统计过程控制
- 格式:docx
- 大小:84.74 KB
- 文档页数:11
SPC统计过程控制SPC(Statistical Process Control,统计过程控制)是一种基于统计原理和数据分析方法的质量管理工具,用于监控和控制生产过程中的变异性,以确保产品或服务的质量。
SPC是由质量概念的先驱沃尔特·A·谢温(Walter A. Shewhart)在20世纪20年代初首次引入的。
它的目的是通过使用统计技术来分析生产过程中的数据,从而减少产品或服务的变异性,提高整体质量水平。
SPC的基本原理是通过统计分析来了解生产过程中的变异性,以便及时采取措施来纠正和调整生产过程。
它主要包括以下步骤:1.确定控制指标:选择适当的指标来监控生产过程的变异性。
常用的指标包括尺寸、重量、硬度等。
2.收集数据:根据预定的采样计划和频率,定期收集生产过程中的数据。
数据可以通过各种手段收集,如直接测量、抽样检验等。
3.绘制控制图:使用统计方法将收集到的数据绘制成控制图。
控制图是一种图表,它显示了一个或多个过程指标的变化情况,以及上下限范围。
通过观察控制图,人们可以判断生产过程是否处于控制状态,是否存在异常情况。
4.分析控制图:根据控制图上的变化趋势和模式,进行统计分析,以确定生产过程的绩效。
常用的统计分析方法包括均值、标准差、极差等。
5.制定改进措施:根据分析的结果,确定需要改进的方面,并制定相应的措施。
改进措施可以包括修改生产过程参数、调整设备、培训员工等。
6.监控和调整:持续监控生产过程,并根据需要进行调整,以确保控制图保持在预定的限制范围内。
SPC的优势在于它能够提供实时和持续的监控生产过程的能力。
通过采集数据和绘制控制图,生产者可以及时发现生产过程中的变异,并采取措施进行纠正。
这样可以防止不良品的产生,并提高产品或服务的一致性和质量。
此外,SPC还具有以下几点优势:1.提高生产效率:通过控制和减少生产过程中的变异性,SPC可以提高生产效率。
它能够帮助生产者发现并消除生产过程中的浪费和不必要的变动,从而提高生产效率和资源利用率。
统计过程控制统计过程控制(SPC)是一种基于数据分析的质量管理方法,旨在通过对过程的监测与控制,实现生产过程中的连续改进。
这种方法可以帮助提高产品质量,降低生产成本,提高客户满意度。
以下是SPC的简介、使用方法、益处以及实现过程中可能存在的问题。
简介SPC的理念是“控制过程而不是修理产品”,它的核心是把质量管理的重点从检查和纠正缺陷转移到控制过程。
SPC主要应用于制造业,但也适用于服务业和医疗行业等其他领域。
通过数据收集、分析和监控,SPC可以帮助企业了解其生产过程并制定相应的改进计划,从而实现生产效率和产品质量的提高。
使用方法SPC主要包括数据的收集和分析两个阶段。
数据的收集通常是由受训人员通过抽样等方式获取,然后数据会被汇总到一个控制图表中。
控制图表是SPC最基本的工具,它可以反映生产过程中数据的变化情况,通过样本数据的变化来判断是否存在特殊因素,以及是否需要采取相应的措施来防止这些因素的再次出现。
在数据分析阶段,SPC通常使用各种统计方法来分析数据的规律性和变动性,从而确定过程的性能是否符合要求。
如果发现过程出现特殊的变化,就需要针对这些问题采取相应的措施。
然后,通过监控过程的稳定性和性能,来确保所采取的措施有效。
益处SPC的主要益处是提高质量和降低成本。
由于SPC持续地跟踪和分析数据,可以及时发现问题,并采取相应的措施。
这减少了产品缺陷率和因此而导致的重新工作或返工数量。
此外,SPC还可以提高生产效率,因为它可以减少生产中的浪费和停机时间,并优化制造工艺。
此外,SPC还可以增加生产过程的可持续性,使过程更加稳定,从而提高客户满意度。
