楼宇自控系统由以下部分组成
- 格式:doc
- 大小:50.50 KB
- 文档页数:7
1楼宇自控系统1.1系统总体需求楼宇自控系统(BAS)是将建筑物(或建筑群)内的电力、空调、给水、排水、通风、运输等机电设备以集中监视和管理为目的,构成一个集散型系统,实现分散控制、集中管理的计算机控制网络。
楼宇自控系统是由计算机技术、网络技术、自动控制技术和通信技术组成的高度自动化的综合管理系统,它确保建筑物内设备高效运行,整体达到最佳节能效果,同时保障建筑物的安全,使其成为最佳工作与生活环境。
楼宇自控系统的整体功能可以概括为以下的四个方面:1.对建筑设备实现以最优控制为中心的过程控制自动化;2.以运行状态监视和控制运算为中心的设备管理自动化;3.以安全状态监视和灾害控制为中心的防灾自动化;4.以节能运行为中心的能量管理自动化。
楼宇自控系统的模式应采用分层分布式三层集成模式,包括管理层、自动化层、现场设备层。
系统结构必须是开放式的,采用全以太网接入方式,方便与第三方系统进行集成。
系统设计总体要求如下:1.系统设计和设备配置必须充分反映出实用性、先进性、扩展性及经济性。
2.BAS监控中心对建筑物内所有受控设备均可集中进行有效监控。
3.该网络架构应该由各种级别的以太网设备组成,以保证通讯效率。
4.应以以太网通讯为基础,由高性能的点对点(Peer-to-peer)楼宇级网络,DDC控制器,楼层级本地网络组成,其访问权限应对用户完全透明,以便访问系统的数据或改进控制程序。
5.所有动力机械设备在自动控制方式上,除了应该满足各自特定的启停及作息条件外,还必须兼顾到与系统内其他设备、设施的因果及内在关系,保证系统的可靠和安全。
6.所有受控设备在中央监控站停止工作时,均可在直接数字控制器的作用下实现就地控制。
7.当系统设置为手动操作模式时,所有的受控设备均可实现就地手动单独控制。
8.当设备故障时,备用设备能快速自动投入使用,同时锁定故障设备。
在未检修完好前不再投入使用。
9.中央监控站应能显示所有监控设备的运行状态、故障报警、监测参数、调节设定值、实时记录每一次报警、离线、禁用、超越,并能协调处理一般的突发事件。
楼宇自动控制系统包含的子系统及其组成楼宇自动化系统是智能建筑的主要组成部分之一。
智能建筑通过楼宇自动化系统实现建筑物(群)内设备与建筑环境的全面监控与管理,为建筑的使用者营造一个舒适、安全、经济、高效、便捷的工作生活环境,并通过优化设备运行与管理,降低运营费用。
楼宇自动化系统涉及建筑的电力、照明、空调、通风、给排水、防灾、安全防范、车库管理等设备与系统,是智能建筑中涉及面最广、设计任务和工程施工量最大的子系统,它的设计水平和工程建设质量对智能建筑功能的实现有直接的影响。
智能楼宇弱电系统建设目标:以建筑为平台,兼备建筑设备、办公自动化及通信网络系统,集结构、系统、服务管理及它们之间的最优化组合,提供一个安全、高效、舒适、便利的建筑环境。
楼宇自动控制系统包含的系统有:1.系统集成管理平台2.综合布线系统3.计算机网络系统(有线、无线)4.安全防范管理系统(视频监控、防盗报警、门禁管理、一卡通系统、电子巡更)5.有线电视及卫星接收系统6.背景音乐和紧急广播系统一、系统集成平台(大楼智能管理平台)系统集成(IBMS)是智能建筑的核心,是建立在多个智能化子系统基础上,将各个独立运行的子系统连接起来,建立统一的系统平台,实现统一数据格式、统一表现形式,统一的数据交换和共享。
从技术方面讲IBMS面向建筑自动化行业、采用子系统集成模式,集数据采集、网络通信、自动控制和信息管理于一体,是一种可快速二次开发的监控管理平台软件。
它以计算机网络为基础、软件为核心,通过信息交换和共享,将各个具有完整功能的独立子系统整合成一个有机体。
智能建筑的集成管理系统,把建筑物内若干个既相互独立,又相互关联的系统,包括通信网络系统CNS、信息系统IS、楼宇设备自动化系统BAS、火灾自动报警系统FAS、安全防范系统SAS等等,通过集成到一个统一的、协调运行的系统中,实现建筑物设备的自动检测与优化控制,实现信息资源的优化管理和共享,降低系统的运行费用,为使用者提供最佳的信息服务,创造安全、舒适、高效、环保的工作环境。
(1)楼宇自控系统由以下部分组成:◎建筑设备运行管理的监控,包括 (1) 暖通空调系统的监控(HVAC); (2) 给排水系统监控; (3) 供配电与照明系统监控◎火灾报警与消防联动控制、电梯运行管制◎公共安全技术防范,包括: 1、电视监控系统; 2、防盗报警系统; 3、出入口控制及门禁系统; 4、安保人员巡查系统; 5、汽车库综合管理系统; 6、各类重要仓库防范设施; 7、安全广播信息系统。
