面直角坐标系,把向量坐标化,特别注意,当遇到特殊三角形或四边形时可以多考虑建系,以达到事半功倍的效果.【例2】在△ABC 中,内角A,B,C 的对边分别为a,b ,c,sin 2C = ,a=b=3,点P 是边AB 上的一个三等分点,则CP CB CP CA ⋅+⋅ =( ) A.0 B 。
高中数学平面向量数乘运算与数量积讲解及练习专题一 平面向量的数乘运算探究一:已知非零向量→a ,作出→→→++a a a 和)()()(→→→-+-+-a a a ,它们的长度和方向分别是怎样的?1.向量的数乘运算的定义一般地,我们规定实数λ与向量→a 的积是一个向量,这种运算叫作向量的数乘,记作→a λ,它的长度与方向规定如下: (1)→→⋅=a a λλ;(2)当0>λ时,→a λ与→a 的方向相同;当0<λ时,→a λ与→a 的方向相反; 当0=λ时,→→=0a λ.由向量的数乘的定义可知: ①→→=a a )()(λμμλ②→→→+=+a a a μλμλ)( ③→→→→+=+b a b a λλλ)(2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算的结果仍是向量. 对于任意向量→a ,→b ,以及任意实数,,,21μμλ恒有→→→→±=±b a b a 2121)(λμλμμμλ.题型1 向量的数乘运算例1.设a 是非零向量,a λ,λ是非零实数,则下列结论中正确的是( ) A .a 与a λ的方向相同 B .a 与a λ-的方向相反 C .a 与2a λ的方向相同 D .a a λλ=例2. 化简:(1)5(32)4(23)a b b a -+-; (2)111(2)(32)()342a b a b a b -----;例3.设平行四边形ABCD 的两条对角线AC 与BD 交于点O ,AB a =,AD b =,则向量OA =( )A .1122a b + B .1122a b -+ C .1122a b - D .1122a b --练习1.在ABC ∆中,D 是BC 上一点,且13BD BC =,则AD =( ) A .13AB AC + B .13AB AC -C .2133AB AC +D .1233AB AC +探究:已知非零向量→a ,作出向量→a 2,→a 21,→-a 3,→-a 31,你能发现这些向量与原向量的位置关系吗?3.向量共线定理向量)(→→→≠0a a 与→b 共线的充要条件是:存在唯一一个实数λ,使→→=a b λ.题型2 向量共线定理的应用例4.判断下列各小题中的向量→a ,→b 是否共线(其中1e ,2e 是两个非零不共线向量).()1110,51e b e a -==→→;()212123,31212e e b e e a -=-=→→;()212133,3e e b e e a -=+=→→.例5.已知21,e e 是两个不共线的向量,(1)如果2182e e AB -=→,213e e CB +=→,212e e CD -=→,求证:D B A ,,三点共线. (2)欲使ke 1+e 2和e 1+ke 2共线,试确定实数k 的值.专题二 平面向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. (2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量θcos b a ⋅叫做向量a 与b 的数量积(或内积),记作a ·b ,即θcos b a b a ⋅=⋅. 规定:零向量与任一向量的数量积为0.题型1 向量数量积的运算例6.已知向量a ,b 满足1a =,2b =,a 与b 夹角为30,那么a b ⋅等于( ) A .1-B .2C .3D .2练习2.已知|a |=10,|b |=12,且()36)51(3-=⋅b a ,则a 与b 的夹角为( ) A .60° B .120° C .135° D .150°3.投影向量如图(1),设a ,b 是两个非零向量,AB →=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.4.向量数量积的几何意义向量数量积a ·b 等于b 的长度b 与向量a 在向量b 上的投影θcos ⋅a 的乘积 (其中θcos ⋅a 称为向量a 在向量b 上的投影,也可以表示为bba ⋅)题型2 投影向量的运用例7.已知|a |=3,|b |=5,a 与b 的夹角为45°,则向量a 在向量b 方向上的投影为________.练习3.已知|a|=3,|b|=5,a·b=-12,则a在b上的投影向量为______.4.向量数量积的性质设a,b是非零向量,它们的夹角是θ,e是与b方向相同的单位向量,则(1)a·e=e·a=|a|cos .(2)a⊥b⇔a·b=0.(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=a·a.(4)|a·b|≤|a||b|.5.向量数量积的运算律(1)a·b=b·a(交换律).(2)(λa)·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).题型3 向量数量积性质的综合运用例8.已知|a|=1,|b|= 2.(1)若a∥b,求a·b;(2)若a,b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角.练习4.已知非零向量a ,b ,满足|a |=1,(a -b )·(a +b )=12,且a ·b =12.(1)求向量a ,b 的夹角; (2)求|a -b |.课后作业1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A.π6 B.π4 C.π3D.π22.已知单位向量a ,b ,则(2a +b )·(2a -b )的值为( )A. 3B.5 C .3D .53.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则|a |=( )A .2B .4C .6D .124.已知向量a 与b 的夹角是π3,且|a |=1,|b |=2,若(3a +λb )⊥a ,则实数λ=________.。