实现过程中可能存在的问题尽管SPC被广泛运用于生产领域,但在实施过程中仍然存在一些问题。
例如,如果质量数据不正确或不完整,则无法有效地检测和纠正问题。
确保收集到正确和完整的数据非常重要。
另一个问题是寻找和培养高素质的SPC人才。
虽然有许多SPC工具和软件可以帮助质量控制人员更好地应用SPC,但必须确保员工已经得到了适当的培训,以确保他们理解SPC的基本概念和运用方法。
质量管理体系中的统计过程控制质量管理体系是组织内用于确保产品和服务质量的一套规范和流程。
统计过程控制(Statistical Process Control,简称SPC)是质量管理体系中的一项重要方法,通过对过程中产生的数据进行统计分析,以实现质量控制和质量改进的目标。
本文将介绍质量管理体系中的统计过程控制的原理、方法和应用。
一、统计过程控制原理统计过程控制是基于统计学原理的一种质量控制方法,其核心思想是通过对过程中产生的数据进行分析和判断,来判断过程是否处于可控状态。
其主要原理包括以下几个方面:1. 随机变异性:在质量管理体系中,过程中的变异性可分为两种:随机变异和非随机变异。
统计过程控制主要关注随机变异,即过程中由于偶然原因引起的变异性,而不是由于非随机因素引起的变异性。
2. 稳态和非稳态:在统计过程控制中,过程的稳态是指过程在统计上呈现稳定的状态,即过程的平均值和变异性在一定范围内波动。
而非稳态则表示过程处于不稳定的状态,即平均值或变异性有大幅度变化。
3. 控制限:统计过程控制中使用的控制限是通过统计方法计算得出的,用于判断过程处于稳态还是非稳态状态。
常用的控制限有控制上限(Upper Control Limit,简称UCL)和控制下限(Lower Control Limit,简称LCL)。
二、统计过程控制方法统计过程控制方法主要包括以下几个方面:1. 过程可视化:通过绘制控制图(Control Chart)来展示过程中的数据变化情况。
控制图通常包括平均值图(X-Bar Chart)、范围图(R-Chart)、P图(P-Chart)和C图(C-Chart)等。
2. 采样和测量:在统计过程控制中,需要对过程中产生的数据进行采样和测量。
合适的采样方法和有效的测量手段可以确保数据的准确性和可靠性。
3. 数据分析:通过对采样数据进行统计分析,计算出控制上限和控制下限,并绘制控制图。
同时,还可以利用统计方法分析过程中的变异性,找出产生变异性的原因,并采取相应的改进措施。
SPC(Statistical Process Control)统计过程控制一、统计过程控制的基本概念⒈ 统计的概念统计( Statistical ,简称 S ):有目的地收集数据、整理数据、并使用相应的方法制图,列表与分析数据 的过程。
⒉ 过程 (Process ,简称 P ) :在 ISO9000:2000 版中,过程的定义是一组将输入转化为输出的相互关联和相互作用的活动。
⒊ 控制( Control ,简称 C ): 所谓控制就是通过对图表与数据的分析研究,对过程的异常采取相应的措施进行监控的一种持续改进 的活动。
⒋ 统计过程控制( SPC )的涵义:统计过程控制( Statistical Process Control ,简称 SPC )是为了贯彻预防原则,应用统计技术对过程中的 各个阶段进行评估与监察,建立并保持过程处于可接受的并稳定的水平,从而保证产品和服务符合 规定的要求的一种技术。
统计技术涉及数理统计的许多分支,但 SPC 中的主要工具是控制图。
因此,要想推行 SPC 必须 对控制图有一定深入的了解,否则就不可能通过 SPC 取得真正的实效。
⒌ SPC 的特点:① 强调全员参与,而不是只依靠少数质量管理人员; ② 强调应用统计方法来保证预防原则的实现;③ SPC 不是用来解决个别工序采用什么控制图的问题, SPC 强调从整个过程、整个体系出发来解决 问题。
