河南省鹤壁高中2020_2021学年高二数学下学期寒假学习效果检测试题文
- 格式:doc
- 大小:1.48 MB
- 文档页数:12
提高练习一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()f x的导函数的图像关于y轴对称,则()f x的解析式可能为A.()cosf x x=B.52()f x x x=+C.()1sin2f x x=+D.()xf x e x=-2.执行如图所示的程序框图,当输出S的值为6-时,则输入的0S=()A.7B.8C.9D.103.在二项式3nxx⎫⎪⎭的展开式中,各项系数之和为A,二项式系数之和为B,若72A B+=,则n=()A.3B.4C.5D.64.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.若正方体的棱长为2,则“牟合方盖”的体积为()A.16B.163C.163D.12835.设x,y满足约束条件2411x yxy+≤⎧⎪≥⎨⎪≥⎩,则z x y=-的最小值是()A.1-B.12-C.0D.16.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为()7.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A . B.C.D.8.在20183(23)x+的展开式中,系数为有理数的系数为()A.336项B.337项C.338项D.1009项9.F是双曲线()2222:10,0x yC a ba b-=>>的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B,若2AF FB=,则C的离心率是()A.23B.14C.2D.210.二项式63ax⎛⎫+⎪⎪⎝⎭的展开式中5x的系数为3,则2ax dx=⎰()A.13B.12C.1D.211.已知圆的圆心为,点是直线上的点,若圆上存在点使,则实数的取值范围是()A.B.C.D.12.已知直线2:2l y x=与双曲线()2222:10,0x yE a ba b-=>>分别交于点,A B,若,A B两点在x轴上的射影恰好是双曲线E的两个焦点,则双曲线E的离心率为()A2B3C.4 D513.在复平面上,复数z 对应的点为(2,1)A -,则|1|z +=________.14.一个兴趣学习小组由12男生6女生组成,从中随机选取3人作为领队,记选取的3名领队中男生的人数为,则的期望______.15.已知函数()3sin 2sin ,0,2f x x x x π⎛⎫=+∈ ⎪⎝⎭,则函数()f x 的最大值为__________. 16.若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 三、解答题:解答应写出文字说明、证明过程或演算步骤。
河南省鹤壁高中2020-2021学年高二下学期寒假学习效果检测数学试题 (理)考试时间:120分钟一.选择题(共12小题,每小题5分,共60分) 1.复数z 满足z (1+i )=1﹣i ,则z 的虚部等于( ) A .﹣iB .﹣1C .0D .12.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种3.设i 为虚数单位,则(x +i )6的展开式中含x 4的项为( ) A .﹣15x 4B .15x 4C .﹣20ix 4D .20ix 44.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =( )A .3√1010B .√1010C .√510D .√5155.设随机变量ξ~N (μ,1),函数f (x )=x 2+2x ﹣ξ没有零点的概率是0.5,则P (0<ξ≤1)=( )附:若ξ~N (μ,σ2),则P (μ﹣σ<X ≤μ+σ)≈0.6826,P (μ﹣2σ<X ≤μ+2σ)≈0.9544. A .0.1587B .0.1359C .0.2718D .0.34136.将四颗骰子各掷一次,记事件A =“四个点数互不相同”,B =“至少出现一个5点”,则概率P(B |A )等于( )A .23B .16C .60671D .2406717.数列{a n }中,a 1=2,a m +n =a m a n .若a k +1+a k +2+…+a k +10=215﹣25,则k =( ) A .2B .3C .4D .58.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n•1•2•3…•(2n ﹣1)(n ∈N *).从k (k ∈N *)到k +1,若设f (k )=(k +1)(k +2)…(k +k ),则f (k +1)等于( ) A .f (k )+[2(2k +1)]B .f (k )•[2(2k +1)]C .f(k)+2k+1k+1D .f(k)⋅2k+1k+19.如图,在底面半径和高均为1的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离为( )A .1B .√32C .√62D .√10410.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A.3个B.4个C.5个D.6个11.若n是正奇数,则7n+C n17n﹣1+C n27n﹣2+……+C n n−17被9除的余数为()A.2 B.5 C.7 D.812.已知函数f(x)=e mx−1mlnx,当x>0时,f(x)>0恒成立,则m的取值范围为()A.(1,+∞)B.(e,+∞)C.(1e,e)D.(1e,+∞)二.填空题(共4小题,每小题5分,共20分)13.若x,y∈R+,且1x+2y=3,则yx的最大值为.14.曲线y=lnx−1x在x=1处的切线的倾斜角为α,则sin2α=.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.16.设双曲线x2−y23=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.三.解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.(1)求A;(2)若√2a+b=2c,求sin C.18.(12分)数列{a n}中,a1=13,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<17的n的最大值.19.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =√66DO . (1)证明:PA ⊥平面PBC ; (2)求二面角B ﹣PC ﹣E 的余弦值.20.(12分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.21.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆M :(x +2)2+(y ﹣1)2=52的一条直径,若椭圆E 经过A 、B 两点,求椭圆E 的方程.22.(12分)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.鹤壁高中2022届寒假学习效果检测数学(理科)试卷参考答案一.选择题(共12小题)1.【解答】解:∵复数z满足z(1+i)=1﹣i,∴z=1−i1+i=(1−i)2(1+i)(1−i)=1−2i+i21−i2=−i,∴z的虚部为﹣1.故选:B.2.【解答】解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:C32C11A22=6.故选:C.3.【解答】解:(x+i)6的展开式中含x4的项为C64x4•i2=﹣15x4,故选:A.4.【解答】解:法一:利用余弦定理在△CED中,根据图形可求得ED=√2,CE=√5,由余弦定理得cos∠CED=2×√2×√5=3√1010,∴sin∠CED=√1−910=√1010.故选B.法二:在△CED中,根据图形可求得ED=√2,CE=√5,∠CDE=135°,由正弦定理得CEsin∠CDE =CDsin∠CED,即sin∠CED=CDsin∠CDECE=√5=√1010.故选:B.5.【解答】解:由题意得,P(0<ξ≤1)=0.9544−0.68262=0.1359,故选:B.6.【解答】解:根据题意,记事件A=“四个点数互不相同”,B=“至少出现一个5点”,则P(AB)=4⋅A536×6×6×6,P(A)=A646×6×6×6,则P(B|A)=P(AB)P(A)=4×A53A64=23,故选:A.7.【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴a n+1a n=2,则数列{a n}是以2为首项,以2为公比的等比数列,则a k+1=2⋅2k=2k+1,∴a k+1+a k+2+…+a k+10=2k+1(1−210)1−2=211+k−2k+1=215﹣25,∴k+1=5,即k=4.故选:C.8.【解答】解:由数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n﹣1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是(2k+1)(2k+2)k+1=2(2k+1),则f(k+1)=f(k)•[2(2k+1)],故选:B.9.【解答】解:如图所示,过点E作EF⊥AB,垂足为F.∵E是母线PB的中点,圆锥的底面半径和高均为1,∴OF=EF=12.∴OE=√22.在平面CED内建立直角坐标系.设抛物线的方程为y2=2px(p>0),F为抛物线的焦点.C(√22,1),∴1=2×√22P,解得p=√22.F(√24,0).