诸多的机电设备之间有着内在的相互联系,于是就需要完善的自动化管理。
建立机电设备管理系统,达到对机电设备进行综合管理、调度、监视、操作和控制。
楼宇自动化系统的功能:◆制定系统的管理、调度、操作和控制的策略;◆存取有关数据与控制的参数;◆管理、调度、监视与控制系统的运行;◆显示系统运行的数据、图象和曲线;◆打印各类报表;◆进行系统运行的历史记录及趋势分析;◆统计设备的运行时间、进行设备维护、保养管理等智能化5A OA:办公自动化系统 CA:通讯自动化系统 FA:消防保安监控自动化系统 MA:信息处理自动化系统 BA:楼宇自动控制系统(2)楼宇自控系统由以下部分组成:◎建筑设备运行管理的监控,包括(1) 暖通空调系统的监控(HVAC);(2) 给排水系统监控;(3) 供配电与照明系统监控◎火灾报警与消防联动控制、电梯运行管制◎公共安全技术防范,包括:1、电视监控系统;2、防盗报警系统;3、出入口控制及门禁系统;4、安保人员巡查系统;5、汽车库综合管理系统;6、各类重要仓库防范设施;7、安全广播信息系统。
诸多的机电设备之间有着内在的相互联系,于是就需要完善的自动化管理。
建立机电设备管理系统,达到对机电设备进行综合管理、调度、监视、操作和控制。
楼宇自动化系统的功能:◆制定系统的管理、调度、操作和控制的策略;◆存取有关数据与控制的参数;◆管理、调度、监视与控制系统的运行;◆显示系统运行的数据、图象和曲线;◆打印各类报表;◆进行系统运行的历史记录及趋势分析;◆统计设备的运行时间、进行设备维护、保养管理等;楼宇自控系统结构空调系统监控主要体现在对空调系统的空气处理器,新风机组,变风量末端,冷水机组,换热器等设备运行状态的监视,故障报警和启停控制,以及相应的节能管理。
简述楼宇自控系统的组成与主要功能
楼宇自控系统是指一种集成了多种技术的智能化控制系统,它通过传感器、控制器和执行器等设备,实现对建筑物内部环境、设备和安全等方面的全面监测和控制。
楼宇自控系统的组成和主要功能如下:
一、组成:
1.传感器:用于检测室内环境的温度、湿度、气体浓度、照度等参数。
2.控制器:用于接收传感器的信号,并根据预设的逻辑控制算法,控制各种设备的运行状态。
3.执行器:根据控制器发送的指令,对各种设备进行控制,如空调、照明、电梯、门禁、消防设备等。
4.网络通信设备:用于实现各个子系统之间的数据传输和信息共享。
5.软件系统:用于对楼宇自控系统进行配置和管理,并提供数据统计和报警功能等。
二、主要功能:
1.室内环境控制:通过控制空调、照明等设备,实现室内温度、湿度、照度等参数的自动调节,提高室内舒适度。
2.设备控制:通过控制电梯、门禁等设备,实现设备的自动化控制,提高设备的安全性和使用效率。
3.安全监测:通过安装烟感、气感、温感等传感器,实现对火灾、气体泄漏等安全事件的实时检测和报警。
4.能源管理:通过对用电、用水等数据的监测和分析,实现能源的节约和管理,降低楼宇的运营成本。
5.数据分析和统计:通过对各种监测数据的分析和统计,为楼宇管理者提供决策参考和优化建议。
综上所述,楼宇自控系统的组成和功能十分复杂和多样化,它可以帮助楼宇管理者实现对楼宇内部环境、设备和安全等方面的全面监测和控制,提高楼宇的舒适度、安全性和运营效率。
楼宇自控安防网络监控系统的组成安防系统的五大系统为视频监控系统、入侵报警系统、对讲系统、出入口管理系统以及周界报警系统,其中视频监控系统为其中的重中之重,各类出入口以及通道的直观监视都依靠于视频监控系统。
那么监控系统是怎么组成的,以及架构又是怎么样的?一般来说由以下几部分组成:1、前端的摄像机:枪机需与镜头协作使用,如是室外的摄像机还需要增加防雷器,需要考虑信号和电源防雷。
2、传输线缆:含网线和电源线,如POE供电可直接使用双绞线,但传输距离需掌握在75米以内为宜。
3、交换机:全部的摄像机需掌握在90米以内为宜,可直接接入交换机,如大于90米时,可使用网络跳线+光收发器+光缆的形式接入交换机、依据前端摄像机的数量选择对应口数的交换机,一般来说交换机上传带宽需要冗余45%,百兆上传依据码流来计算可以接入几个2M/4M/8M码流的交换机,8M码流的状况下最大可接入7.5个摄像机,现在交换机上传口普遍有千兆电/光口,根据45%的冗余,可以接入更多的摄像机。
级联口带宽: IPCAM的码流*数量=上传口的最小带宽,通常状况下,当IPCAM带宽超过60Mbps时,建议使用1000M级联口,如8个以上8M码流的摄像机所需的带宽为8M*8=64Mbps,此时就建议使用千兆级联口。