SPC 的重点就在于 P (Process ,过程)。
⒍ SPC 的常用工具:① Cpk :工程能力指数 ② QC 旧七大手法 ③ 管制图、控制图的形成原理 将通常的正态分布图转个方向, 使自变量增加的方向垂直向上, 将μ、μ+3σ和μ-3σ 分别标为 CL 、 UCL 、和 LCL ,这样就得到了一张控制图。
三、控制图在贯彻预防原则中的作用按下述情形分别讨论 :情形 1:应用控制图对生产过程进行监控,如出现图中的点子上升趋势,显然过程有问题,故异因刚 一露头,即可发现,于是可及时采取措施加以消除,这当然是预防。
统计过程控制统计过程控制(SPC,Statistical Process Control)是一种借助数理统计方法的过程控制工具。
它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
统计过程控制认为,当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态)。
此时,过程特性一般服从稳定的随机分布。
而当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。
由于过程波动具有统计规律性,失控时,过程分布将发生改变。
统计过程控制可以分为三个步骤:1. 模型建立阶段,这个阶段是在没有因素影响的情况之下抽取数据,分析数据进行统计,从而在此基础上建立模型。
2. 模型评估阶段,对所建立的模型进行系统分析评估,在比较的过程中来判断是否存在故障。
3. 如果在评估阶段出现故障,就要分析产生故障的原因,找到故障发生的来源,及时采取措施予以解决,从而确保产品的质量。
实施SPC的过程一般分为两大步骤:首先用SPC工具对过程进行分析,如绘制分析用控制图等;根据分析结果采取必要措施,如消除过程中的系统性因素或减小过程的随机波动以满足过程能力的需求。
第二步则是用控制图对过程进行监控。
统计过程控制在发展过程中滋生出两种不同的方法,分别是统计质量控制和统计性能监控。
统计质量控制重点在于控制生产过程中的质量,确保产品符合规定的质量标准。
而统计性能监控则更侧重于监控过程的性能,以及时发现并预防可能出现的问题。
总的来说,统计过程控制是一种有效的质量管理工具,它可以帮助企业及时发现并解决生产过程中的质量问题,提高产品质量和生产效率,从而提升企业的竞争力。
统计过程控制spc标准统计过程控制(SPC)是一种通过统计方法来监控和控制过程稳定性和一致性的质量管理工具。
它是一种基于数据和事实的管理方法,可以帮助企业实现质量的持续改进,提高产品和服务的稳定性和一致性,降低成本和提高效率。
本文将对统计过程控制(SPC)标准进行详细介绍,包括其定义、原理、应用、优势和实施步骤等内容。
首先,统计过程控制(SPC)是一种基于统计方法的质量管理工具,它通过收集和分析过程中产生的数据,来监控过程的稳定性和一致性。
SPC的核心理念是“了解过程,控制变异”,通过对过程中的变异进行监控和分析,找出引起变异的原因,并采取措施进行改进,从而实现过程的稳定和一致。
其次,统计过程控制(SPC)的应用范围非常广泛,几乎可以应用于任何一个需要稳定和一致性的过程。
它在制造业、服务业、医疗保健、金融业等领域都有着重要的应用价值。
例如,在制造业中,SPC可以用来监控生产过程中的关键参数,及时发现生产异常并进行调整,确保产品质量的稳定和一致。
在服务业中,SPC可以用来监控服务过程中的关键指标,提高服务质量和客户满意度。
此外,统计过程控制(SPC)的优势也非常明显。
首先,它可以帮助企业实现质量的持续改进,通过对过程中的变异进行分析,找出问题的根本原因,并采取措施进行改进,从而不断提高产品和服务的质量。