5.3平面向量的数量积与平面向量应用知识梳理:1.平面向量的数量积平面向量数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.已知两个单位向量e 1,e 2的夹角为120°,若向量a =e 1+2e 2,b =4e 1,则a ·b =________.2.(2013·镇江期末)在菱形ABCD 中,AB =23,B =2π3,BC =3BE ,DA =3DF ,则EF ·AC =________.考点一:平面向量的数量积的运算例1(1).(2014·南通、泰州、扬州一调)在平面直角坐标系xOy 中,已知向量a =(1,2),a -12b =(3,1),则a ·b =________.(2).已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为________.(3).(2012·江苏高考)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ·AF =2,则AE ·BF 的值是________.考点二:平面向量数量积的性质例2 (1)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,求2a -b 与a +2b 的夹角的余弦值(2)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,求实数λ的值.变式训练1:(1)已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,求|b |的值. (2)在直角三角形ABC 中,已知AB =(2,3),AC =(1,k ),求k 的值例3.(2014·泰州模拟)如图,半径为1,圆心角为3π2的圆弧AB 上有一点C .(1)若C 为圆弧AB 的中点,点D 在线段OA 上运动,求|OC +OD |的最小值; (2)若D ,E 分别为线段OA ,OB 的中点,当C 在圆弧AB 上运动时,求CE ·DE 的取值范围.变式训练2(2013·江苏高考)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.课堂练习:1.(2011·江苏高考)已知e1,e2是夹角为2π3的两个单位向量,a=e1-2e2,b=k e1+e2.若a·b=0,则实数k的值为________.2.在△ABC中,若AB·AC=AB·CB=2,则边AB的长等于________.3.已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则实数k的取值范围是________.4.若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为________.5.在△ABC中,AB=10,AC=6,O为BC的垂直平分线上一点,则AO·BC=________.6.已知向量a=(sin θ,cos θ-2sin θ),b=(1,2).(1)若a∥b,求tan θ的值;(2)若|a|=|b|,0<θ<π,求θ的值.5.3平面向量的数量积与平面向量应用作业1.(2013·盐城二模)若e 1,e 2是两个单位向量,a =e 1-2e 2,b =5e 1+4e 2,且a ⊥b ,则e 1,e 2的夹角为________.2.(2014·南通一模)在△ABC 中,若AB =1,AC =3,|AB +AC |=|BC |,则BA ·BC |BC |=________.3.在平面直角坐标系中,O 为坐标原点,已知向量OA =(2,2),OB =(4,1),在x 轴上取一点P ,使AP ·BP 有最小值,则P 点的坐标是________.4.在直角三角形ABC 中,∠C =π2,AC =3,取点D 使BD =2DA ,那么CD ·CA =________.5.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ―→·EM ―→的取值范围是________.6.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.7.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN 的模为________.8.(2013·山东高考)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2.若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为________.9.(2014·泰州期末)已知向量a =(cos λθ,cos(10-λ)θ),b =(sin(10-λ)θ,sin λθ),λ,θ∈R .