4、光传输附件:其中包括光模块,光缆,光跳线,尾纤,对应接口耦合器(如SC-LC,LC-LC等等),光纤配线架或配线箱等。
5、核心交换机:依据前端的接入交换机,以及摄像机数据交换量得出的总带宽量来选择合适的交换机。
以下给出交换机的包转发率以及背板带宽的计算方法。
包转发率:一个100M口的包转发率为0.1488Mpps/s,以此类推千兆或万兆口的包转发率。
而一个摄像机的包转发率约为2.6Kbps,完全满意要求。
背板带宽=端口数*端口速度*2, 如24口百兆核心交换机(含两个千兆口)带宽为(24*100*2+2*1000*2)/1000=8.8Gbps/S 。
智能楼宇使用手册智能楼宇是集建筑、电子、信息等多学科技术于一体的现代建筑,它以提高建筑物的舒适性、安全性和节能环保为出发点,运用先进的智能化技术对建筑物进行智能化管理与控制。
本手册旨在帮助用户了解智能楼宇的概念、系统组成、功能与特点,以及运营与维护等方面的内容,从而更好地享受智能楼宇带来的便捷与舒适。
一、智能楼宇概述智能楼宇是将现代信息技术与建筑相结合的一种新型建筑,通过对建筑物的自动化控制、信息化管理、节能环保等方面的技术应用,实现对建筑物的智能化管理与控制。
智能楼宇不仅能提高建筑物的使用价值,还能为用户提供更加舒适、安全、便捷的生活环境。
二、智能楼宇系统组成智能楼宇系统主要包括以下几个部分:1.楼宇自控系统:通过对建筑内部的空调、照明、电梯等设备的自动化控制,实现对建筑内部环境的智能调节。
2.保安监控系统:利用摄像头、门禁等设备,对楼宇内外进行实时监控,确保楼宇的安全运行。
3.消防报警系统:在发生火警等紧急情况时,及时发出警报并启动相关设备,保障楼宇内人员生命财产安全。
4.通信网络系统:为楼宇内提供高速、稳定的网络服务,满足用户信息传输需求。
5.能源管理系统:通过对楼宇能源消耗的实时监测和分析,实现节能减排和能源高效利用。
三、智能楼宇功能与特点1.自动化控制:通过楼宇自控系统,实现对建筑内部环境的自动调节,提高舒适度。
2.信息化管理:利用通信网络系统,实现楼宇内信息的实时传输与处理,提高管理水平。
3.节能环保:通过能源管理系统的应用,实现节能减排,降低能源消耗。
4.安全性高:保安监控系统和消防报警系统的应用,确保楼宇安全运行,保障住户生命财产安全。
四、智能楼宇的运营与维护1.运维团队建设:组建专业化的运维团队,负责楼宇智能化系统的日常巡检、保养和维护。
2.设备巡检与保养:定期对楼宇内设备进行检查和保养,确保设备正常运行。
3.故障排查与处理:在设备出现故障时,及时进行排查和处理,减少故障对楼宇运行的影响。
楼宇自控系统原理一、引言楼宇自控系统是指利用先进的自动化技术和信息通信技术,对楼宇内的照明、空调、供水、供电等设备进行集中控制和管理的系统。
本文将介绍楼宇自控系统的原理及其相关技术。
二、楼宇自控系统的组成楼宇自控系统一般由传感器、执行器、控制器和监控系统等部分组成。
1. 传感器:传感器是楼宇自控系统的重要组成部分,用于感知楼宇内各种参数的变化。
常用的传感器包括温度传感器、湿度传感器、光照传感器等。
传感器将感知到的信号转换为电信号,传送给控制器进行处理。
2. 执行器:执行器是根据控制器的指令,控制楼宇内各种设备的运行状态。
常见的执行器有电磁阀、电动调节阀、电动执行器等。
执行器可以根据控制信号改变设备的工作状态,实现对楼宇内设备的控制。
3. 控制器:控制器是楼宇自控系统的核心部分,负责对传感器采集到的信号进行处理,并根据预设的控制策略生成控制信号,送给执行器控制设备的运行。
控制器采用各种控制算法,如PID控制算法、模糊控制算法等,实现对楼宇内设备的精确控制。
4. 监控系统:监控系统是楼宇自控系统的重要组成部分,用于实时监测楼宇内各个设备的运行状态,并进行数据采集、数据分析和故障诊断。
监控系统可以通过人机界面显示设备的运行状态和参数,并提供报警功能,及时发现设备故障并进行处理。
三、楼宇自控系统的工作原理楼宇自控系统的工作原理可以简单描述为传感器采集信号、控制器处理信号、执行器控制设备运行。
具体步骤如下:1. 传感器采集信号:各种传感器感知楼宇内的温度、湿度、光照等参数的变化,并将采集到的信号转换为电信号,传送给控制器。
2. 控制器处理信号:控制器接收传感器采集到的信号,并根据预设的控制策略进行处理。
控制器可以根据控制算法对数据进行处理,生成相应的控制信号。
3. 执行器控制设备运行:控制器生成的控制信号被送给执行器,执行器根据控制信号改变设备的工作状态。
例如,当温度传感器检测到温度过高时,控制器会发送信号给空调执行器,控制空调的开启或调节温度。