其次,它可以降低成本和提高效率,通过对过程中的变异进行监控和分析,及时发现问题并进行调整,避免资源的浪费,提高生产效率。
最后,实施统计过程控制(SPC)需要按照一定的步骤进行。
首先,确定需要监控的关键参数和指标,建立数据采集和分析的系统。
其次,收集和分析过程中产生的数据,找出过程中的变异和问题。
然后,找出问题的根本原因,并采取措施进行改进。
最后,持续监控和分析过程中的数据,确保过程的稳定和一致。
综上所述,统计过程控制(SPC)是一种非常重要的质量管理工具,它可以帮助企业实现质量的持续改进,降低成本和提高效率。
统计过程控制(Statistical Process Control, SPC)随着科技的发展,产品的制造过程日益复杂,对产品的质量要求日益提高,电子产品的不合格品率由过去的百分之一、千分之一降低到百万分之一(pp m),乃到十亿分之一(ppb),仅靠产品检验剔除不合格品,无法达到这样高的质量水平,经济上也不可行,必须对产品的制造过程加以控制,在生产的每一步骤实施控制。
为了实现对产品的制造过程加以控制,早在20世纪20年代休哈特就提出了过程控制理论以及控制过程的具体工具——控制图(controlchart)。
1931年休哈特出版了他的代表作:《加工产品质量的经济控制Economical Control of Quality of ManufacturedProducts》,这标志着统计过程控制时代的开始。
统计过程控制就是使用统计学技术对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的稳定水平,从而保证产品和服务符合规定的要求的一种技术。
它包含两方面的内容:一是利用控制图分析过程的稳定性,对过程存在的异常因素进行预警;二是计算过程能力指数分析稳定的过程能力满足技术要求的程度,对过程质量进行评价。
统计控制图1.控制图原理导致质量特性波动的因素根据来源不同可分为人员(Man)、设备(Machi ne)、原材料(Material)、工艺方法(Method)、测量(Measurement)和环境(Environment)六个方面,简称5M1E。
根据对产品质量的影响大小来分,可分为偶然因素(简称偶因,Commoncause)和异常因素(简称异因,在国际标准和我国国家标准中称为可查明原因,Special cause, assignablecause)两类。
偶因是过程固有的,始终存在,对质量的影响微小,但难以除去,如机器震动,环境温湿度的细微变化等。
异因则非过程固有,有时存在,有时不存在,对质量影响大,但不难除去,例如配件磨损等。
偶因引起质量的偶然波动,异因引起质量的异常波动。
偶然波动是不可避免的,但对质量的影响一般不大。
异常波动则不然,它对质量的影响大,且可以通过采取恰当的措施加以消除,故在过程中异常波动及造成异常波动的异因是我们注意的对象。
一旦发生异常波动,就应该尽快找出原因,采取措施加以消除。
将质量波动区分为偶然波动和异常波动两类并分别采取不同的对待策略,这是休哈特的贡献。
偶然波动和异常波动都是产品质量的波动,如何能发现异常波动的存在呢?我们可以这样设想:假定在过程中,异常波动已经消除,只剩下偶然波动,这当然是正常波动。
根据这种正常波动,使用统计学原理设计出控制图相应的控制界限,而当异常波动发生时,点子的排列就呈现不随机的状态,甚至落在界外。
点子频频出界表明一定存在异常波动,控制图上的控制界限就是区分偶然波动和异常波动的科学界限。
根据上述,可以说休哈特控制图即常规控制图的实质是区分偶然因素和异常因素两类因素。
2.控制图的结构控制图(ControlChart)是对过程质量特性值进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。
