无源器件-双工器检测技术规范
- 格式:pdf
- 大小:227.66 KB
- 文档页数:17
报告编号:×××<计量标志> <CNAS标志>检验报告产品型号产品名称无线通信室内信号分布系统无源器件-功分器申请单位检验类别产品认证初次/复评检验×××××××××检验中心注意事项1.报告无“检验报告专用章”或检验单位公章无效。
2.报告需加盖骑缝章。
3.复制报告未重新加盖“检验报告专用章”或检验单位公章无效.4.报告无主检、审核、批准人签字无效。
5.报告涂改无效。
6.部分复印本检验报告无效。
7.本检验报告仅对来样负责。
8.对检验报告若有异议,请于收到报告之日起十五日内向泰尔认证中心提出。
地址:××××××邮政编码:××××××电话:××××××传真:××××××网址:××××××E-MAIL:××××××检验报告批准:审核:主检:检验情况一览表检验结果检验结果检验结果检验结果检验结果检验结果检验结果环境和机械性能试验条件样品信息1 样品信息描述××××××。
{如产品的结构、材质等}2 样品的关键材料信息:见附件3 样品照片{注明样品型号规格}检验使用仪表附件样品的关键材料信息报告编号:××××××检测委托书号:×××申请单位:××××××产品名称:×××产品型号:×××材料名称型号生产厂家外导体××××××内导体××××××接头×××××检验中心(公章)×××年××月××日。
无源器件原理说明1、矩形和圆柱形波导谐振腔谐振腔也可用一段闭合的波导段来组成,因为波导也是一种传输线。
由于波导的开路端有辐射损耗,因而通常采用两端短路的波导谐振腔,即形成一个封闭的空腔(盒子),电能和磁能储藏在腔内部。
腔内金属壁及填充空腔的介质一般有功率损耗。
可以通过小孔、小控针或小环实现与谐振腔的耦合。
腔体滤波器就是采用几个谐振腔通过不同大小的耦合窗串联而成。
双工器则是由两个不同频段的滤波器通过内部阻抗匹配连接而成的。
2、滤波器基本参数滤波器是无线电技术中许多设计环节的中心,它具有选频功能,抑制不需要的频率信号,选取被淹没的信号。
主要有集总、微带、腔体、介质、悬置微带等各种形式的滤波器,目前由于微波频段的信号越来越密集,对信号选取工作的要求越来越高。
在微波毫米波电路中,滤波器是用途极其广泛的一种微波无件,其主要性能有:通带插入损耗,通带纹波,带外抑制及通带驻波比等参数。
参数说明:中心频率:给定相对最小插入损耗值(比如:-3dB)的对应两个截止频率的几何平均值。
带宽:给定相对最小插入损耗值的两个截止频率的间隔,即指从上限频率f2到下限频率f1的差值。
常用1dB带宽和3dB带宽表示。
(BW=f2-f1)相对带宽:带宽与中心频率的百分比值,即RBW=BW/f0*100%。
频率范围:给定相对最小插损值的两个截止频率范围,即指从下限频率f1到上限频率f2的频率范围,频率范围应包含的起始频率植f1和终止频率f2。
工作频率范围:需要滿足驻波、损耗、相位和损耗波动的频率范围。
工作频率范围应小于频率范围。
驻波、插入损耗和通带纹波在此范围才有意义。
插入损耗(或通带衰减):即有用信号通过能力,由滤波器残存的反射及滤波器元件的损耗所引起,也受限于传输媒质的固有Q值,一般希望尽可能小。
通带纹波:即通带内信号幅度的起伏程度,通常规定起伏的最大值和最小值之差。
带外抑制(或阻带衰减):即对不需要信号的抑制能力,一般希望尽可能大,并在通带范围外陡峭的下降。
中国移动通信企业标准中国移动无源器件测试规范C h i n a M o b i l e P a s s i v eD e v i c eT e s t R e q u i r e m e n t版本号:1.0.0中国移动通信集团公司发布目录1.范围 (1)2.规范性引用文件 (1)3.术语、定义和缩略语 (1)3.1术语 (1)3.2定义 (1)3.3缩略语 (2)4.测试仪表 (3)5.测量条件及判决依据 (3)5.1常规测试条件 (3)5.2极限测试条件 (3)5.3不确定度及判断依据 (4)6.