即点F为OE的中点,∴该抛物线的焦点到圆锥顶点P 的距离为(√22)2+(√24)2=√104,故选:D . 10.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB |=3,则A (3,0,0),B (3,3,0),C (0,3,0),D (0,0,0),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),D 1(0,0,3),∴BD 1→=(﹣3,﹣3,3),设P (x ,y ,z ),∵BP →=13BD 1→=(﹣1,﹣1,1),∴DP →=DB →+(−1,−1,1)=(2,2,1). ∴|PA |=|PC |=|PB 1|=√12+22+12=√6, |PD |=|PA 1|=|PC 1|=√22+22+12=3, |PB |=√3,|PD 1|=√22+22+22=2√3.故P 到各顶点的距离的不同取值有√6,3,√3,2√3共4个.故选:B .11.【解答】解:∵n 是正奇数,则7n+C n 17n ﹣1+C n 27n ﹣2+……+C n n−17+C nn−1=(7+1)n﹣1=(9﹣1)n﹣1 =9n﹣Cn 1 9n ﹣1+C n 2 9n ﹣2﹣…+C n n−1 9−C nn−1,∴它被9除的余数为−C n n −1=﹣2,即它被9除的余数为7,故选:C .12.【解答】解:由题意,若m≤0显然f(x)不是恒大于零,故m>0.(由4个选项也是显然,可得m>0),则显然f(x)=e mx−1mlnx>0在(0,1]上恒成立;当x>1时,f(x)=e mx−1mlnx>0⇔e mx>1m lnx⇔mx⋅e mx>xlnx=lnx⋅e lnx,令g(t)=te t(t>0),g′(t)=(1+t)e t>0,g(t)在(0,+∞)上单调递增.因为mx>0,lnx>0(x>1),所以mx⋅e mx>lnx⋅e lnx⇔mx>lnx,即m>lnxx(x>1),再设h(x)=lnxx⇒h′(x)=1−lnxx2(x>1),令h′(x)=0,则x=e,易得h(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以h(x)max=h(e)=1e,故m>1e,所以m的取值范围为(1e,+∞).故选:D.二.填空题(共4小题)13.【解答】解:3=1x+2y≥2√1x⋅2y,∴yx≤(2√2)2=98;故答案为:9814.【解答】解:由y=lnx−1x,得y'=1x+1x2,∴曲线y=lnx−1x在x=1处的切线斜率k=2,∵曲线y=lnx−1x在x=1处的切线的倾斜角为α,∴tanα=2,∴sin2α=2sinαcosα=2tanα1+tan2α=45.故答案为:45.15.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.16.【解答】解:如图,由双曲线x2−y23=1,得a2=1,b2=3,∴c=√a2+b2=2.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2−y23=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=4c2=16,又|PF1|﹣|PF2|=2,①两边平方得:|PF1|2+|PF2|2−2|PF1||PF2|=4,∴|PF1||PF2|=6,②联立①②解得:|PF1|=1+√7,|PF2|=−1+√7,此时|PF1|+|PF2|=2√7.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是(2√7,8).故答案为:(2√7,8).三.解答题(共6小题)17.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.∵(sin B﹣sin C)2=sin2A﹣sin B sin C.∴sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,…………(2分)∴cos A=b2+c2−a22bc=bc2bc=12,∵0<A<π,∴A=π3.…………(5分)(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√62+sin(2π3−C)=2sinC…………(7分)解得sin(C−π6)=√22,∴C−π6=π4,C=π4+π6,…………(9分)∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.…(10分)18.【解答】解:(1)∵2a n+1a n+a n+1﹣a n=0.∴1a n+1−1a n=2,…………(2分)又1a1=3,∴数列{1a n}是以3为首项,2为公差的等差数列,∴1a n=2n+1,∴a n=12n+1;…………(5分)(2)由(1)知,a n−1a n=1(2n−1)(2n+1)=12(12n−1−12n+1)(n≥2),…………(7分)∴a1a2+a2a3+…+a n﹣1a n=12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a1a2+a2a3+…+a n﹣1a n<17,∴12(13−12n+1)<17,…………(10分)∴4n+2<42,∴n<10,∵n∈N*,∴n的最大值为9.…………(12分)19.【解答】解:(1)不妨设圆O的半径为1,OA=OB=OC=1,AE=AD=2,AB=BC=AC=√3,DO =√DA 2−OA 2=√3,PO =√66DO =√22,PA =PB =PC =√PO 2+AO 2=√62,…………(2分) 在△PAC 中,PA 2+PC 2=AC 2,故PA ⊥PC ,…………(4分)同理可得PA ⊥PB ,又PB ∩PC =P ,…………(5分) 故PA ⊥平面PBC ;…………(6分)(2)建立如图所示的空间直角坐标系,则有B(√32,12,0),C(−√32,12,0),P(0,0,√22),E (0,1,0),故BC →=(−√3,0,0),CE →=(√32,12,0),CP →=(√32,−12,√22),…………(8分)设平面PBC 的法向量为m →=(x ,y ,z),则{m →⋅BC →=−√3x =0m →⋅CP →=√32x −12y +√22z =0, 可取m →=(0,√2,1),…………(10分)同理可求得平面PCE 的法向量为n →=(√2,−√6,−2√3),…………(11分)故cosθ=|m →⋅n →||m →||n →|=2√55,即二面角B ﹣PC ﹣E 的余弦值为2√55.…………(12分)20.【解答】解:(I )甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X ~B (3,23),…………(2分) 从而P (X =k )=C 3k (23)k (13)3−k,k =0,1,2,3. 所以,随机变量X 的分布列为:X 0123P1272949827…………(4分)随机变量X 的期望E (X )=3×23=2.…………(6分) (II )设乙同学上学期间的三天中7:30到校的天数为Y ,则Y ~B (3,23),……(8分) 且M ={X =3,Y =1}∪{X =2,Y =0},由题意知{X =3,Y =1}与{X =2,Y =0}互斥,且{X =3}与{Y =1},{X =2}与{Y =0}相互独立,…………(10分)由(I )知,P (M )=P ({X =3,Y =1}∪{X =2,Y =0}=P ({X =3,Y =1}+P {X =2,Y =0} =P (X =3)P (Y =1)+P (X =2)P (Y =0)=827×29+49×127=20243 ……(12分) 21.【解答】解:(Ⅰ)经过点(0,b )和(c ,0)的直线方程为bx +cy ﹣bc =0, 则原点到直线的距离为d =bc√b +c 2=12c ,即为a =2b ,…………(2分)e =c a =√1−b2a2=√32;…………(4分)(Ⅱ)由(Ⅰ)知,椭圆E 的方程为x 2+4y 2=4b 2,①由题意可得圆心M (﹣2,1)是线段AB 的中点,则|AB |=√10, 易知AB 与x 轴不垂直,记其方程为y =k (x +2)+1,代入①可得 (1+4k 2)x 2+8k (1+2k )x +4(1+2k )2﹣4b 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−8k(1+2k)1+4k2.x 1x 2=4(1+2k)2−4b21+4k2,…………(6分)由M 为AB 的中点,可得x 1+x 2=﹣4,得−8k(1+2k)1+4k 2=−4,解得k =12,………(8分)从而x 1x 2=8﹣2b 2,于是|AB |=√1+(12)2•|x 1﹣x 2|=√52•√(x 1+x 2)2−4x 1x 2=√10(b 2−2)=√10,解得b 2=3,…………(11分)则有椭圆E 的方程为x 212+y 23=1.…………(12分)22.【解答】解:(Ⅰ)∵f (x )=x 2e ﹣x,∴f ′(x )=2xe ﹣x﹣x 2e ﹣x=e ﹣x(2x ﹣x 2), 令f ′(x )=0,解得x =0或x =2, 令f ′(x )>0,可解得0<x <2; 令f ′(x )<0,可解得x <0或x >2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x =0是极小值点,x =2极大值点,又f (0)=0,f (2)=4e 2. 故f (x )的极小值和极大值分别为0,4e 2.…………(4分)(Ⅱ)设切点为(x 0,x 02e −x 0),则切线方程为y −x 02e −x 0=e −x 0(2x 0−x 02)(x ﹣x 0),令y =0,解得x =x 02−x 0x 0−2=(x 0−2)+2x 0−2+3,…………(6分)∵曲线y =f (x )的切线l 的斜率为负数,∴e −x 0(2x 0−x 02)<0, ∴x 0<0或x 0>2,…………(8分)令f(x 0)=x 0+2x 0−2+1, 则f ′(x 0)=1−2(x 0−2)2=(x 0−2)2−2(x 0−2)2.①当x 0<0时,(x 0−2)2−2>0,即f ′(x 0)>0,∴f (x 0)在(﹣∞,0)上单调递增,∴f (x 0)<f (0)=0;…………(9分)②当x 0>2时,令f ′(x 0)=0,解得x 0=2+√2.当x0>2+√2时,f′(x0)>0,函数f(x0)单调递增;当2<x0<2+√2时,f′(x0)<0,函数f(x0)单调递减.故当x0=2+√2时,函数f(x0)取得极小值,也即最小值,且f(2+√2)=3+2√2.…………(11分)综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪[3+2√2,+∞).(12分)。