(1)求|a |2+|b |2的值;(2)若a ⊥b ,求θ; (3)若θ=π20,求证:a ∥b .10.已知△ABC 为锐角三角形,向量m =(3cos 2A ,sin A ),n =(1,-sin A ),且m ⊥n . (1)求A 的大小;(2)当AB =p m ,AC =q n (p >0,q >0),且满足p +q =6时,求△ABC 面积的最大值.11.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos2B,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.11.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.第Ⅱ组:重点选做题1.(2014·扬州期末)在边长为6的等边三角形ABC 中,点M 满足BM =2MA ,则CM ·CB =________.解析:法一:由题知,CM ·CB =(CB +BM )·CB =2CB + 23BA ―→·CB =36+23×6×6×cos 120°=24.法二:以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立直角坐标系,则B (-3,0),C (3,0),A (0,33),从而M (-1,23),所以CM =(-4,23),CB =(-6,0).因此CM ·CB =(-4)×(-6)+23×0=24.答案:242.(2013·盐城二模)若点G 为△ABC 的重心,且AG ⊥BG ,则sin C 的最大值为________. 解析:记CA =b ,CB =a ,则AB =a -b ,从而AG =13(a -2b ),BG =13(b -2a ).因为AG ⊥BG ,所以(a -2b )(b -2a )=0,即2b 2-5b ·a +2a 2=0,所以cos C =2b 2+2a 25|b |·|a |≥45,故当|b |=|a |时,cos C 有最小值45,此时sin C 有最大值35.答案:351.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为________. 解析:(a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2a ,b =0,可得a ,b =12,又因为0≤a ,b ≤π,所以a ,b =π3.答案:π32.(2013·南通三模)已知向量a 与b 的夹角为60°,且|a |=1,|b |=2,那么(a +b )2的值为________.解析:(a +b )2=1+4+2×1×2cos 60°=7. 答案:7平面向量的数量积与平面向量应用举例知识梳理:1.平面向量的数量积平面向量数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.(2014·苏锡常镇一调)已知两个单位向量e 1,e 2的夹角为120°,若向量a =e 1+2e 2,b =4e 1,则a ·b =________.解析:a ·b =(e 1+2e 2)·4e 1=4e 21+8e 1·e 2=4+8×1×1×⎝⎛⎭⎫-12=0. 答案:02.(2013·镇江期末)在菱形ABCD 中,AB =23,B =2π3,BC =3BE ,DA =3DF ,则EF ·AC =________.解析:如图,依题意向量BC ,BA 所成角为2π3,|BC |=|BA |=23,AC =BC -BA ,EF ―→=13BC +BA ,EF ·AC =⎝⎛⎭⎫13BC +BA ·(BC -BA )=13|BC |2+23BC ·BA -|BA |2=-12. 答案:-12考点一:平面向量的数量积的运算1.(2014·南通、泰州、扬州一调)在平面直角坐标系xOy 中,已知向量a =(1,2),a -12b=(3,1),则a ·b =________.解析:法一:由a ·⎝⎛⎭⎫a -12b =5,得a 2-12a ·b =5, 即5-12a ·b =5,所以a ·b =0.法二:由a =(1,2),a -12b =(3,1),得b =(-4,2),所以a ·b =0 答案:02.已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为________.解析:由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.答案:-233.(2012·江苏高考)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ·AF =2,则AE ·BF 的值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系,则AB =(2,0),AE =(2,1),AD =(0,2).设AF =(x,2),x >0,则AB ·AF =2x =2,解得x =1.所以F (1,2),BF =(1-2,2),于是AE ·BF = 2.答案: 24.在△ABC 中,若∠A =120°,AB ·AC =-1,则|BC ―→|的最小值是________. 解析:∵AB ·AC =-1,∴|AB |·|AC |cos 120°=-1,即|AB |·|AC |=2,∴|BC |2=|AC -AB |2=AC 2-2AB ·AC +AB 2≥2|AB |·|AC |-2AB ·AC =6,∴|BC |min = 6. 