旋风分离器计算模板
- 格式:xls
- 大小:1.52 MB
- 文档页数:1
旋风分离器计算结果标准化工作室编码[XX968T-XX89628-XJ668-XT689N]旋风除尘器性能的模拟计算一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。
图1 旋风分离器几何形状及尺寸(正视图)旋风分离器的空间视图如图2所示。
图2 旋风分离器空间视图二、旋风分离器数值仿真中的网格划分仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。
图3 数值仿真时旋风分离器的网格划分(空间)图4为从空间不同角度所观测到的旋风分离器空间网格。
图4 旋风分离器空间网格空间视图本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。
三、对旋风分离器的数值模拟仿真采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。
以下是计算结果的后处理显示结果。
由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。
图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。
可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。
粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图6 L=2.3m、D=1.5m、长宽比1:1,入口速度15m/s时烟尘空间分布四、计算结果计算中,首先确定几何尺寸L,按照给定的两种烟尘颗粒,分别对L=2.3m、L=1.8m、L=1.3m、L=0.8m四种情况进行对比计算,对比计算结果为L=2.3m、L=1.3m时除尘效率较高。
旋风分离压力分布计算公式引言。
旋风分离器是一种常用的气固分离设备,广泛应用于化工、冶金、建材等行业。
其工作原理是利用气流在旋风分离器内部的旋转运动,使固体颗粒在离心力的作用下被分离出来。
在旋风分离器的设计和优化过程中,了解气体在分离器内部的压力分布是非常重要的。
本文将介绍旋风分离压力分布的计算公式及其应用。
旋风分离压力分布计算公式。
旋风分离器内部的气体流动可以用流体力学的基本原理来描述。
在旋风分离器内部,气体流经旋风管道后产生旋转运动,固体颗粒受到离心力的作用被分离出来,而气体则在旋风分离器内部形成压力梯度。
为了了解旋风分离器内部的气体压力分布,可以利用以下的计算公式:ΔP = ρv^2/2。
其中,ΔP表示气体在旋风分离器内部的压力梯度,单位为帕斯卡(Pa);ρ表示气体的密度,单位为千克/立方米;v表示气体的流速,单位为米/秒。
在旋风分离器内部,气体的流速是不均匀的,通常在旋风分离器的进口处流速较大,在出口处流速较小。
因此,可以利用上述的压力分布计算公式来估算旋风分离器内部的压力梯度。
应用。
利用上述的压力分布计算公式,可以对旋风分离器进行设计和优化。
在旋风分离器的设计过程中,需要考虑气体在分离器内部的流动情况,以及气体在分离器内部的压力分布。
通过计算气体在分离器内部的压力梯度,可以确定合适的分离器尺寸和结构参数,从而提高分离效率和降低能耗。
此外,压力分布计算公式还可以用于分析旋风分离器的性能。
通过计算气体在分离器内部的压力梯度,可以评估分离器的分离效率和压力损失。
在实际应用中,可以根据压力分布计算结果对旋风分离器进行优化,从而提高其分离效率和降低能耗。
结论。
旋风分离压力分布计算公式是对旋风分离器内部气体流动的基本描述,通过该公式可以计算气体在分离器内部的压力梯度。
应用该公式可以对旋风分离器进行设计和优化,提高其分离效率和降低能耗。
在未来的研究中,可以进一步完善压力分布计算公式,以适应不同工况下的旋风分离器设计和优化需求。
旋风分离器的工艺计算》:*目录一.前言 ............................................................................................................. 错误!未定义书签。
应用范围及特点....................................................................................... 错误!未定义书签。
分离原理................................................................................................... 错误!未定义书签。
分离方法................................................................................................... 错误!未定义书签。
)性能指标 ................................................................................................. 错误!未定义书签。
二.旋风分离器的工艺计算.............................................................................. 错误!未定义书签。
旋风分离器直径的计算........................................................................... 错误!未定义书签。
由已知求出的直径做验算....................................................................... 错误!未定义书签。
作成作成::时间时间::2009.5.14一、問題提出PHLIPS FC9262/01這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。
二、計算過程1.選擇工作狀況選擇工作狀況::根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。
吸塵器旋風分離器選擇Bryan_Wang已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。
再在這個直線上求得吸入功率H*Q最高點(求導數得)。
求解過程不再詳述。
求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。
現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。