图上有中心线(CL ,CentralLine)、上控制限(UCL ,Upper Control limit)和下控制限(LCL ,Lower Control limit),并有按时间顺序抽取的样本统计量数值的描点序列,参见图4.2-1。
UCL 和 LCL 统称为控制线(Controllines)。
若控制图中的描点落在UCL 和LCL 之外或描点在UCL 和LCL 之间的排列不随机,则表明过程异常。
世界上第一张控制图是美国休哈特(W.A.Shewhart)在1924年5月16日提出的不合格品率p 控制图。
控制图有一个很大的优点,即在图中将所描绘的点子和控制界限或规范界限相比较,从而能够直观地看到产品或服务的质量的变化。
基于正态分布(normaldistribution )假设的控制图是最常用的控制图。
如果数据呈正态分布,则测量结果落在+-3sigma 内的概率为99.73%。
如薄膜沉积过程中只有偶然波动,则膜厚成正态分布。
如果除了偶然波动还有异常波动,则此异常波动将叠加在偶然波动形成的典型分布上,质量特性值的分布必将偏离原来的典型分布。
因此,根据典型分布是否偏离就能判断异常波动是否发生,是否出现了异常因素,典型分布的偏离可由控制图检出。
在薄膜沉积的例子中,如果反应室的压力发生异常,导致薄膜的厚度分布偏离了原先的正态分布而向上移动,于是点子超出上控制界的概率大为增加,导致点子频频出界,表明过程存在异常波动。
控制图的控制界限就是区分偶然波动和异常波动的科学界限。
只有偶然因素没有异常因素的状态,称为统计控制状态(state in statistical control),简称稳态,是控制阶段实施过程控制所追求的目标。
3. 两类错误风险使用控制图要面对两类错误:(1)第一类错误:虚发警报(false alarm)过程正常,由于点子偶然超出界外,根据点出界就判异,于是就犯了第一类错误。
通常犯第一类错误的概率记为α。
第一类错误将造成寻找根本不存在的异因的损失。
鉴于生产过程的复杂性,查找不存在的原因耗费巨大而没有成果,所以通常控制图的虚发警报概率α取的很小,经验证明,α=0.27%在通常情况下是很好的选择。
(2)第二类错误:漏发警报(alarm missing)过程异常,但仍会有部分产品,其质量特性值的数值大小仍位于控制界限内。
如果抽取到这样的产品,点子就会落在界内,不能判断过程出现异常,从而犯了第二类错误,即漏发警报。
通常犯第二类错误的概率记为β。
第二类错误将造成可能发生不合格或不合格品增加的损失。
当α0=0.27%时,对应的β就很大,这就需要增加判异准则,即既使点子不出界,但当界内点排列不随机也表示存在异常因素。
4. 判异准则(WECO rule)判异准则有点出界和界内点排列不随机两类。
由于对点子的数目未加限制,故后者的模式原则上可以有很多种,但在实际中经常使用的只有具有明显物理意义的若干种。
在控制图的判断中要注意对这些模式加以识别。
所有的判异准则都是针对过程处于统计受控状态时的变异。
国标GB/T4091—2001《常规控制图》中规定了8种判异准则。
为了使用这些准则,将控制图等分为6个区域,每个区宽1σ。
这6个区的标号分别为A、B、C、C、B、A。
其中两个A区、B区及C区都关于中心线CL对称。
需要指明的是这些判异准则主要适用于均值图和单值X图,且假定质量特性X服从正态分布。
准则1:一点落在A区以外。
在许多使用中,准则1甚至是惟一的判异准则。
准则1可对参数μ的变化或参数σ的变化给出信号,变化越大,则给出信号越快。
准则1还可对过程中的单个失控做出反应,如计算错误、测量误差、原材料不合格、设备故障等。