酒店楼宇自控系统方案酒店楼宇自控系统是目前酒店行业中应用较广泛的一种自动化管理系统,其核心理念是通过搭建各种传感器和控制器,实现酒店内气温、照明、风速、水温等各项参数的自动协调和调节。
本文将从酒店楼宇自控系统的系统架构、技术特点和优势等三个方面进行详细介绍。
一、系统架构酒店楼宇自控系统通常由监测与传感器子系统、控制核心子系统、信息处理子系统和功能子系统四部分构成。
1.监测与传感器子系统监测与传感器子系统是酒店楼宇自控系统的核心部分,主要用于采集酒店内各种物理量信息。
如气体、温度、湿度、风速、水温、水位、光照强度、空气质量等。
目前常用的传感器有温度传感器、湿度传感器、压力传感器、氧气传感器、流量传感器等。
2.控制核心子系统控制核心子系统是酒店楼宇自控系统的控制中心,利用各种智能控制器和执行器来确保检测的数据可以被控制系统正确解释。
这些器件可以通过调整空调、灯光、通风、供暖、排烟、水泵等设备的工作参数,使酒店内部环境实现自适应控制,减少人工干预的繁琐操作和能源的浪费。
3.信息处理子系统信息处理子系统用于将从监测与传感器子系统和控制核心子系统中收集到的数据进行处理和管理,以便及时检测和解决系统中出现的问题,并优化整个系统的运行。
这些数据可以被储存在控制系统中,以备日后参考,同时也可以被托管在云端,以供公司高层管理者随时查阅和分析。
4.功能子系统功能子系统是酒店楼宇自控系统的组成部分之一,负责实现一系列集成功能,包括安全监管、能源监管、环境监管、设备运维和智能化服务等方面。
在酒店管理者使用该系统时,可以通过这些功能子系统进行相关数据查询、预警、统计分析和诊断等事宜。
二、技术特点1.智能化控制与传统的酒店设备控制方式相比,酒店楼宇自控系统通过集成多种传感器技术和先进的控制算法,差不多可以实现全方位控制各种设备的目标。
这个体系能够使酒店内各种设备和架构一齐协作,并实现监测、控制、优化和管理等方面的自主决策和执行。
酒店楼宇自控系统方案引言随着科技的发展,酒店业面临越来越多的挑战,包括如何提高服务质量、改善能源效率和降低运营成本等。
在此背景下,酒店楼宇自控系统成为了一种解决方案,它可以实现对酒店各种设备和系统的智能集成和控制,以提供更好的用户体验和更高的运营效率。
本文将介绍酒店楼宇自控系统的方案。
方案概述酒店楼宇自控系统是一种基于物联网技术的智能化管理系统,通过集成多个设备和系统,实现对酒店内的灯光、空调、电梯、门禁等设备的远程监控和控制。
通过对各个设备的智能控制,酒店可以实现节能减排、提高安全性和服务质量等目标。
系统架构酒店楼宇自控系统的架构分为以下几个组成部分:1.传感器和执行器:通过安装在酒店各个区域的传感器和执行器,实现对设备和系统的感知和控制。
比如,温度传感器可以实时监测房间的温度,并根据设定的温度范围控制空调系统的运行。
2.网络通信:通过网络通信技术,将传感器和执行器连接到云平台或中央控制系统。
这样可以实现远程监控和控制,方便酒店管理员对设备和系统进行管理。
3.云平台:云平台是酒店楼宇自控系统的核心,它负责接收传感器和执行器的数据,并进行分析和处理。
同时,云平台还可以提供数据存储和分析功能,帮助酒店管理员进行运营决策和优化。
4.中央控制系统:中央控制系统是酒店楼宇自控系统的用户界面,通过它可以实现对各个设备和系统的监控和控制。
酒店管理员可以通过中央控制系统查看设备运行状态、调整设备参数等。
功能特点酒店楼宇自控系统具有以下功能特点:1.自动化控制:酒店楼宇自控系统可以实现对设备和系统的自动化控制。
比如,在没客人入住的时候,系统可以根据设定的规则自动关闭空调和灯光,从而节约能源。
2.能耗监测和优化:酒店楼宇自控系统可以实时监测各个设备的能耗情况,并提供优化方案,帮助酒店减少能源消耗和运营成本。
3.安全监控:酒店楼宇自控系统可以实现对酒店内的安全设备的集成和控制。
比如,当有人非法闯入时,系统可以自动报警并通知相关人员。
自动化控制系统的结构
楼宇自动化控制系统由三层结构组成:工作站层、网络控制器层、现场控制器层。
1、工作站层
该层设备主要由计算机主机、显示器、打印机组成,实时监控大厦中各种设备的运行状况,是管理整个大厦设备设施及操作的工作平台。
操作者通过计算机显示的各种信息以及打印机所记录的信息。
及时了解之前或现在大厦机电设备的运行情况,同时可以通过计算机来控制和∕或调整机电设备的运行状态,从而达到预先设定的各种技术指标要求。
2、网络控制器层
网络控制器根据现场设备的布置分别安装在楼宇自控系统控制室及现场弱电竖井中。