检测方法 (4)6.1电气性能检测方法 (4)6.1.1腔体功分器 (4)6.1.1.1插入损耗和带内波动 (4)6.1.1.2输入端口驻波比 (5)6.1.1.3输入端口反射互调 (5)6.1.1.4功率容量 (7)6.1.2腔体定向耦合器 (9)6.1.2.1耦合度偏差 (9)6.1.2.2插入损耗及带内波动 (9)6.1.2.3驻波比 (10)6.1.2.4隔离度 (11)6.1.2.5输入口反射互调 (11)6.1.2.6功率容量 (13)6.1.3腔体3dB电桥 (13)6.1.3.1插入损耗和带内波动 (15)6.1.3.2驻波比 (16)6.1.3.3隔离度 (17)6.1.3.4反射互调 (18)6.1.3.5功率容量 (19)6.1.4合路器 (19)6.1.4.1插入损耗和带内波动 (21)6.1.4.2驻波比 (22)6.1.4.3带外抑制 (23)6.1.4.4输入端口反射互调 (24)6.1.4.5功率容量 (25)6.1.5 5.1.5 衰减器 (25)6.1.5.1衰减度误差和带内波动 (27)6.1.5.2驻波比 (28)6.1.5.3输入端口反射互调 (29)6.1.5.4功率容量 (30)6.1.6负载 (30)6.1.6.1驻波比 (32)6.1.6.2反射互调 (33)6.1.6.3功率容量 (34)6.2工艺和材料的简易检测方法 (36)6.3环境试验检测方法 (37)6.3.1高温实验 (37)6.3.2低温实验 (38)6.3.3振动实验 (38)6.3.4恒定湿热 (38)6.3.5盐雾 (38)6.编制历史 (39)附录A 无源器件指标分级标准 (39)前言本标准定义了无源器件的技术指标测试方法。
解析无源互调测试三大方式作者:Technologies朱辉来源:《通信产业报》2008年第03期5年前,大部分射频工程师很少提及无源器件互调问题。
但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因此越来越被运营商、系统制造商和器件制造商所关注。
正如大家所知,无源互调值非常之小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm的无源互调失真(绝对值),其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。
因为无源互调值非常之小,所以相对于有源器件产生的互调失真而言,无源互调的测试要困难得多。
而目前我国尚无无源互调测试的标准,所以大部分都按照IEC推荐的测量方法进行测量。
IEC推荐的正向和反射互调产物的测量方法分别如图1和2所示。
图1表示一个两端口或多端口器件在两个大功率信号的同时作用下所产生的互调产物。
绝大部分的无源器件,如双工器、滤波器、定向耦合器等都可以采用这种方法测量。
图2表示一个单端口器件在两个大功率信号的同时作用下所产生的反射互调产物。
天线和负载可以采用这种方法测量。
随着通信技术的不断发展,新的系统干扰问题不断出现,给测量工作者带来了新的挑战。
在一些功率合成系统或者多载频的共用系统中,当两个大功率信号同时作用于一个两端口器件的输入和输出端时,在输出端口将会产生很大的互调产物。
在多系统合路平台(POI)系统中情况更为复杂。
各种不同频段的载频同时进入系统,除了本频段的互调干扰外,还会产生跨频段的互调干扰。
因此,需要进行无源器件反向互调测量。
测量范围典型的无源器件,如定向耦合器、功率分配器、双工器、连接器和电缆组件等,其互调产物通常在-120~-100dBm,也就是相对于43dBm测量条件下的-163~-143dBc;而某些器件的互调产物更大,如铁氧体器件的互调产物可达-60dBc甚至更大。
室内分布系统有哪些无源器件室内分布系统中长用的器件分有源器件和无源器件,它们都属于线性互易元件。
线性互易元件只对微波信号进行线性变换而不改变频率特性,并满足互易原理。
无源器件指像滤波器、分配器、谐振回路等以实现信号匹配、分配、滤波等;有源器件指像微波晶体管、微波固态谐振器等以实现信号产生、放大、调制、变频等。
室内分布系统中经常用到的无源器件有功分器、耦合器、基站耦合器、合路器、电桥、干线放大器、负载、射频电缆等。
一、功分器1.概念功分器(全称功率分配器)一种将一路输入信号能量分成两路或多路输出相等能量的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。
一个功分器的输出端口之间应保证一定的隔离度。
基本分配路数为2路、3路和4路,通过它们的级联可以形成多路功率分配。
使用功分器时,若某一输出口不接输出信号,必须接匹配负载,不应空载。
2.主要指标功分器的主要技术参数有插入损耗、分配损耗、驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。