答案: 6考点二:平面向量数量积的性质题型二 求向量的模与夹角例2 (1)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值为.(2)已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=.(3)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为. 答案 (1)-126 (2)32 (3)712解析 (1)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.(2)∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |·|b |cos45°=22|b |, |2a -b |2=4-4×22|b |+|b |2=10,∴|b |=3 2. (3)由AP →⊥BC →知AP →·BC →=0, 即AP →·BC →=(λAB →+AC →)·(AC →-AB →) =(λ-1)AB →·AC →-λA B →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712.(2)在直角三角形ABC 中,已知AB =(2,3),AC =(1,k ),则k 的值为________. 解析:①当A =90°时, ∵AB ⊥AC ,∴AB ·AC =0. ∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC ,又BC =AC -AB =(1,k )-(2,3)=(-1,k -3),∴AB ·BC =2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时,∵AC ⊥BC ,∴1×(-1)+k (k -3)=0, 即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132.考点三:向量数量积的综合3.(2014·泰州模拟)如图,半径为1,圆心角为3π2的圆弧AB 上有一点C .(1)若C 为圆弧AB 的中点,点D 在线段OA 上运动,求|OC +OD |的最小值;(2)若D ,E 分别为线段OA ,OB 的中点,当C 在圆弧AB 上运动时,求CE ·DE 的取值范围.解:以O 为原点,OA 为x 轴正方向,建立如图所示的直角坐标系.(1)设D (t,0)(0≤t ≤1), 又C ⎝⎛⎭⎫-22,22, 所以OC +OD =⎝⎛⎭⎫-22+t ,22, 所以|OC +OD |2=12-2t +t 2+12=t 2-2t +1(0≤t ≤1),当t =22时,其最小值为12, 即|OC +OD |的最小值为22. (2)设OC =(cos α,sin α)⎝⎛⎭⎫0≤α≤3π2, 则CE =OE -OC =⎝⎛⎭⎫0,-12-(cos α,sin α) =⎝⎛⎭⎫-cos α,-12-sin α. 又D ⎝⎛⎭⎫12,0,E ⎝⎛⎭⎫0,-12,所以DE =⎝⎛⎭⎫-12,-12, 故CE ·DE =12⎝⎛⎭⎫cos α+12+sin α=22sin ⎝⎛⎭⎫α+π4+14. 因为π4≤α+π4≤7π4,所以CE ·DE ∈⎣⎡⎦⎤14-22,14+22.[典例] (2013·江苏高考)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝⎛⎭⎫2θ+π4=-22. 又由0<θ<π,知π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4.因此θ=π2或θ=3π4.课堂练习:1.(2011·江苏高考)已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a·b =0,则实数k 的值为________.解析:由题得|e 1|=|e 2|=1,e 1·e 2=|e 1|·|e 2|cos2π3=-12,所以a ·b =(e 1-2e 2)·(k e 1+e 2)=k |e 1|2+(1-2k )·e 1e 2-2|e 2|2=k +2k -12-2=0,解得k =54.答案:542.在△ABC 中,若AB ·AC =AB ·CB =2,则边AB 的长等于________.解析:由题意得AB ·AC +AB ·CB =AB ·(AC +CB )=|AB |2=4,所以AB =2.答案:23.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则实数k 的取值范围是________. 解析:因为a =(-2,2),b =(5,k ),所以a +b =(3,k +2),所以|a +b |=32+(k +2)2=13+4k +k 2≤5,解得-6≤k ≤2 答案:[-6,2]4.(2013·淮安二模)在△ABC 中,已知AB =2,BC =3,∠ABC =60°,BD ⊥AC ,D 为垂足,则BD ·BC ―→的值为________.解析:BD ·BC =BD ·(BA +AC )=BD ·BA +BD ·AC=BD ·BA =|BD |·|BA |·cos ∠ABD =|BD |2. 在△ABC 中,由余弦定理得AC =7,又S △ABC =12AB ·BC ·sin ∠ABC =12×2×3×sin 60°=332,所以12AC ·BD =332,所以BD =3217, 所以BD ·BC =|BD |2=277. 