除了进行信息的传递网络的匹配以外,还可以脱离网络独立工作,担负着复杂的高性能的控制任务,其随机记忆存储器可达10MB以上,带有自诊断功能,并有72小时断电保护,当失电后,可保护数据在72小时之内不被丢失。
3、现场控制器层
直接数字控制器(DDC)是楼宇自控系统中主要的现场控制装置,它分布于建筑物内各处的设备现场,如空调机房,水泵房,冷冻站等。
它连接于楼宇自控系统现场总线,网络控制器及楼宇自控系统工作站均可对它们实现上位机的超越控制。
浅析智能建筑中的楼宇自动化控制摘要:智能建筑是信息技术在建筑领域应用的必然结果,近年来得到了迅速的发展和普及,也日益得到社会广泛的认同和重视。
建筑智能化已经成为现代高档建筑的主要特征。
楼宇自动化系统(buildingautomationsystem简称bas)是智能建筑的主要组成部分之一。
智能建筑通过楼宇自动化系统实现建筑物(群)内设备与建筑环境的全面监控与管理,为建筑的使用者营造一个舒适、安全、经济、高效、便捷的工作生活环境,并通过优化设备运行与管理,降低运营费用。
楼宇自动化系统涉及建筑的电力、照明、空调、通风、给排水、防灾、安全防范、车库管理等设备与系统,是智能建筑中涉及面最广、设计任务和工程施工量最大的子系统,它的设计水平和工程建设质量对智能建筑功能的实现有直接的影响。
关键词:楼宇自动化系统智能建筑基本功能原理发展趋势1.引言智能建筑(intellingentbuilding)起源于1984年的美国,它是信息时代的产物,是随着社会信息化和经济全球化应运而生的现代高科技的结晶。
近十余年来智能建筑在我国得到了蓬勃发展。
在我国颁布的国家标准《智能建筑设计标准》中对智能建筑有了一个明确的定义:智能建筑是以建筑为平台,兼备建筑设备、办公自动化及通信网络系统,集结构、系统、服务、管理及它们之间的最优化组合,向人们提供一个安全、高效、舒适、便利的建筑环境。
楼宇自动化系统也叫建筑设备自动化系统,是智能建筑不可缺少的一部分,其任务是对建筑物内的能源使用、环境、交通及安全设施进行监测、控制等,以提供一个既安全可靠,又节约能源,而且舒适宜人的工作或居住环境。
2 .楼宇自动化系统的组成建筑设备自动化系统通常包括暖通空调、给排水、供配电、照明、电梯、消防、安全防范等子系统。
根据我国行业标准,bas又可分为设备运行管理与监控子系统和消防与安全防范子系统。
一般情况下,应将消防与安全防范子系统一同纳入bas考虑,如要独立设置,也应与bas监控中心建立通信联系以便灾情发生时,能够按照约定实现操作权转移,进行一体化的协调控制。
智能化弱电入门资料大全导读:智能化弱电系统的总体功能主要可以从以下几个方面来体现:保证大楼内的所有机电设备的正常运行;为大楼内人员提供人身、财产安全保障舒适;为大楼内部用户提供舒适、便捷的工作、生活环境。
提供大楼内适宜的空气温度、相对湿度和空气洁净度等环境参数指标。
保障水、电、冷、热等能源供应。
提供优美的背景音乐和信息显示满足大楼内部各部门之间和与外部互通信息,实现信息资源共享的需要。
大楼使用者能及时了解大楼内部信息,能及时得到物业服务;为大楼管理者提供物业管理手段。
延长设备使用寿命;节省能源;节省人员;提高设备利用率。
一、建筑智能化弱电系统大全本文主要内容:综合布线系统计算机网络系统程控交换机系统闭路电视监控系统门禁考勤一卡通消费系统停车场管理系统防盗报警系统楼宇对讲系统访客系统巡更系统智能家居系统三表抄送(巡更))系统寻呼对讲与专业对讲系统楼宇自控系统公共广播系统有线电视与卫星接收系统二、弱电各系统间接1、综合布线系统综合布线是一种模块化的、灵活性极高的建筑物内或建筑群之间的信息传输通道。
通过它可使话音设备、数据设备、交换设备及各种控制设备与信息管理系统连接起来,同时也使这些设备与外部通信网络相连的综合布线。
它还包括建筑物外部网络或电信线路的连接点与应用系统设备之间的所有线缆及相关的连接部件。
综合布线由不同系列和规格的部件组成,其中包括:传输介质、相关连接硬件(如配线架、连接器、插座、插头、适配器)以及电气保护设备等。
这些部件可用来构建各种子系统,它们都有各自的具体用途,不仅易于实施,而且能随需求的变化而平稳升级。
1) 简介综合布线的英文表达为Structured Cabling System(通俗表达为Cabling System,简称SCS,最早由AT&T提出)或Premises Distribution System(PDS,目前国标采用这一称法)。
下图是综合布线的六个子系统系统图,见图一。
楼宇自控系统设计楼宇自控系统设计是指通过集成各种技术手段,对楼宇内部的设备进行管理和控制的系统。