河南省鹤壁高中2020-2021学年高二下学期寒假学习效果检测英语试卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中选出最佳选项。
AIf you're looking to fully experience Africa's breathtaking scenery, and have an eye for adventure, then there's only one place to be. Here, inside Africa picks four of the best hikes from across the continent. KilimanjaroMake it to the top of Tanzania's 5895-meter Kilimanjaro, and you'll be standing at Africa's highest point. The mountain is Africa's most-visited hiking destination, attracting tens of thousands of tourists and adventures every year.You don't have to be a technical climber to climb Mount Kilimanjaro; you just need not be pretty physically fit. There are six routes to choose from. No special equipment.Atlas mountainsThe High Atlas is an impressive mountainous range in central Morocco that hosts North Africa's highest peak. Mount Toubkal, at 4,165 meters. There's a variety of routes to follow during your climb but inexperienced climbers should note that the hike through the mountain's challenging zones is quite demanding.Mount KenyaA long-extinct volcano. Mount Kenya is Africa's second-highest peak, at 5,199 meters. Lying just south of the equator, the mountain's deep valleys and diverse wildlife will guarantee you wonderful scenery and a fantastic hiking experience.The climb, however, to the mountain's steep ice-capped peaks is quite challenging, making it the most technical, probably, in that East African area.Mount MeruMount Meru may forever exist in the shadow of its neighbor, Kilimanjaro, but Tanzania’s second-highest mountain (4,565 meters) has its own devotees.It's less known, but Mount Meru is for the true enthusiast who wants to experience what very few people actually do.Mount Meru is often used by mountaineers to accustom themselves before trying to conquer Kilimanjaro, or by those wanting a hike with the local Massai.1、What do we know about Kilimanjaro?A.It's Africa's second highest mountain.B.Its six routes are equally difficult.C.It's relatively easy to climb.D.It lies to the east of Tanzania.2、Why do mountaineers climb Mount Meru first before they do Kilimanjaro?A.To avoid big crowds of climbers.B.To get used to the situation.C.To hike with the local Massai.D.To experience what most people do.3、Which is the highest in North Africa?A.Kilimanjaro B.Mount MeruC.Mount Kenya D.Atlas mountainsB"Have a nice day!"may be a pleasant gesture or a meaningless expression. When my friend Maxie says"Have a nice day!"with a smile, I know she sincerely cares about what happens to me. I feel loved and secure since another person cares about me and wishes me well."Have a nice day. Next!"This version of the expression is spoken by a salesgirl at the supermarketwho is rushing me and my groceries out the door. The words come out in the same tone with a fixed procedure. They are spoken at me, not to me. Obviously, the concern for my day and everyone else's is the management's attempt to increase business.The expression is one of those behaviors that help people get along with each other. Sometimes it indicates the end of a meeting. As soon as you hear it, you know the meeting is at an end. Sometimes the expression saves us when we don't know what to say. "Oh, you just had a tooth out? I'm terribly sorry, but have a nice day."The expression can be pleasant. If a stranger says "Have a nice day" to you, you may find it heart-warming because someone you don't know has tried to be nice to you.Although the use of the expression is an insincere, meaningless social custom at times, there is nothing wrong with the sentence except that others who speak it without thinking may not really care about my day. But in a strange and comfortable way, it's nice to know they care enough to pretend they care when they really don't care all that much. While the expression may not often be sincere, it is