下表是宽频腔体功分器一些典型指标(参考):言入800—2000MHZ __________________________ 0 l5dB频带宽度:这是各种射频/微波电路的工作前提,功分器的设计结构与工作频率密切相关。
必须首先明确功分器的工作频率,才能进行下面的设计功率损耗:分为分配损耗和插入损耗。
分配损耗:主路到支路的分配损耗实质上与功分器的功率分配比有关,其计算公式为所有路数的输出功率之和与输入功率的比值,一般理想分配损耗由下式获得:理想分配损耗(dB)=10log(1/N)N为功分器路数插入损耗:输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,考虑输入端的驻波比所带来的损耗。
驻波比:指沿着信号传输方向的电压最大值和相邻电压最小值之间的比率。
每个端口的电压驻波比越小越好。
功率容量:电路元件所能承受的最大功率。
在分布系统中,功分器作为下行信号来说是个功率分配器,对上行信号来讲又是个(小信号)合路器。
电子元器件半导体器件长期贮存第8部分:无源电子器件1 范围本文件规定了无源电子器件长期贮存方法和推荐条件,包括运输、控制以及贮存设施安全。
长期贮存是指产品预计贮存时间超过12个月的贮存。
本文件提供了有效进行无源电子器件长期贮存的理念、良好工作习惯和一般方法。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 4937.20,半导体器件机械和气候试验方法第20部分:塑封表面安装器件耐潮湿和焊接热综合影响(GB/T 4937.20-2018,IEC 60749-20:2008,IDT)GB/T 4937.201 半导体器件机械和气候试验方法第201部分:对潮湿和焊接热综合影响敏感的表面安装器件的操作、包装、标志和运输(GB/T 4937.201-2018,IEC 60749-20-1:2009,IDT)IEC 61760-4,表面安装技术–第4部分:湿敏器件的分类,包装,标记和处理(Surface mounting technology-Part 4:Classification,packaging,labelling and handling of moisture sensitive devices)JEDEC J-STD-075 用于装配的非集成电路电子元器件分级(Classification of non-IC electronic components for assembly process)3 术语和定义下列术语和定义适用于本文件。
3.1无源的 passive<电子器件>限定瞬时功率的时间积分从首次供电之前的瞬间开始,在任何时间间隔内不能为负的电子器件或电路。
示例电阻,电感,电容,保险丝,磁性开关,晶体振荡器,二极管,LED。
光无源器件参数测试实验光无源器件参数测试实验是对光通信系统中使用的无源器件进行性能测试的一种方法。
无源器件包括光纤、光分路器、光耦合器等,它们在光通信系统中起到传输和分配光信号的作用。
在光通信系统中,无源器件的性能直接影响到系统的传输效率和稳定性,因此准确测试无源器件的参数是非常重要的。
1.实验目的测试光无源器件的参数,包括插入损耗、反射损耗、带宽、槽隔离度等,以评估器件的性能,为光通信系统的设计和优化提供依据。
2.实验仪器与设备(1)光源:常用的光源有激光二极管光源、电子脉冲激光器、气体激光器等。
光源的选择应根据实际应用需求确定。
(2)光功率计:用于测量光源的输出光功率,常用的光功率计包括光纤功率计和探头功率计。
(3)光分路器:用于将光信号分成两个或多个信号,常用的光分路器有耦合式光纤分路器和干涉式光纤分路器。
(4)光耦合器:用于将光信号从一个光纤耦合到另一个光纤中,常用的光耦合器有耦合式光纤耦合器和波导式光纤耦合器。
(5)光衰减器:用于调节光信号的光功率,常用的光衰减器有可调半波电压衰减器、可调半波电压Tipo式衰减器。
(6)光检测器:用于检测光信号的强度和特性,常用的光检测器有光电二极管、光电探测器等。
(7)光谱仪:用于测量光信号的频谱,获取光信号的频率信息,常用的光谱仪有光栅光谱仪、波长计等。
3.实验步骤(1)校准仪器:调节光源的输出光功率,使用光功率计校准光源的输出功率,并记录下来。
(2)测量插入损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光经过器件后的功率,计算插入损耗。
