数学人教版八年级上册全等三角形的判定(边边边) (5)
- 格式:pptx
- 大小:342.16 KB
- 文档页数:16
第二课时——全等三角形的判定知识点一:全等三角形的判定:判定方法内容数学语言 图形表示 注意点边边边(SSS )三边分别相等的两个三角形全等。
可简写为“边边边”或“SSS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF边角边(SAS )两边及其夹角分别对应相等的两个三角形全等。
可简写为“边角边”或“SAS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧=∠=∠=DF AC D A DEAB ∴△ABC ≌△DEF用“边角边(SAS )判定全等时,角一定是两边的夹角,否则不能判定全等。
在写条件的时候角必须写在中间。
角边角(ASA )两角及其夹边分别对应相等的两个三角形全等。
可简写为“角边角”或“ASA ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB DA ∴△ABC ≌△DEF用“角边角(ASA )判定全等时,边是两角的夹边,在书写的过程中需把边写在中间特别提示:在写全等三角形的数学语言时,等号左边写“≌”左边三角形的条件,等号右边写“≌”右边三角形的条件。
并且条件的顺序必须和判定条件顺序一致。
方法总结:【类型一:补充证全等条件】1.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DBC.∠A=∠DEF D.∠ABC=∠D2.如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()第2题第3题A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3.如图,BC=BD,添加下列一个条件后,仍无法判定△ABC≌△ABD的是()A.AC=AD B.∠ABC=∠ABD C.∠CAB=∠DAB D.∠C=∠D=90°4.如图,已知点A,D,C,F在同一条直线上,AB=DE,AD=CF,要使△ABC≌△DEF,则下列条件可以添加的是()第4题第5题第7题A.∠B=∠E B.∠A=∠EDF C.AC=DF D.BC∥EF5.如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C6.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等7.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,添加一个条件,不能使得Rt△ABC≌Rt△DCB 的是()A.AB=DC B.AC=DB C.∠ABC=∠DCB D.BC=BD8.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DB D.AB=CD【类型二:证明三角形全等】9.请将以下推导过程补充完整.如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF平分∠DCE.求证:△DCF ≌△ECF 证明:∵AD ∥BE ∴∠A =∠B在△ACD 和△BEC 中()⎪⎩⎪⎨⎧=∠=∠BC AD B A ∴△ACD ≌△BEC ( )∴CD =CE ( ) ∵CF 平分∠DCE ∴ 在△DCF 和△ECF 中()⎪⎩⎪⎨⎧==CE CD CF CF ∴△DCF ≌△ECF (SAS )10.如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD .求证:△ABC ≌△CDE .11.如图,点A、D、B、E在一条直线上,AD=BE,AC=DF,AC∥DF,求证:△ABC≌△DEF.12.如图,点D在线段BC上,AB=AD,∠1=∠2,DA平分∠BDE:求证:△ABC≌△ADE.13.天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≌△CDO.14.如图,在△ABC中,点D在BC的延长线上,DE∥AC,且DE=BC,AC=BD.求证:△ABC≌△BED.15.如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.16.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.18.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE =BF.19.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.【类型三:全等三角形的判定与性质】20.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠F AC =40°,则∠BFE=()第20题第21题A.35°B.40°C.45°D.50°21.如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为()A.21B.24C.27D.3022.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()第22题第23题A.3B.5C.6D.723.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.424.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.25.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.【类型四:全等三角形的应用】27.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()第27题第28题A.SSS B.SAS C.ASA D.AAS28.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去29.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.第29题第30题30.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB =OC,测得AB=a,EF=b,圆形容器的壁厚是()A .aB .bC .b ﹣aD .21(b ﹣a )一、选择题(10题)1.如图为正方形网格,则∠1+∠2+∠3=( )第1题 第2题 第3题A .105°B .120°C .115°D .135°2.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .∠ABC =∠ABDB .∠BAC =∠BAD C .AC =AD D .AC =BC3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②4.根据下列已知条件,能唯一画出△ABC 的是( )A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=45.如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B的距离,判定△EDC≌△ABC的依据是()A.ASA B.SSS C.AAS D.SAS6.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()第7题第8题A.BD>CD B.BD<CD C.BD=CD D.不能确定8.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.89.把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为()第9题第10题A.4cm B.6cm C.8cm D.求不出来10.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD 交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(6题)11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第12题第14题13.在△ABC中,AB=3cm,AC=4cm,则BC边上的中线AD的取值范围是.14.在直角三角形中,存在斜边的平方等于两条直角边的平方的和。