always spoken. The point is that people say it all the time when they like.4、How does the author understand Maxie's word?A.Maxie shows her anxiety to the author.B.Maxie really wishes the author a good day.C.Maxie encourages the author to stay happy.D.Maxie really worries about the author's security.5、What does the underlined sentence in Paragraph 2 mean?A.The salesgirl is rude B.The salesgirl is boredC.The salesgirl says the words as a routine D.The salesgirl cares about me6、By saying"Have a nice day." a stranger may.A.try to be friendly to you B.express respect to youB.give his blessing to you D.share his pleasure with you7、What is the best title of the passage?A.Have a nice day—a meaningless expressionB.Have a nice day—a Heart-warming GreetingC.Have a nice day—a Polite Ending of a ConversationD.Have a nice day—a Social CustomCIn the future, the Internet will be different from what it is now. There will be many more websites. It is predicted that in the year 2100, there will be hundreds of billions of websites. This means that the use of search engines will become much more important. And there will also be many more sites in different languages. This means that on every proper website, there will be links with the language you want.Another prediction on the Internet is that data transmission speed will increase globally. According to Akamai Technologies, the average global data transmission speed in late 2009 was 1.7 megabits per second. Compare that to the record for data transmission speed set by Bell Labs: 100 billion megabits per second. At that speed, you could transmit 400 DVDs worth of data every second. That's an enormous gap between what's currently possible and what's commercially available. But as time passes, the costs of producing superhighspeed networks will decrease.In the future, people will live under the sea and the housing shortage will be solved. There will be lots of glass domes (穹状建筑物)under the sea, which allow people to look all around into the sea. Air will be provided via air pipes which lead to the open air. You can travel from one dome to another via a kind of submarine which will also be made of glass. The domes will be so beautiful and the view under the sea will be so impressive that many people will prefer to live under water, and less people will prefer to live on land. This will have a positive effect on the environment on land.In the future we won't use oil or gas as energy any more. We will make use of sunlight, water and wind. Cars will run on water. Just fill your tank with water, and you can drive further than you coulddrive with the same amount of gasoline. Also, the exhaust won't be damaging to the environment, because it'll just be water vapor(蒸汽). So the water cycle won't change, we'll keep the same amount of water on the earth, and we won't run out of water. Also, all energy will be supplied by natural sources: sunlight, wind and water.8、What can we know about the Internet in the future from the first two paragraphs?A.It will be more important to use search engines.B.Most of the websites will be designed in English.C.People not knowing a foreign language will find it hard to surf the Internet.D.There will be great gaps between developed countries and developing countries in Internet usage.9、Why are superhighspeed networks not available to the public at present?A.Because the cost is too high.B.Because there are technical difficulties.C.Because Bell Labs doesn't want to sell its technique.D.Because governments haven't recognized their value.10、The underlined word "exhaust"in Paragraph 4 probably refers to "".A.oil product B.waste air C.solar energy D.wind energy11、What can we infer from the text?A.The Internet is the most advanced invention in history.B.Water will run out sooner than we have expected.C.Houses under the sea will be made from metal.D.Sunlight, wind and water will benefit people more in the future.DIf you live in Shanghai, you might have to take a "lesson" in sorting garbage, as the city recently introduced new garbage-sorting regulations. It's now required that people should sort garbage into four categories, namely recyclable, harmful, dry and wet waste. However, if people fail to sort their garbage properly, they can be fined up to 200 yuan. More cities are