(3)测量反射损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光反射回来的功率,计算反射损耗。
(4)测量带宽:使用光谱仪测量无源器件的光信号频谱,记录下信号的中心频率和带宽。
(5)测量槽隔离度:使用光分路器或光耦合器将光信号分成两个或多个信号,分别测量各个信号的光功率,并计算槽隔离度。
中国铁塔股份有限公司企业标准Q/ZTT 3004—2016代替Q/ZTT 1003.3—2014无源分布系统无源器件检测规范Passive Distribution System Passive Components Test Specification版本号:V2.02016 - 02 - 15发布2016 - 02 - 15实施目次前言 (IV)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)3.1插入损耗I NSERTION L OSS (2)3.2电压驻波比V OLTAGE S TANDING-WAVE R ATIO (VSWR) (2)3.3带内波动(纹波)I NBAND R IPPLE (2)3.4耦合度C OUPLING D EGREE (2)3.5功率容量P OWER C APACITY (2)3.6无源互调P ASSIVE I NTERMODULATION (2)4检测项目 (2)4.1功分器 (2)4.2耦合器 (3)4.33D B电桥 (3)4.4衰减器(选做) (4)4.5负载 (4)5基本测试环境 (5)5.1常规测试条件 (5)5.2极限测试条件 (5)5.3不确定度及判断依据 (5)6电气性能检测要求 (5)6.1功分器 (5)6.1.1网络分析仪校准 (5)6.1.2插入损耗和带内波动 (7)6.1.3输入端口驻波比 (8)6.1.4输入端口反射互调 (8)6.2耦合器 (9)6.2.1耦合度偏差 (9)6.2.2插入损耗及带内波动 (10)6.2.3驻波比 (11)6.2.4隔离度 (11)6.2.5输入口反射互调 (12)6.33D B电桥 (13)6.3.1插入损耗和带内波动 (13)6.3.2驻波比 (14)6.3.3隔离度 (15)6.3.4反射互调 (16)6.4衰减器 (17)6.4.1衰减度误差和带内波动 (17)6.4.2驻波比 (18)6.4.3输入端口反射互调 (18)6.5负载 (19)6.5.1驻波比 (19)6.5.2反射互调 (20)6.6功率容量检测要求 (21)7工艺和材料简易检测方法 (22)8环境与可靠性试验检测要求 (23)8.1高温试验 (24)8.2低温试验 (25)8.3振动试验 (25)8.4恒定湿热试验(选做) (25)8.5盐雾试验(选做) (26)附录 A (规范性附录)测量设备要求 (27)A.1试验负载 (27)A.2矢量网络分析仪 (27)A.3校准 (27)A.4电缆标准测试件 (27)A.5互调测试仪 (27)A.6高低湿温箱 (28)A.7调温调湿箱 (28)A.8振动试验台 (28)A.9盐雾试验箱 (28)前言本标准依据相关国家标准和行业标准,结合中国铁塔股份有限公司(以下均简称为“中国铁塔”)的实际情况,细化和明确了无源分布系统无源器件的检测规范,满足多系统共享室内分布系统的应用需求,并为入网检测和无源分布系统建设提供技术依据。
无源器件检验规范1.目的对外协、外购和生产的无源的质量进行有效控制,为生产、科研提供质量稳定可靠的无源器件,以满足生产、科研以及顾客的质量需求。
2.适用范围适用于公司内外购、外协和生产的无源器件,包括滤波器、双工器、功分器、合路器、耦合器等。
3.依据GB2828-87 《逐批检查计数抽样程序及抽样表》本公司制定的相关产品的转产技术资料4.检验设施●网络分析仪一台,型号:R3762BH或HP 8713C●游标卡尺●射频线若干5.环境要求在常温检验室里6. 主要内容6.1抽样方案6.1.1 对新供方产品或老供方提供的新产品(不包括先期提供的样品),前三批采用GB2828-87《逐批检查计数抽样程序及抽样表》中,检查水平IL=Ⅱ, AQL=0.4DE 的加严一次抽样方案。
6.1.2 连续三批加严检查合格后才可采用IL=Ⅱ的正常检查一次抽样方案;对于长期合格的产品,再按照GB2828-87要求实行转移规则。