全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
12.2 三角形全等的判定第1课时 “边边边”学习目标1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 学习重点三角形全等的条件. 学习难点寻求三角形全等的条件.学习方法:自主学习与小组合作探究 学习过程:一.回顾思考: 1.(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义__________________________________________________; ②“SAS ”公理__________________________________________________ ③“ASA ”定理__________________________________________________C 'B 'A 'CBA一、情境导入问题提出:一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.学生活动:观察,思考,回答教师的问题.方法如下:可以将图①的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图②,剪下模板就可去割玻璃了.如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.反之,如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′这六个条件,就能保证△ABC≌△A′B′C′.从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.这种说法对吗?二、合作探究探究点:三角形全等的判定方法——“边边边”【类型一】利用“SSS”判定两个三角形全等如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .解析:已知△ABC 与△DEF 有两边对应相等,通过BE =CF 可得BC =EF ,即可判定△ABC ≌△DEF .证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【类型二】 “SSS ”与全等三角形的性质结合进行证明或计算如图所示,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架,求证:AD ⊥BC .解析:要证AD ⊥BC ,根据垂直定义,需证∠1=∠2,∠1=∠2可由△ABD ≌△ACD 证得.证明:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.【类型三】 利用“边边边”进行尺规作图已知:如图,线段a、b、c.求作:△ABC,使得BC=a,AC=b,AB=c.(保留作图痕迹,不写作法)解析:首先画AB=c,再以B为圆心,a为半径画弧,以A为圆心,b为半径画弧,两弧交于一点C,连接BC,AC,即可得到△ABC.解:如图所示,△ABC就是所求的三角形.方法总结:关键是掌握基本作图的方法,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【类型四】利用“SSS”解决探究性问题如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若E、F运动至图①所示的位置,且有AF=CE,求证:△ADE≌△CBF.(2)若E、F运动至图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E、F不重合,AD和CB平行吗?说明理由.解析:(1)因为AF =CE ,可推出AE =CF ,所以可利用SSS 来证明三角形全等;(2)同样利用三边来证明三角形全等;(3)因为全等,所以对应角相等,可推出AD ∥CB .解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF .(3)平行.∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决本题要明确无论E 、F 如何运动,总有两个三角形全等,这个在图形中要分清.三、板书设计边边边1.三边分别相等的两个三角形全等.简记为“边边边”或“SSS ”. 2.“边边边”判定方法可用几何语言表示为:在△ABC 和△A 1B 1C 1中,∵⎩⎪⎨⎪⎧AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,∴△ABC ≌△A 1B 1C 1(SSS).本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练.评价反思 概括总结1. 本节课我们探索得到了三角形全等的条件,又•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?①定义__________________________________________________;②“SAS”公理__________________________________________________③“ASA”定理_________________________________________________④“SSS”定理_________________________________________________12.2 三角形全等的判定第1课时“边边边”AB CD[分析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.证明:因为D是BC的中点所以BD=DC在△ABD和△ACD中(AB ACBD CDAD AD=⎧⎪=⎨⎪=⎩公共边)所以△ABD≌△ACD(SSS).让学生独立思考后口头表达理由,由教师板演推理过程尺规作图:已知:∠BAC.求作:∠B'A'C' ,使∠B'A'C'=∠BAC.让学生初步体验成功的喜悦,同时也明确一下书写过程.巩固练习学练优练习让学生巩固对三角形全等的判定条件的认识,同时也让学生尝试书写推理过程.小结与作业反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.布置作业1.必做题:2.选做题:培养学生良好的学习习惯,巩固所学的知识。