introducing similar regulations, following the practice in Shanghai. By the end of 2020, garbage-sorting systems will have been built in 46 major Chinese cities, including Beijing and Shenzhen, reported People's Daily.According to a study by the Policy Research Center for Environment and Economy, under the Ministry of Ecology and Environment, over 90 percent of the public believe that garbage sorting is important for the protection of the environment. However, garbage sorting is still a big problem in China. Only 30 percent of participants said they think they are adequately sorting their trash, the study noted.According to Xinhua News Agency, it's partly because many people lack the willingness to sort their own waste. In the past, some previous garbage regulations didn't give clear fines for people who failed to sort garbage. "It's a must to have a legal guarantee to promote garbage sorting. " Liu Jianguo, a professor from Tsinghua University, told China Daily. He also added "the importance of the new regulations in Shanghai is to change the past voluntary action into compulsory action for everyone".Aside from China, many other foreign countries have also introduced garbage-sorting regulations. In Japan, waste sorting has become a basic survival skill, reported Xinhua. There is a fixed time for disposal of each kind of garbage and littering can result in high fines and even jail time. In Germany too, people are asked to sort waste into specific categories, reported HuffPost. For example, in Berlin, people have yellow bins for plastic and metals and blue bins for paper and cardboard.12、What can we learn from paragraph 1?A.People will be fined not less than 200 yuan.B.Shanghai works as a pioneer in garbage sorting.C.All the cities use the same regulations as Shanghai.D.Poisonous waste belongs to four categories in sorting.13、Which statement is true according to the passage?A.Not all the public attach importance to garbage sorting.B.Garbage-sorting system have been built in 46 major cities.C.People in Shanghai aren't fined clearly if they fail to sort garbage now.D.People may be put in prison because of littering in Germany.14、What can be inferred from Liu Jianguo's words?A.Legal guarantee is a must to promote garbage sorting.B.There is a growing concern over garbage sorting worldwide.C.He supports the legal regulations in garbage sorting.D.The sorting action should be changed from compulsory to voluntary.15、Which of the following can be the best title for the text?A.Hard to Recycle AppropriatelyB.Serious Waste Problems in Big CitiesC.Garbage Sorting Practice in ShanghaiD.Important Regulations in Shanghai第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
2020-2021学年河南省鹤壁市外国语试验中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,已知a=,b=,A=30°,则c等于()A.B.C.或D.以上都不对参考答案:C【考点】正弦定理.【分析】由a,b及cosA的值,利用余弦定理即可列出关于c的一元二次方程,求出方程的解即可得到c的值.【解答】解:由,利用余弦定理得:=+c2﹣2c×,即c2﹣3c+10=0,因式分解得:(c﹣2)(c﹣)=0,解得:c=2或.故选C2. 如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,O是平面A′B′C′D′的中心,则O到平面ABC′D′的距离是()A.B.C.D.参考答案:B【考点】点、线、面间的距离计算.【分析】过O作A′B′的平行线,交B′C′于E,则O到平面ABC′D′的距离即为E到平面ABC′D′的距离.作EF⊥BC′于F,可得EF⊥平面ABC′D′,进而根据EF=B′C,求得EF.【解答】解:过O作A′B′的平行线,交B′C′于E,则O到平面ABC′D′的距离即为E到平面ABC′D′的距离.作EF⊥BC′于F,可得EF⊥平面ABC′D′,从而EF=B′C=.故选B.3. 下列有关命题的说法正确的是()A.命题“若,则”的否命题为:“若,则”B.“”是“”的必要不充分条件C.命题“, 使得”的否定是:“, 均有”D.命题“若,则”的逆否命题为真命题参考答案:D略4. 函数函数f(x)=(x﹣3)e x的单调递增区间是()A.(﹣∞,2)B.(0,3)C.(1,4)D.(2,+∞)参考答案:D【考点】利用导数研究函数的单调性.【分析】首先对f(x)=(x﹣3)e x求导,可得f′(x)=(x﹣2)e x,令f′(x)>0,解可得答案.【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,令f′(x)>0,解得x>2.故选:D.【点评】本题考查导数的计算与应用,注意导数计算公式的正确运用与导数与单调性的关系.5. 对于任意的直线与平面α,在平面α内必有直线m,使m 与()A. 平行B. 相交C. 垂直D. 互为异面直线参考答案:C略6. 圆柱的一个底面面积为π,侧面展开图是一个正方形,则这个圆柱的体积为()A.πB.2πC.π2D.2π2参考答案:D略7. 已知函数满足对任意,都有成立,则的取值范围为()A. B.(0,1) C. D.(0,3)参考答案:A8. “p或q是假命题”是“非p为真命题”的()A 充分而不必要条件B 必要而不充分条件C 充要条件D既不充分也不必要条件参考答案:A9. 已知,且满足,那么的最小值为()A. B.C. D.参考答案:B考点:基本不等式的应用.10. 已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m是( )A.8 B.6 C.4 D.2参考答案:A【考点】等差数列的性质.【专题】计算题.【分析】根据等差中项的性质可知a3+a6+a10+a13=4a8求得a8,进而可知a8=a m求得m的值.【解答】解:a3+a6+a10+a13=4a8=32∴a8=8∵a m=8∴m=8故选A【点评】本题主要考查了等差中项的性质.属基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 设常数,若的二项展开式中项的系数为-10,则= .参考答案:-212. 已知一个长方体的同一个顶点出发的三条棱长分别为1,,,则这个长方体外接球的表面积为__________.参考答案:9π长方体外接球的直径,∴半径,∴长方体外接球的表面积为.13. 某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元。