一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。
按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。
D0=50mmb=12.5mma=25mmde=25mmh0=20mmh=75mmH-h=100mmD2=12.5mm計算α約為11度一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s.計算入口面積為S=3.125e-4平方米。
則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。
进气粒径分布1030581001903757501500201010102016113顆粒密度ρp=2700kg/m3進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s按照以下公式計算顆粒分級效率:平均粒徑(μm)比重(%)計算結果為d(m)1E-053E-056E-051E-042E-044E-048E-040.0023E-071E-075E-08ηi 111111110.91140.6750.5校核分割粒徑校核分割粒徑x x 5050::按照以下公式計算:計算得知在所有平均粒徑計算得到的分級效率都為100%,而分級效率為50%的粒徑為0.05微米。
旋风分离器旋风长度的分析计算高翠芝;孙国刚;董瑞倩【摘要】认为当分离器外旋流中损耗的能量(即外旋流向内旋流传递的总能量)与内旋流旋转能量达到平衡,即内外旋流之间能量的传递达到稳定状态时,旋转气流到达旋涡尾端位置.由此,采用分离器内压降定量表征能量的损耗,推导得到旋风长度的计算公式.考察了排气管直径、入口尺寸、排气管插入深度、入口浓度、分离器长度、排尘口直径等因素对旋风长度的影响.将该公式计算结果与实验测量值进行对比,结果表明,该公式能较好地反映各因素对旋风长度的影响趋势,且数值差别较小.该公式通过旋风分离器能量传递的特性推导,具有明确的物理意义,适用性较强.%It was suggested that when the energy lost in the outer vortex (the overall energy transferred from outer vortex to inner vortex) and the rotation energy of the inner vortex reached equilibrium, the energy transfer between the inner and outer vortex reached a stable, and the vortex end could be obtained. Then, a calculation equation of the vortex length was obtained based on the analysis of the energy lost in the cyclone. The effects of the inlet dimension, vortex finder diameter, vortex finder length, cylinder length, dust outlet diameter, inlet concentration on the vortex length were investigated. In addition, the calculated and the measured vortex lengths were also compared. The results indicated that the equation could predict the effect tendency of the factors to vortex length, and the accuracy was generally satisfactory. The equation obtained through the investigation of the energy transfer possessed certain physics principlewith strong adaptability.【期刊名称】《石油学报(石油加工)》【年(卷),期】2012(028)001【总页数】5页(P94-98)【关键词】旋风分离器;旋风长度;压降【作者】高翠芝;孙国刚;董瑞倩【作者单位】中国石油大学重质油国家重点实验室,北京 102249;中国石油大学重质油国家重点实验室,北京 102249;中国石油大学重质油国家重点实验室,北京102249【正文语种】中文【中图分类】TQ051.8旋风分离器内流场为双涡旋转流动,内旋涡通常会在分离器本体的某一位置结束,称为旋涡“端点”或“尾端”,而排气管下口到旋涡尾端的距离定义为自然旋风长[1]。
旋风分离器的工艺计算目录一.前言 (3)1.1应用范围及特点 (3)1.2分离原理 (3)1.3分离方法 (4)1.4性能指标 (4)二.旋风分离器的工艺计算 (4)2.1旋风分离器直径的计算 (5)2.2由已知求出的直径做验算 (5)2.2.1计算气体流速 (5)2.2.2计算旋风分离器的压力损失 (5)2.2.3旋风分离器的工作范围 (6)2.3进出气管径计算 (6)三.旋风分离器的性能参数 (6)3.1分离性能 (6)3.1.1临界粒径d pc (7)3.1.2分离效率 (8)3.2旋风分离器的压强降 (8)四.旋风分离器的形状设计 (9)五.入口管道设计 (10)六.尘粒排出设计 (10)七.算例(以天然气作为需要分离气体) (11)7.1工作原理 (11)7.2基本计算公式 (12)7.3算例 (13)八.影响旋风分离器效率的因素 (15)8.1气体进口速度 (15)8.2气液密度差 (15)8.3旋转半径 (15)参考文献 (15)旋风分离器的工艺计算摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。
现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。
这篇文章主要是讨论旋风分离器工艺计算。
旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。
在本篇文章中,主要是对旋风分离器进行工艺计算。
关键字:旋风分离器、工艺计算一.前言旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。
它是利用旋转气流产生的离心力将尘粒从气流中分离出来。
旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。