这些设备包括照明系统、空调系统、电梯系统、通风系统、安防系统等等。
楼宇自控系统的设计目的是实现能源的高效利用、设备的智能化管理、人员的舒适和安全。
1.系统架构设计:楼宇自控系统的设计需要确定系统的层级结构和模块化设计。
一般来说,楼宇自控系统包括中央控制器、子控制器和各个设备的传感器和执行器。
中央控制器负责整个系统的协调和调度,子控制器负责局部区域的控制。
同时,系统需要具备良好的扩展性,能够随着楼宇规模的扩大而进行扩展。
2. 通信网络设计:楼宇自控系统的各个组成部分需要进行数据的传输和通信。
通信网络的设计需要考虑网络拓扑、通信协议和数据传输速度。
一般来说,可以采用有线网络,如以太网或Modbus,也可以采用无线网络,如Wi-Fi或ZigBee。
3.传感器布置和选择:楼宇自控系统需要使用各种传感器来感知环境的参数,如温度、湿度、光照强度、CO2浓度等。
传感器的布置需要覆盖整个楼宇,并根据不同的区域和需求进行选择。
传感器的选择需要考虑其精度、稳定性和可靠性。
4.控制策略设计:楼宇自控系统的核心是控制策略的设计。
控制策略需要根据不同的需求进行设计,如节能控制、舒适控制、安全控制等。
控制策略可以采用基于经验规则或基于模型的方法,也可以采用智能算法,如PID控制、模糊控制或神经网络控制。
5.系统集成和调试:楼宇自控系统需要将各个组成部分进行集成和调试。
这涉及到硬件的安装和接线、软件的配置和编程、以及各个设备的调试和联动测试。
系统集成和调试的目的是确保各个部分能够正常工作,并实现预期的功能。
在楼宇自控系统设计中,需要考虑的因素还有很多,如设备的选型、设备的节能性能、设备的可靠性等。
同时,还需要考虑系统的维护和管理,包括故障检测和排查、数据采集和分析、系统的软件和硬件更新等。
总之,楼宇自控系统设计需要综合考虑各种因素,并根据楼宇的实际情况进行定制化设计。
简述楼宇自控系统的组成与主要功能
楼宇自控系统是一种自动化控制系统,用于管理和监控大型建筑物的内部环境。
它由以下几个主要组成部分构成:
1.传感器:传感器用于监测楼宇内部环境的各种参数,例如温度、湿度、CO2、氧气、光照等。
2.控制器:控制器是自控系统的“大脑”,它接收传感器的数据并根据预设的条件控制楼宇内部环境的各种设备,例如空调、照明、窗帘、门禁等。
3.执行器:执行器是控制器的下属,它们根据控制器的指令控制各种设备的运行状态,例如打开或关闭空调、调节照明亮度等。
4.中央处理器:中央处理器是一台电脑,它连接各个控制器,并管理整个自控系统的运行。
楼宇自控系统的主要功能包括:
1.自动调节温度和湿度:自控系统可以根据室内外温度和湿度变化自动调节空调温度和湿度,保持室内环境舒适。
2.节能:自控系统可以根据室内人员数量、时间等因素自动调节空调、照明等设备的运行状态,并在无人时自动关闭,以达到节能效果。
3.安全管理:自控系统可以监控楼宇内部区域,并根据门禁、摄像头等设备控制进出人员的身份和数量,确保楼宇安全。
4.维护管理:自控系统可以监测设备的运行状态,及时发现设备故障并进行维护,延长设备寿命。
总之,楼宇自控系统可以提高建筑物的舒适度、安全性和节能效果,是大型建筑物必不可少的一项技术。
(1)楼宇自控系统由以下部分组成:◎建筑设备运行管理的监控,包括 (1) 暖通空调系统的监控(HVAC); (2) 给排水系统监控; (3) 供配电与照明系统监控◎火灾报警与消防联动控制、电梯运行管制◎公共安全技术防范,包括: 1、电视监控系统; 2、防盗报警系统; 3、出入口控制及门禁系统; 4、安保人员巡查系统; 5、汽车库综合管理系统; 6、各类重要仓库防范设施; 7、安全广播信息系统。
诸多的机电设备之间有着内在的相互联系,于是就需要完善的自动化管理。
建立机电设备管理系统,达到对机电设备进行综合管理、调度、监视、操作和控制。
楼宇自动化系统的功能:◆制定系统的管理、调度、操作和控制的策略;◆存取有关数据与控制的参数;◆管理、调度、监视与控制系统的运行;◆显示系统运行的数据、图象和曲线;◆打印各类报表;◆进行系统运行的历史记录及趋势分析;◆统计设备的运行时间、进行设备维护、保养管理等智能化5A OA:办公自动化系统 CA:通讯自动化系统 FA:消防保安监控自动化系统 MA:信息处理自动化系统 BA:楼宇自动控制系统(2)楼宇自控系统由以下部分组成:◎建筑设备运行管理的监控,包括(1) 暖通空调系统的监控(HVAC);(2) 给排水系统监控;(3) 供配电与照明系统监控◎火灾报警与消防联动控制、电梯运行管制◎公共安全技术防范,包括:1、电视监控系统;2、防盗报警系统;3、出入口控制及门禁系统;4、安保人员巡查系统;5、汽车库综合管理系统;6、各类重要仓库防范设施;7、安全广播信息系统。