高二下学期期末学业质量监测数学文试题一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.已知复数21iz i=-,则z 为() A. 1i -+ B. 1i --C. 12i -+D. 12i -【答案】A 【解析】 【分析】根据题意,利用复数的除法运算法则,分子分母同时乘上分母的共轭复数,再进行计算即可求解出结果。
【详解】22(1)2+2=11(1)(1)2i i i i z i i i i +-===-+--+,故答案选A 。
【点睛】本题主要考查了复数的运算,复数的除法运算必须熟练掌握分母实数化。
2.方程2sin ρθ=表示的图形是( ) A. 圆 B. 直线 C. 椭圆 D. 射线【答案】A 【解析】 【分析】将极坐标方程化为22sin ρρθ=,再将222,?x y sin y ρρθ=+=代入可得直角坐标方程,最后可判断图形的形状. 【详解】∵2sin ρθ=, ∴22sin ρρθ=,将222,?x y sin y ρρθ=+=代入上式可得222x y y +=, 即22(1)1x y +-=,故曲线表示以(0,1)为圆心,以1为半径的圆. 故选A .【点睛】本题考查极坐标和直角坐标间的转化,考查转化能力,记准转化公式222,?,?x y cos x sin y ρρθρθ=+==是解题的关键.3.n 个连续自然数按规律排成下图所示,根据规律,从2019到2021,箭头的方向依次为()A. ↓→B. →↑C. ↑→D. →↓【答案】D 【解析】 【分析】根据题意,观察上图,归纳总结出数字与箭头之间周期性的规律,利用规律推出从2019到2021的箭头方向,即可得出答案。
【详解】观察上图,从 1到 4,箭头的方向为→↑→↓;从从 5到 8,箭头的方向为→↑→↓,以此类推,可得,从1开始,每隔四个数箭头就会有一个循环,可推得,从2017到2021,箭头的方向也为→↑→↓,所以从2019到2021,箭头的方向依次为→↓。
河南省鹤壁高中2020-2021学年下学期高二年级寒假学习效果检测数学试卷(理科)考试时间:120分钟一、选择题(共12小题,每小题5分,共60分) 1.复数满足(1i )=1﹣i ,则的虚部等于( ) A .﹣iB .﹣1C .0D .12.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种3.设i 为虚数单位,则(i )6的展开式中含4的项为( ) A .﹣154B .154C .﹣20i 4D .20i 44.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin∠CED =( )A .3√1010B .√1010C .√510D .√5155.设随机变量ξ~N (μ,1),函数f ()=22﹣ξ没有零点的概率是,则231660671240671n =a m a n .若a 1a 2…a 10=215﹣25,则=( ) A .2B .3C .4D .58.用数学归纳法证明:(n 1)(n 2)…(nn )=2n•1•2•3…•(2n ﹣1)(n ∈N *).从(∈N *)到1,若设f ()=(1)(2)…(),则f (1)等于( ) A .f ()C .f(k)+2k+1k+1D .f(k)⋅2k+1k+19.如图,在底面半径和高均为1的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线√32√62√104n 1n 2n n−1f(x)=e mx −1mlnx 的取值范围为( )A .(1,∞)B .(e ,∞)C .(1e ,e) D .(1e ,+∞)二、填空题(共4小题,每小题5分,共20分) 13.若,y ∈R,且1x +2y =3,则yx 的最大值为 .14.曲线y =ln −1x 在=1处的切线的倾斜角为α,则sin2α= .15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为,客场取胜的概率为,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.16.设双曲线2−y23=1的左、右焦点分别为F1、F2,若点√2=13<17=√6623x2a2+y2b2=12=52=1−i1+i=(1−i)2(1+i)(1−i)=1−2i+i21−i2=−C32C11A22=C64=√2=√5=2×√2×√5=3√1010=√1−910=√1010=√2=√5CEsin∠CDE=CDsin∠CEDsin∠CED=CDsin∠CDECE=sin135°√5=√1010=0.9544−0.68262=0.1359=4⋅A536×6×6×6=A646×6×6×6=P(AB)P(A)=4×A53A64=23n=a m a n,取m=1,得a n1=a1a n=2a n∴a n+1a n=2,则数列{a n}是以2为首项,以2为公比的等比数列,则a k+1=2⋅2k=2k+1∴a1a2…a10=2k+1(1−210)1−2=211+k−2k+1=215﹣25,∴1=5,即=4.8.B【解答】由数学归纳法证明(n1)(n2)…(nn)=2n•1•3…(2n﹣1)(n∈N*)时,从“”到“1”的证明,左边需增添的一个因式是(2k+1)(2k+2)k+1=2(21),则f(1)=f()•9.D【解答】如图所示,过点E作EF⊥AB,垂足为F.∵E是母线=12OE=√22(√22,1)=2×√22P=√22(√24,0)(√22)(√24)=√104BD1→=BP→=13BD1→=DP→=DB→+(−1,−1,1)==√12+22+12=√6=√22+22+12=3=√3=√22+22+22=2√3√6√32√3n 1n 2n n−1+C n n −n 1n 2n n−1−C n n −−C n n −≤0显然f ()不是恒大于零,故m >0.(由4个选项也是显然,可得m >0),则显然f(x)=e mx −1mlnx >0在(0,1]上恒成立;当>1时,f(x)=e mx −1mlnx >0⇔e mx >1mlnx ⇔mx ⋅e mx >xlnx =lnx ⋅e lnx ,令g (t )=te t(t >0),g ′(t )=(1t )e t>0,g (t )在(0,∞)上单调递增.因为m >0,ln >0(>1),所以m ⋅e m>ln ⋅e ln⇔m >ln ,即m >lnx x(x >1),再设ℎ(x)=lnx x⇒ℎ′(x)=1−lnx x 2(x >1),令h ′()=0,则=e ,易得h ()在(0,e )上单调递增,在(e ,∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,故m >1e ,所以m 的取值范围为(1e ,+∞).13.【解答】3=1x +2y ≥2√1x⋅2y ,∴yx ≤(32√2)2=9814.45【解答】由y =ln −1x ,得y '=1x +1x 2∴曲线y =ln −1x 在=1处的切线斜率=2∵曲线y =ln −1x 在=1处的切线的倾斜角为α∴tanα=2∴sin2α=2sinαcosα=2tanα1+tan 2α=45.15.【解答】甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为,客场取胜的概率为,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:2√7,8−y 23=c =√a 2+b 2=2−y 23=|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=16|PF 1|2+|PF 2|2−2|PF 1||PF 2|=4|PF 1|=1+√7,|PF 2|=−1+√7=2√72√7,8=b 2+c 2−a 22bc=bc 2bc =12=π3√2=π3√2sinA +sinB =2sinC√62+sin(2π3−C)=2sinC −π6=√22−π6=π4=π4+π6π4+π6π4π6+π4π6=√22×√32+√22×12=√6+√241a n+1−1a n=21a 1=31an1a n=2n +1a n =12n+1a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2)=12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1)<1712(13−12n+1)<17AB =BC =AC =√3DO =√DA 2−OA 2=√3,PO =√66DO =√22PA =PB =PC =√PO 2+AO 2=√62B(√32,12,0),C(−√32,12,0),P(0,0,√22)BC →=(−√3,0,0),CE →=(√32,12,0),CP →=(√32,−12,√22)m →=(x ,y ,z){m →⋅BC →=−√3x =0m →⋅CP →=√32x −12y +√22z =0m →=(0,√2,1)n →=(√2,−√6,−2√3)cosθ=|m →⋅n →||m →||n →|=2√552√552323=C 3k (23)k (13)3−k×23=23={X =3,Y =1}∪{X =2,Y =0},由题意知{X =3,Y =1}与{X =2,Y =0}互斥,且{X =3}与{Y =1},{X =2}与{Y =0}相互独立(10分)由(I )知,)==827×29+49×127=20243=√b 2+c2=12=c a =√1−b 2a 2=√32(﹣2,1)是线段AB 的中点,则|AB |=√10,易知AB 与轴不垂直,记其方程为y =(2)1,代入①可得 (142)28(12)4(12)2﹣4b 2=0,设A (1,y 1),B (2,y 2), 则12=−8k(1+2k)1+4k 2.12=4(1+2k)2−4b 21+4k 2(6分)由M 为AB 的中点,可得12=﹣4,得−8k(1+2k)1+4k 2=−4,解得=12(8分)从而12=8﹣2b 2,于是|AB |=√1+(12)2•|1﹣2|=√52•√(x 1+x 2)2−4x 1x 2=√10(b 2−2)=√10,解得b 2=3(11分)则有椭圆E 的方程为x 212+y 23=1(12分)22.