答案:2775.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:由|a |=|a +2b |,两边平方,得|a |2=(a +2b )2 =|a |2+4|b |2+4a ·b ,所以a ·b =-|b |2. 又|a |=3|b |,所以a ,b=a ·b |a ||b |=-|b |23|b |2=-13. 答案:-136.在△ABC 中,AB =10,AC =6,O 为BC 的垂直平分线上一点,则AO ·BC =________. 解析:取BC 边的中点D ,连接AD ,则AO ·BC =(AD +DO )·BC =AD ·BC +DO ·BC =AD ·BC =12(AB +AC )·(AC -AB )=12(AC 2-AB 2)=12(62-102)=-32.答案:-32 作业1.(2013·盐城二模)若e 1,e 2是两个单位向量,a =e 1-2e 2,b =5e 1+4e 2,且a ⊥b ,则e 1,e 2的夹角为________.解析:因为a ⊥b ,所以a ·b =0,从而5-6e 1·e 2-8=0,所以e 1·e 2=-12,故〈e 1·e 2〉=2π3.答案:2π32.(2014·南通一模)在△ABC 中,若AB =1,AC =3,|AB +AC |=|BC |,则BA ·BC |BC |=________.解析:由条件得|AB +AC |=|AC -AB |,故AC ·AB =0,即AC ⊥AB ,故|BC |=2,∠ABC =60°,从而原式=1×2×cos 60°2=12.答案:123.在平面直角坐标系中,O 为坐标原点,已知向量OA =(2,2),OB =(4,1),在x 轴上取一点P ,使AP ·BP 有最小值,则P 点的坐标是________.解析:设P 点坐标为(x,0),则AP =(x -2,-2),BP =(x -4,-1).AP ·BP =(x -2)(x -4)+(-2)×(-1)=x 2-6x +10=(x -3)2+1. 当x =3时,AP ·BP 有最小值1. ∴此时点P 坐标为(3,0). 答案:(3,0)4.在直角三角形ABC 中,∠C =π2,AC =3,取点D 使BD =2DA ,那么CD ·CA =________.解析:如图,CD =CB +BD .又∵BD =2DA ,∴CD =CB +23BA =CB +23(CA -CB ),即CD =23CA +13CB ,∵∠C =π2,∴CA ·CB =0,∴CD ·CA =⎝⎛⎭⎫23 CA +13 CB ·CA =23CA 2+13CB ·CA =6. 答案:65.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC ―→·EM ―→的取值范围是________.解析:将正方形放入如图所示的平面直角坐标系中,设E (x,0),0≤x ≤1.又M ⎝⎛⎭⎫1,12,C (1,1),所以EM =⎝⎛⎭⎫1-x ,12,EC =(1-x,1),所以EM ·EC =⎝⎛⎭⎫1-x ,12·(1-x,1)=(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM ·EC 的取值范围是⎣⎡⎦⎤12,32. 答案:⎣⎡⎦⎤12,326.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 解析:∵a ,b 的夹角为45°,|a |=1, ∴a ·b =|a |·|b |·cos 45°=22|b |, ∴|2a -b |2=4-4×22|b |+|b |2=10.∴|b |=3 2. 答案:3 27.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ),则向量MN 的模为________.解析:∵a ∥b ,∴x =4.∴b =(4,-2),∴a +b =(6,-3), b -c =(1,-2-y ).∵(a +b )⊥(b -c ),∴(a +b )·(b -c )=0, 即6-3(-2-y )=0,解得y =-4. ∴向量MN =(-8,8),∴|MN |=8 2. 答案:8 28.(2013·山东高考)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2.若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为________.解析:BC =AC -AB ,由于AP ⊥BC ,所以AP ·BC =0, 即(λAB +AC )·(AC -AB )=-λ2AB +2AC +(λ-1) AB ·AC =-9λ+4+(λ-1)×3×2×⎝⎛⎭⎫-12=0,解得λ=712. 答案:7129.(2014·泰州期末)已知向量a =(cos λθ,cos(10-λ)θ),b =(sin(10-λ)θ,sin λθ),λ,θ∈R .(1)求|a |2+|b |2的值; (2)若a ⊥b ,求θ; (3)若θ=π20,求证:a ∥b .解:(1)因为|a |=cos 2(λθ)+cos 2[(10-λ)θ],|b |=sin 2[(10-λ)θ]+sin 2(λθ),所以|a |2+|b |2=2. (2)因为a ⊥b ,所以cos λθ·sin(10-λ)θ+cos(10-λ)θ·sin λθ=0. 