当过程处于统计控制状态时,点子落在控制限内的概率为99.73%,落在控制限外的概率为1-99.73%=0.27%,虚发警报的概率为0.27%。
准则2:连续9点落在中心线同一侧。
此准则是为了补充准则1而设计的,以改进控制图的灵敏度。
出现图4.3-2准则2的现象,主要是过程平均值μ减小的缘故。
选择9点是为了使其犯第一类错误的概率α和准则1的α0=0.0027 大体相仿。
P(连续9点落在中心线同一侧)=2*(0.5)9=0.3906%。
虚发警报的概率为0.390 6%。
准则3:连续6点递增或递减。
此准则是针对过程平均值的趋势进行设计的,它判定过程平均值的较小趋势要比准则2更为灵敏。
产生趋势的原因可能是工具逐渐磨损、维修逐渐变坏、操作人员技能的逐渐提高等,从而使得参数α随着时间而变化。
该准则虚发警报的概率为P(连续6点递增或递减)=2/6!*(0.99 73)6=0.2733%。
准则4:连续14点相邻点上下交替。
本准则是针对由于轮流使用两台设备或由两位操作人员轮流进行操作而引起的系统效应。
实际上,这就是一个数据分层不够的问题。
选择14点是通过统计模拟试验而得出的,也是为使其α大体和准则1的α0=0.0027相当。
虚发警报的概率大约为0.004。
准则5:连续3点中有2点落在中心线同一侧的B区以外。
过程平均值的变化通常可由本准则判定,它对于变异的增加也较灵敏。
这里需要说明的是:三点中的两点可以是任何两点,至于第3点可以在任何处,甚至可以根本不存在。
出现准则5的现象是由于过程的参数μ发生了变化。
虚发警报的概率为0.3048%。
准则6:连续5点中有4点落在中心线同一侧的C区以外。
和准则5类似,这第5点可在任何处。
本准则对于过程平均值的偏移也是较灵敏的,出现本准则的现象也是由于参数μ发生了变化。
虚发警报的概率为0.5331%。
准则7:连续15点在C区中心线上下。
出现本准则的现象是由于参数σ变小。
对于这种现象不要被它的良好“外貌”所迷惑,而应该注意到它的非随机性。
造成这种现象的原因可能有数据虚假或数据分层不够等。
虚发警报的概率为0.326%。
准则8:连续8点在中心线两侧,但无一在C区中。
造成这种现象的主要原因也是因为数据分层不够。
该准则虚发警报的概率为0.0103%。
常用控制图的分类根据控制参数的不同可以分为八大类常规控制图,如下表所示(国标GB/T 4091):表4.2-1 常规控制图分布控制图代号控制图名称正态分布(计量值)X–R 均值-极差控制图X-S均值-标准差控制图Me-R 中位数-极差控制图X-Rs 单值-移动极差控制图二项分布(计件值)P 不合格品率控制图Np 不合格品数控制图泊松分布(计数值)U 单位不合格数控制图C 不合格数控制图根据使用过程中工序是否处于稳态,又可以分为分析用控制图和控制用控制图。
一道工序开始使用控制图时,几乎总不会恰巧处于稳态,也即总存在异因。
如果就以这种非稳态状态下的参数来建立控制图,控制图界限之间的间隔一定较宽,以这样的控制图来控制未来,将会导致错误的结论。
因此,一开始,总需要将非稳态的过程调整到稳态,这就是分析用控制图的阶段。
等到过程调整到稳态后,才能延长控制图的控制线作为控制用控制图,这就是控制用控制图的阶段。
分析用控制图阶段主要解决两个问题:(1)所分析的过程是否处于统计控制状态;(2)该过程的过程能力指数Cp 是否满足要求。
当上述问题解决之后,即进入控制用控制图阶段,出现点子出界或非随机排列时需要查找原因,改正之后才能继续生产。
过程能力指数(工序能力指数)当过程处于稳态时,产品的计量质量特性值有99.73%落在μ±3σ的范围内,其中μ为质量特性值的总体均值,σ为质量特性值的总体标准差,也即有 99.73%的产品落在上述6σ范围内,这几乎包括了全部产品。
故通常将6倍标准差(6σ)范围视为过程的自然波动。