解:(Ⅰ)∵f ()=2e ﹣∴f ′()=2e ﹣﹣2e ﹣=e ﹣(2﹣2),令f ′()=0,解得=0或=2,令f ′()>0,可解得0<<2;令f ′()<0,可解得<0或>2,故函数在区间(﹣∞,0)与(2,∞)上是减函数,在区间(0,2)上是增函数∴=0是极小值点,=2极大值点,又f (0)=0,f (2)=4e故f ()的极小值和极大值分别为0,4e 2(4分)(Ⅱ)设切点为(x 0,x 02e −x 0),则切线方程为y −x 02e −x 0=e −x 0(2x 0−x 02)(﹣0),令y =0,解得=x 02−x 0x 0−2=(x 0−2)+2x−2+3(6分)∵曲线y =f ()的切线l 的斜率为负数∴e −x 0(2x 0−x 02)<0∴0<0或0>2(8分)令f(x 0)=x 0+2x−2+1,则f′(x 0)=1−2(x 0−2)=(x 0−2)2−2(x 0−2).①当0<0时,(x 0−2)2−2>0,即f ′(0)>0,∴f (0)在(﹣∞,0)上单调递增, ∴f (0)<f (0)=0(9分)②当0>2时,令f ′(0)=0,解得x 0=2+√2.当x 0>2+√2时,f ′(0)>0,函数f (0)单调递增;当2<x 0<2+√2时,f ′(0)<0,函数f (0)单调递减.故当x 0=2+√2时,函数f (0)取得极小值,也即最小值,且f(2+√2)=3+2√2(11分)综上可知:切线l 在轴上截距的取值范围是(﹣∞,0)∪[3+2√2,+∞)(12分)。
河南省鹤壁高中2020-2021学年高二语文下学期寒假学习效果检测试题年级:姓名:河南省鹤壁高中2020-2021学年高二语文下学期寒假学习效果检测试题一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
①中国诗与中国画是我国传统文化的重要表现形式。
虽分属于语言和造型两个艺术种类,有着各自的审美特征,然而二者间却紧密相连。
中国诗与中国画在文化基础、境界追求,以及对情与意的表达上是一致的。
正因为此,在中国文化的演进过程中,诗与画成为中国文人表达情志的两种重要手段,故有“诗是无形画,画是有形诗”等关于诗、画关系的经典表述。
②中华优秀传统文化是中国诗与中国画共同的根基。
中国诗与中国画本身也是中国传统文化精华的集中体现,它们深受中国传统文化的滋养,有着高度的文化同一性。
从文者和习画者若离开了对中国传统文化的学习,单取诗词、绘画之形,虽异常刻苦,往往也只得其表,难取其实。
同理,欣赏者如果没有对中国传统文化的理解与把握,在优秀的中国诗词与中国画面前,也将难以体味出其丰富的内蕴与妙处所在。
③境界是中国诗与中国画所崇尚的追求。
伴随禅宗思想的演进,中国传统文人对境界的追求更.上层楼。
中国诗与中国画在唐宋时期的高度发展,正与此有极大关系。
禅宗对中国古典文艺美学影响的重要表现之一,就是使中国文人的审美经验与审美追求臻于境界化。
代表人物首推唐代诗人、画家王维。
王维的诗与画充分体现了对“空、远、静、寂”的境界的追求。
王维以禅境入诗境、画境。
苏轼评价王维:“味摩诘之诗,诗中有画;观摩诘之画,画中有诗”,可见王维的诗境与画境是统一的。
当然,中国诗与中国画对境界的追求,与道家“天人合一”“物我两忘”的主张,儒家诗学“言有尽而意无穷”的美学追求等都有着重要的联系。
④诗词、绘画是中国文人用以表达内心情感的重要手段。
北宋文人画家群体尤其体现了这一特点。
他们的诗与画“主情”,突破了唐代以前中国诗、中国画以叙事、再现为主的特点。
2022届寒假学习效果检测物理试卷一、单选题(本大题共7小题,共35.0分)1.下列说法正确的是()A. 元电荷就是质子或电子B. 真空中点电荷的电场中某一点的电场强度大小与场源电荷无关C. 静电平衡状态下导体表面处的电场强度不为零,方向跟导体表面垂直D. 若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为02.如图所示,A,B,C,D是真空中一正四面体的四个顶点.现在在A、B两点分别固定两个点电荷Q1和Q2,则关于C、D两点的场强和电势,下列说法正确的是()A. 若Q1和Q2是等量异种电荷,则C,D两点电场强度不同,电势相同B. 若Q1和Q2是等量异种电荷,则C,D两点电场强度和电势均相同C. 若Q1和Q2是等量同种电荷,则C,D两点电场强度和电势均不相同D. 若Q1和Q2是等量同种电荷,则C,D两点电场强度和电势均相同3.如图所示,水平放置的平行板电容器上极板带正电,所带电荷量为Q,板间距离为d,上极板与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板正中间P点有一个静止的带电油滴,现将电容器的上极板竖直向下移动一小段距离.下列说法正确的是()A. 油滴带正电B. 静电计指针张角不变C. 油滴向上运动D. P点的电势不变4.一匀强磁场的磁感应强度大小为B,方向垂直于纸面向里,其边界如图中虚线所示,ab⌢为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径。
一束质量均为m、带电荷量均为−q(q>0)、速率不同的粒子流,在纸面内从c点垂直于ac射入磁场。
不计粒子之间的相互作用。
粒子在磁场中运动的最短时间为A. 4πm3qB B. 2πm3qBC. πm3qBD. πm4qB5.如图甲所示,矩形导线框abcd固定在变化的磁场中,产生了感应电流(电流方向沿abcda为正方向).若规定垂直纸面向里的方向为磁场的正方向,能够产生如图乙所示电流的磁场为()A. B.C. D.6.如图所示,理想变压器原、副线圈匝数比n1:n2=2:1,Ⓥ和Ⓥ均为理想交流电表,灯泡电阻R L=6Ω,AB两端电压u1=12√2sin100πt(V).下列说法正确的是()A. 电流频率为100HzB. Ⓥ的读数为24VC. Ⓥ的读数为0.5AD. 变压器输入功率为6W7.如图中关于磁场中的四种仪器的说法中错误的是()A. 甲中回旋加速器加速带电粒子的最大动能与回旋加速器的半径有关B. 乙中不改变质谱仪各区域的电场磁场时击中光屏同一位置的粒子比荷相同C. 丙中自由电荷为负电荷的霍尔元件通上如图所示电流和加上如图磁场时M侧带负电荷D. 丁中长宽高分别为为a、b、c的电磁流量计加上如图所示磁场,前后两个金属侧面的电压与a、b无关二、多选题(本大题共5小题,共25.0分)8.A,B两粒子以相同的初速度沿与电场线垂直的方向由左边界的同一点先后进入同一匀强电场,最后它们都从电场的右边界离开电场。
2022届寒假学习效果检测物理试卷一、单选题(本大题共7小题,共35.0分)1.下列说法正确的是()A. 元电荷就是质子或电子B. 真空中点电荷的电场中某一点的电场强度大小与场源电荷无关C. 静电平衡状态下导体表面处的电场强度不为零,方向跟导体表面垂直D. 若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为02.如图所示,A,B,C,D是真空中一正四面体的四个顶点.现在在A、B两点分别固定两个点电荷Q1和Q2,则关于C、D两点的场强和电势,下列说法正确的是()A. 若Q1和Q2是等量异种电荷,则C,D两点电场强度不同,电势相同B. 若Q1和Q2是等量异种电荷,则C,D两点电场强度和电势均相同C. 若Q1和Q2是等量同种电荷,则C,D两点电场强度和电势均不相同D. 若Q1和Q2是等量同种电荷,则C,D两点电场强度和电势均相同3.如图所示,水平放置的平行板电容器上极板带正电,所带电荷量为Q,板间距离为d,上极板与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板正中间P点有一个静止的带电油滴,现将电容器的上极板竖直向下移动一小段距离.下列说法正确的是()A. 油滴带正电B. 静电计指针张角不变C. 油滴向上运动D. P点的电势不变4.一匀强磁场的磁感应强度大小为B,方向垂直于纸面向里,其边界如图中虚线所示,ab⌢为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径。
一束质量均为m、带电荷量均为−q(q>0)、速率不同的粒子流,在纸面内从c点垂直于ac射入磁场。
不计粒子之间的相互作用。
粒子在磁场中运动的最短时间为A. 4πm3qB B. 2πm3qBC. πm3qBD. πm4qB5.如图甲所示,矩形导线框abcd固定在变化的磁场中,产生了感应电流(电流方向沿abcda为正方向).若规定垂直纸面向里的方向为磁场的正方向,能够产生如图乙所示电流的磁场为()A. B.C. D.6.如图所示,理想变压器原、副线圈匝数比n1:n2=2:1,Ⓥ和Ⓥ均为理想交流电表,灯泡电阻R L=6Ω,AB两端电压u1=12√2sin100πt(V).下列说法正确的是()A. 电流频率为100HzB. Ⓥ的读数为24VC. Ⓥ的读数为0.5AD. 变压器输入功率为6W7.如图中关于磁场中的四种仪器的说法中错误的是()A. 甲中回旋加速器加速带电粒子的最大动能与回旋加速器的半径有关B. 乙中不改变质谱仪各区域的电场磁场时击中光屏同一位置的粒子比荷相同C. 丙中自由电荷为负电荷的霍尔元件通上如图所示电流和加上如图磁场时M侧带负电荷D. 丁中长宽高分别为为a、b、c的电磁流量计加上如图所示磁场,前后两个金属侧面的电压与a、b无关二、多选题(本大题共5小题,共25.0分)8.A,B两粒子以相同的初速度沿与电场线垂直的方向由左边界的同一点先后进入同一匀强电场,最后它们都从电场的右边界离开电场。