所以sin [(10-λ)θ+λθ]=0,所以sin 10θ=0, 所以10θ=k π,k ∈Z ,所以θ=k π10,k ∈Z .(3)证明:因为θ=π20,所以cos λθ·sin λθ-cos(10- λ)θ·sin(10- λ)θ =cos λπ20·sin λπ20-cos ⎝⎛⎭⎫π2-λπ20·sin ⎝⎛⎭⎫π2-λπ20 =cos λπ20·sin λπ20-sin λπ20·cos λπ20=0,所以a ∥b .10.已知△ABC 为锐角三角形,向量m =(3cos 2A ,sin A ),n =(1,-sin A ),且m ⊥n . (1)求A 的大小;(2)当AB =p m ,AC =q n (p >0,q >0),且满足p +q =6时,求△ABC 面积的最大值. 解:(1)∵m ⊥n ,∴3cos 2A -sin 2A =0.∴3cos 2A -1+cos 2A =0, ∴cos 2A =14.又∵△ABC 为锐角三角形, ∴cos A =12,∴A =π3.(2)由(1)可得m =⎝⎛⎭⎫34,32,n =⎝⎛⎭⎫1,-32. ∴|AB |=214p ,|AC |=72q . ∴S △ABC =12|AB |·|AC |·sin A =2132pq .又∵p +q =6,且p >0,q >0, ∴p ·q ≤p +q2,∴p ·q ≤3.∴p ·q ≤9.∴△ABC 面积的最大值为2132×9=18932.5.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.解 (1)f (x )=-2sin 2x +23sin x cos x =-1+cos2x +23sin x cos x=3sin2x +cos2x -1=2sin(2x +π6)-1.由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,∴f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ).(2)∵f (C )=2sin(2C +π6)-1=1,∴sin(2C +π6)=1,∵C 是三角形的内角,∴2C +π6=π2,即C =π6.∴cos C =a 2+b 2-c 22ab =32,即a 2+b 2=7.将ab =23代入可得a 2+12a 2=7,解得a 2=3或4.∴a =3或2,∴b =2或 3. ∵a >b ,∴a =2,b = 3.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos2B,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.解 (1)m ∥n ⇒2sin B ·(2cos 2B2-1)+3cos2B =0⇒sin2B +3cos2B =0⇒2sin(2B +π3)=0(B 为锐角)⇒2B =2π3⇒B =π3.(2)cos B =a 2+c 2-b 22ac ⇒ac =a 2+c 2-4≥2ac -4⇒ac ≤4.S △ABC =12a ·c ·sin B ≤12×4×32= 3.故S △ABC 的最大值为 3.第Ⅱ组:重点选做题1.(2014·扬州期末)在边长为6的等边三角形ABC 中,点M 满足BM =2MA ,则CM ·CB =________.解析:法一:由题知,CM ·CB =(CB +BM )·CB =2CB + 23BA ―→·CB =36+23×6×6×cos 120°=24.法二:以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立直角坐标系,则B (-3,0),C (3,0),A (0,33),从而M (-1,23),所以CM =(-4,23),CB =(-6,0).因此CM ·CB =(-4)×(-6)+23×0=24.答案:242.(2013·盐城二模)若点G 为△ABC 的重心,且AG ⊥BG ,则sin C 的最大值为________. 解析:记CA =b ,CB =a ,则AB =a -b ,从而AG =13(a -2b ),BG =13(b -2a ).因为AG ⊥BG ,所以(a -2b )(b -2a )=0,即2b 2-5b ·a +2a 2=0,所以cos C =2b 2+2a 25|b |·|a |≥45,故当|b |=|a |时,cos C 有最小值45,此时sin C 有最大值35.答案:351.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为________. 解析:(a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2a ,b =0,可得a ,b =12,又因为0≤a ,b ≤π,所以a ,b =π3.答案:π32.(2013·南通三模)已知向量a 与b 的夹角为60°,且|a |=1,|b |=2,那么(a +b )2的值为________.解析:(a +b )2=1+4+2×1×2cos 60°=7.答案:7。
数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
【知识要点】 1、平面向量的数量积
(1)平面向量的数量积的定义:已知两个非零的向量a 与b ,它们的夹角是θ,则数量|a ||b
|cos θ叫a 与b 的数量积,记作a ·b
,即有a ·b =|a ||b |cos θ.