诸多的机电设备之间有着内在的相互联系,于是就需要完善的自动化管理。
建立机电设备管理系统,达到对机电设备进行综合管理、调度、监视、操作和控制。
楼宇自动化系统的功能:◆制定系统的管理、调度、操作和控制的策略;◆存取有关数据与控制的参数;◆管理、调度、监视与控制系统的运行;◆显示系统运行的数据、图象和曲线;◆打印各类报表;◆进行系统运行的历史记录及趋势分析;◆统计设备的运行时间、进行设备维护、保养管理等;楼宇自控系统结构空调系统监控主要体现在对空调系统的空气处理器,新风机组,变风量末端,冷水机组,换热器等设备运行状态的监视,故障报警和启停控制,以及相应的节能管理。
给排水系统监控主要对排水系统的水泵运行状态进行监视故障报警和启停控制;水箱和水池的水位进行监测,以及过线报警。
变配电系统监控对变配电机组的电压,电流,功率,功率因数,频率的数值进行显示和计量,过线报警以及高低压状态控制柜切换开关的状态监视,变压器的温度监视。
电梯系统监控对电梯系统的运行状态进行监视和控制,以及故障报警。
照明系统监控对部分照明回路,动力设备进行必要的控制。
热源,冷源系统监控楼宇自控系统的组成楼宇自控系统由以下部分组成建筑设备运行管理的监控,包括(1) 暖通空调系统的监控(HVAC); (2) 给排水系统监控; (3) 供配电与照明系统监控火灾报警与消防联动控制、电梯运行管制公共安全技术防范,包括:1、电视监控系统;2、防盗报警系统;3、出入口控制及门禁系统;4、安保人员巡查系统;5、汽车库综合管理系统;6、各类重要仓库防范设施;7、安全广播信息系统。
诸多的机电设备之间有着内在的相互联系,于是就需要完善的自动化管理。
建立机电设备管理系统,达到对机电设备进行综合管理、调度、监视、操作和控制。
楼宇自控系统设计浅析楼宇自控系统设计目前许多现代化大楼尤其是高层大楼内安装了楼宇自控(BA)系统,不仅极大改善了大楼的环境效率,而且也使大楼能源消耗在量化控制之下,确保大楼能源成本降低成为可能。
但不可否认的是,由于各种原因(如设计的不完善等)也确实造成一些BA 项目不太成功甚至完全失败。
在本文中,将我司在所从事的BA工程中所积累的经验、教训以及一些新的想法写出来和同行交流。
1、 LONWORKS技术在BA系统设计中的应用目前,LONWORKS技术在BA业界反响较大,这控制技术对传统BA系统配置影响较大:LONWORKS技术是美国ECHELON公司91年推出局域操作网,具有完整的开发系统平台,包含所有设计、配置和支持控制网的元素,是目前最为先进的控制网络技术。
LONWORKS技术由以下三个核心部分组成:(1)MC143150或MC143120NEURON(神经元)芯片(2).LONTALK协议,执行ISO/OSI参考模型和提供全部七层服务(3)网络开发工具(LONBUILD)和节点开发工具(NODEBUILDER)LONWORKS网络最大的优点是其完全的开放性,其主要表现在以下方面:(1)LONWORKS所用的通讯协议LONTALK提供ISO/OSI参考模型所定义的全部七层服务。
(2)LONWORKS支持多种通信媒质和任意自由拓扑网络结构。
(3) LONWORKS支持的通信媒质有双绞线、同轴线缆、光纤和无线微波等。
(4)LONWORKS组网拓扑结构可以是任意形式,可以是星型、树枝型、网状型等,实现真正的点对点通讯。
我们可以这样假设:当一幢大楼面积较大,所控机电设备(如空调机组、水泵)分散分布,如果仍旧采用传统的BA联网拓扑结构,那么实现现场 DDC控制器通讯连接(“手拉手”方式)的布线不仅繁杂,甚至有的受到现场环境影响无法布线。
如果这时采用带LONWORKS技术DDC,就可随现场情况任意选择通讯网络拓扑结构,使系统组态灵活方便,可见LONWORKS技术优势所在。
但任何事物都是辨证的、一分为二的,在工程设计中我们明显感到:(1)LONWORKS尽管在物理形式上可自由拓扑,但每个LONWORKS节点需要连接到信道(CHANNEL)上,这就必须进行网络分段(SEGMENT),在系统配置上必须增加路由器(ROUTER),带来不足之处主要表现在: -增加了系统管理复杂度-实际上在逻辑上增加了控制系统分级数,系统分级数越多,系统不可靠度值就高,降低系统稳定性(2)各厂商生产的元器件(如各类型传感器、控制器)只有而且必须插入固化有LONTALK协议的NEURON 芯片并按照LONWORKS控制网络技术规定组成任意拓扑结构真正的智能化网络。