河南省鹤壁高中2020-2021学年高二数学下学期寒假学习效果检测试题文
一、选择题
1. 若全集集合,或,则
A. B. 或
C. D.
2. 复数的共扼复数是( )
A. B. C. D.
3. 正项等比数列中,,则的值是( )
A. 4
B. 8
C. 16
D. 64
4. “”是“”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
5. 如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量吨与相应的生产能耗吨的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为,则下列结论错误的是( )
x 3 4 5 6
y t 4
A. 线性回归直线一定过点
B. 产品的生产能耗与产量呈正相关
C. t的取值必定是
D. A产品每多生产1吨,则相应的生产能耗约增加吨
6. 若,,,则
A. B. 2 C. D.
7. 已知函数,则其单调递增区间为
A. B. C. D.
8. 与椭圆C:共焦点且过点的双曲线的标准方程为
A. B. C. D.
9. 若,且,那么是( )
A. 直角三角形
B. 等边三角形
C. 等腰三角形
D. 等腰直角三角形
10. 已知函数
1
()
ln1
f x
x x
=
--
,则的图象大致为
A. B. C. D.
11. 如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点,圆:,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,则的
最小值为
A.
B.
C.
D.
12. 已知数列的首项,则
A.99
B. 101
C. 399
D. 401
二、填空题
13. 若直线与函数的图象有相异的三个公共点,则a的取值范围是_______.
14. 已知,且,,则的最小值为_______.
15. 设F是双曲线的右焦点,P是双曲线C左支上的点,已知,则周长的最小值是.
16. 已知,若对于任意的,不等式恒成立,则a的最小值为_____.
三、解答题
17. 在平面直角坐标系xOy中,曲线的参数方程为为参数,以坐标原点为极点,
x 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若与相交于A,B两点,设,求.
18. 的内角A,B,C的对边分别为a,b,c,已知
,,
.(1)求c;
(2)设D为BC边上一点,且,
求的面积.
19. 随着支付宝和微信支付的普及,“扫一扫”已经成了人们的日常,人人都说现在出门不用带钱包,有部手机可以走遍中国移动支付如今成了我们生活中不可缺少的一部分了,在某程度上还大大的促进了消费者的消费欲望,带动了经济的发展某校高三年级班主任对该班50名同学对移动支付是否关注进行了问卷调查,并对参与调查的同学的性别以及意见进行了分类,得到的数据如下表所示:
男女合计对移动支付关注24 12 36
对移动支付不关注 4 10 14
合计28 22 50
如果随机调查这个班的一名学生,那么抽到对移动支付不关注的男生的概率是多少?
现按照分层抽样从对移动支付关注的同学中抽取6人,再从6人中随机抽取2人,求2人中至少有1人是女生的概率.
根据表中的数据,能否有的把握认为消费者对移动支付的态度与性别有关系?
参考公式:.
临界值表:
20. 已知数列为等差数列,,,其前n项和为,且数列也为等差数列.
求的通项公式
设,求数列的前n项和.
21. 已知椭圆E:的左、右焦点分别为,,M是椭圆上的一点,当M是上顶点时时,的面积为.
求椭圆E的方程;
过的直线l与椭圆E交于A,B两点,过A,B两点分别作定直线的垂线,垂足分别为,,求证:为定值.
22. 已知函数R
当时,证明:函数只有一个零点;当时,,求实数a的取值范围.
2022届寒假学习效果检测文数试卷答案和解析
1-5 DBCBC 6-10 DDCBA 11-12 C C
12.由得,所以是以1为公差,1为首项的等差数列,所以,即可计算出.解:由,
得,
即,
所以是以1为公差,1为首项的等差数列,
所以,即,
所以.故选C.
13.
14.解:,,则,
则,当且仅当时取等号,故的最小值为
15.解:设双曲线C的左焦点为,由题意可知,,则,,
又,则,根据双曲线的定义可知,,
所以的周长为,
当A,P,三点共线时,取得最小值,即的周长取得最小值,
可得,
故周长的最小值为.
16.解:
.
令,,在上单调递增,,
对于任意的恒成立,
令,,
可知函数在上单调递增,在上单调递减,
当时,取最大值为,,的最小值为.故答案为.
17.解:由消去参数得:,
由曲线的极坐标方程为,得:
经检验在曲线上,
则曲线的参数方程可以为为参数,
代入的直角坐标方程得:,
设A,B两点对应的参数为,
则由韦达定理得:,故.
18.解:,
,,,
由余弦定理可得,即,即,解得舍去或,故.
,,
,,,,
又,
.
19.解:对移动支付不关注的男生有4人,总数为50人,;
依题意,分层抽样从对移动支付关注的同学中抽取6人,男生应抽取4人,
即为A,B,C,D,女生应抽取2人,即为a,b,
从这6人中随机抽取两人的所有的情况为:
,,,,,,,
,,,,,,,,共15种,
其中“至少有一人是女生”的情况有9种,
记事件A为“2人中至少有一人是女生”,则;
因为,
所以有的把握认为对移动支付的态度与性别有关.
20.解:设等差数列的公差为,则,,.数列为等差数列,,解得.
.
由知,,
.
设数列的前n项和为,
则.21.解:依题意,,.
故椭圆E的方程为
证明:当直线l的斜率为0时,A,B,,共线,不可能形成三角形,
故直线l的斜率不为0,设直线l的方程为,
联立消去x,得,
设,,
则,.
,
,
又
.
所以,定值.
22.证明:当时,,其定义域为,
令,,解得,
在上单调递增,在上单调递减,
,即,在上单调递减.
又,有唯一的零点
解:当时,恒成立,
即在上恒成立.
设,.则
考虑的分子:
令,开口向下,对称轴为,
在上递减,,
所以当,即时,,所以,,在上单调递减,成立;
当时,.
设的两个实数根为,.
,,.
当时,;当时,,
在上单调递增,在上单调递减,
,不合题意.
综上所述,。