(2)对于0,
不谈它与其它向量的夹角问题.
(3)a 与b 的夹角,记作,a b <>
,确定向量a 与b 的夹角时,必须把两个向量平移到同一个起点.如:A AC AB ∠>=<, 但是B BC AB ∠>≠<,B BC AB ∠->=<π,
(4)平面向量的数量积是一个实数,可正,可负,可零,它不是一个向量.
(5)a 在b 上的“投影”叫做向量a 在b 上的“投影”, 向量a 在向量b 上的投影它表示向量a 在向量b
上的投影对应的有向线段的数量.它是一个实数,可以是正数,可以是负数,也可以
是零.
(6)a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b
|cos θ的乘积.
2、平面向量的数量积的运算律
(1)a ·b = b a ⋅
(交换律);
(2)(a b + )·c =a ·c +b ·c .(分配律)
3、平面向量数量积的坐标表示
设a =11(,)x y ,b =22(,)x y ,则1212a b x x y y =+
(竖乘相加).
4、温馨提示
(1)数量积不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅
.
(2)消去律不成立.即由c a b a ⋅=⋅不能得到c b =.
(3)由0=⋅b a 不能得到0=a 或0=b ,因为还有可能a b ⊥
.
(4)乘法公式和完全平方和差仍然成立:222
2
||||)()(b a b a b a b a -=-=-⋅+ 5、平面向量的数量积的计算方法一般有三种:坐标法、公式法和基底法. 【方法讲评】
【例1】 已知正方形ABCD 的边长为2,点E 是AB 边上的中点,则DE DC ∙
的值为( )
A .1
B .2
C .4
D .6
【点评】(1)虽然本题已知中没有直角坐标系,但是,它有“正方形”,所以很方便建立直角坐标系,建立了直角坐标系后,解题就很方便快捷.(2)如果已知中涉及直角三角形、等腰三角形、矩形、正方形、菱形等,可以尝试建立直角坐标系,求向量的数量积.
【反馈检测1】在ABC ∆中,,2AB =,1AC =,E F 、为BC 的三等分点,则AE AF ⋅
=( )
A
【例2】 等边ABC ∆的边长为1,记,,BC a CA b AB c ===
,则a b b c c a ⋅-⋅-⋅ 等于.
【点评】(1)该题由于知道向量的长度和向量的夹角,所以直接选择公式a ·b =|a ||b
|cos θ求解比
较方便.(2)该题向量的夹角都是0
120,不要弄成了0
60.找两个向量的夹角时,必须要把两个向量的起点移到一起再确定大小.
【反馈检测2】ABC ∆的外接圆半径为1,圆心点为O ,20AB AC OA ++= ,则CA CB ⋅=
( )
A .3
B .2
C .1
D .0
MA MB
⋅=_____________.
【点评】(1)本题利用公式法比较复杂,所以不利用方法一和方法二解答.(2)由于已知中有向量,CB CA
,
并且有它们的长度和夹角,所以选择向量,CB CA
做基底比较合适.
【反馈检测3】如图,在边长为2的菱形ABCD 中,0
60BAD ∠=,E 为BC 中点,则AE BD ⋅
=( )
A .﹣3
B .0
C .﹣1
D .1。