综上所述,从技术层面讲,LONWORKS技术给楼宇自控系统配置提供了又一选择,但目前受到各种条件限制LONWORKS技术优势还不能完全发挥出来。
我们认为,若自控系统规模不是很庞大,进行工程设计配置时最好不用LONWORKS技术。
2、BA工程设计的关键一个成功BA工程必须具有两个要素:*系统应用稳定可靠,发生故障概率降到最低可能限度。
*系统能提供精确的、量化的控制模式,为大楼能源控制提供可靠保证。
任一业主为大楼安装BA系统直接动因就是能实现大楼能源消耗大幅度降低以达到节省大楼营运成本的目的。
这就要求BA系统整个控制过程尽可能精确。
在下文中我们想从工程设计方面探讨一下如何保证BA精确控制。
2.1 BA系统模型从理论上讲,一个控制系统主要有以下装置组成:(1)检测变送装置:将被控对象的被调参数检测出来,并将其转换成各类型的能量信号。
(2)控制调节装置:将检测装置送来的被调参数信号与设定值相比较,当出现偏差时发出一定规律的控制信号到执行调节装置。
(3)执行调节装置:根据控制调节装置(控制器)发来的控制信号的大小和方向,开大或开小调节阀门而改变调节参数的数值。
显然,组成楼宇自控系统(BA)主要装置有: -检测装置:有各类型传感器(如温度传感器、压力、压差传感器等)。
-直接数位控制器:简称DDC,采用计算机数字输出信号去直接控制电动水阀阀门的开度。
-执行器及电动阀门2.2 BA系统精度要素从上文可以显而易见,以下几个条件(因素)直接影响到BA系统精确控制程度:(1)系统前端所测信号准确尤其是象温度这样的模拟信号必须尽可能准确。
如何保证系统前端信号准确,我们采取以下措施:*合理配置前端传感器数量。
探测点数设置过少,则无法取得精确的前端信号;而前端传感器数量(点数表)过多的话易造成信号之间耦合,也使系统成本增大。
*正确选择传感器的安装位置。
举例来说,安装于送风管道内的温度传感器如果安装在靠近机组送风口处,则传感器检测得到温度值可能偏低;如果安装在离送风口较远,则传感器测得温度值可能要高一些。
这就必须根据风管的实际情况合理选择传感器安装位置。
[pagebreak](2)系统控制环节少、能提供丰富的控制积算软件。
目前各BA厂商提供DDC (直接数位控制器),采用的是计算机数字输出信号去直接控制电动水阀阀门的开度,而无须中间调节器;另外,DDC内含有丰富的积算控制程序,有比例(P)算法、比例积分(PI)算法、比例积分微分(PID)算法。
由于不同的PID系数,被控对象生成不同的反应特性曲线:PID系数较高,则对象反应特性曲线较陡,也就是反应过渡过程较短;PID 系数较低,则对象反应特性曲线较为平缓,也就是反应过渡过程相对较长。
理论上说,过渡过程较短的话,则系统响应快,换句话说,也就是系统控制精度较高,但这并不说系统控制精度越高就越好:由于空调系统本身惯性较大,如BA系统控制精度越高,系统越容易引起振荡,系统也就越不稳定。
这就要求在工程设计和调试的过程中正确进行软件组态,选择恰当的采样周期和控制函数,保证系统响应输出最优化,在系统控制精度和系统稳定度之间找到最佳平衡点。
(3)保证阀门的“零”开度各类电动水阀是BA系统主要执行机构,在空调运行控制过程中阀门开度是BA系统主要调节内容。
其中,保证阀门“零”开度是BA系统控制精度重要保证。
换句话说,选择正确流量特性和合适口径的电动水阀是BA系统成功的重要保证。
*电动调节水阀的流量特性是指空调水流过阀门的相对流量与阀门的相对开度之间的函数关系,目前工程上常用的主要有直线流量特性、等百分比流量特性的电动水阀。
单位行程变化所引起的相对流量变化与点的相对流量成正比关系的是等百分比流量特性水阀。
该类型水阀可调范围相对较宽,比较适合具有自平衡能力的空调水系统,因此BA系统中大量应用的是等百分比流量特性的电动水阀。
*电动水阀的口径决定了阀门的调节精度。
水阀口径选择过大,不仅增大业主投资成本,而且使阀门基本行程单位变大导致阀门调节精度降低,达不到节能目的;水阀口径选择过小,往往会出现即使水阀全部打开系统也难以达到设定温度值,无法实现控制目标。
那么如何计算选择电动水阀口径?工程上我们常用的是通过计算电动阀门的流量系数(Kv/Cv)值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。
水阀流量系数(Kv/Cv)采用以下公式计算:Cv=Q/ΔP1/2其中Q-设备(空调/新风机组)的冷量/热量或风量ΔP-为调节阀前后压差比理论上讲,在不同的空调回路中,ΔP值是不同的,是一个动态变化的值,取值范围一般在1-7之间。