6.1.3 对于采用以上抽样方案检验不合格的批次,但遇到特殊情况,如生产急需,可采用拣用的处理方法;而对于整批不合格品数量很大,但不合格的程度不会对产品的最终质量形成影响,且遇到特殊情况,如生产急需时,可采用让步放行的处理办法:可以由使用部门填写《紧急(例外)放行产品申请单》(HX/QER/8.3-4),并经批准后实施。
6.2 检验项目6.2.1 外观尺寸检验:主要针对模块的长度、宽度、厚度、安装孔距以及丝印标志的统一规定。
6.2.2 性能指标检验:1)功分器:插入损耗、驻波比、隔离度2)耦合器:插入损耗、驻波比、耦合度、方向性检验项目中涉及到的具体指标见相关的转产资料。
6.3 检验方法6.3.1 外观尺寸检验外观尺寸检验简单易行,借助游标卡尺等工具可以对模块的质量进行严格把关。
主要检验内容如下:(1)表面质量:有无划伤、油漆脱落的地方;接头(如:KFK头)有无撞坏(2)长宽厚度、安装孔距是否在要求的范围内(3)字符标记清晰,不易擦掉6.3.2 性能指标检验:1)功率分配器检测(1)测试前准备工作网络分析仪开机预热五分钟后,对仪器校准。
无源互调测试用标准件
无源互调测试用标准件的三阶互调标准值有-80/-100/-110dBm和-125dBm,载波功率为2×20W。
标准件不能用于无源互调测试仪的校准,但在许多情况下可以用于判断无源互调测试仪的测试准确性。
产品特点
•无源互调测试源
•高重复性
•用于验证无源互调测试仪
•耐磨、耐氧化设计
技术规格
接头类型DIN(公)-DIN(母)
特征阻抗50欧姆
三阶产物功率电平:-80dBm/-100dBm/-110dBm/
-125dBm±3dB
频率:913MHz/1775MHz
载波:2×+43dBm/2×20W
重量0.160Kg
工作温度-55至+85℃2002/95/EC(RoHS)兼容
内导体铍青铜
外导体黄铜
壳体黄铜
连接螺套黄铜
机械耐久性≥1000次
可选厂家:①罗森伯格②灏讯。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
由于插损不能使用网络分析仪直接测出,所以一般都以整个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等来表示二/三/四功分器的插损。
纤维光学互连器件和无源器件基本试验和测量程序第2-12部分:试验 撞击1 范围本部分目的是对无源纤维光学器件或箱体承受在使用过程可能遇到的撞击能力的评价。
撞击可能是由刚性物体引起的局部撞击和一系列撞击,或器件正常跌落引起的撞击。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
IEC 61300-1 纤维光学互连器件和无源器件 基本试验和测量程序 第1部分:总则和导则(Fibreoptic interconnecting devices and passive components – Basic test and measurement procedures – Part 1: General and guidance)注:GB/T 18309.1-2001 纤维光学互连器件和无源器件 基本试验和测量程序 第1部分:总则和导则(IEC 61300- 1:1995,IDT)IEC 61300-3-1 纤维光学互连器件和无源器件 基本试验和测量程序 第3-1部分:检查和测量-外观检查(Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-1: Examinations and measurements – Visual examination) 注:GB/T 18311.1-2003 纤维光学互连器件和无源器件 基本试验和测量程序 第3-1部分:检查和测量 外观检查 (IEC 61300-3-1:1995,IDT)IEC 61753-1 纤维光学互连器件和无源器件性能标准 第1部分:性能标准总则和导则(Fibreoptic interconnecting devices and passive components performance standard – Part 1:General and guidance for performance standards)3 概述本部分采用三种试验方法:a)方法A:采用将带有一段光缆的试样自由摆落并撞击到一撞击面上;b)方法B:将钢球落在放置于光滑坚硬的混凝土或钢材表面上的试样上;c)方法C:将试样从一定高度位置自由释放。