第六章-核燃料循环PPT课件
- 格式:ppt
- 大小:9.29 MB
- 文档页数:87
核燃料循环各个阶段核燃料循环是指核能产业链中,从天然铀矿石开采、转化到最终核燃料制造的一个完整过程。
在这个过程中,核燃料循环可以分为几个阶段。
下面我们来了解一下这些阶段。
一、铀矿石开采与加工铀矿石是自然界中存在的一种矿物质,它含有很高的铀含量。
铀矿石的采集需要采用各种不同的技术。
一般来说,铀矿石的采集主要依赖于一些专业机械,例如塔式开采机、钻井机等。
这些机械可以进入地下,将铀矿石从地下采掘出来。
铀矿石在采集完毕后,需要进行破碎、磨粉等处理。
在这个过程中,需要使用一系列的磨矿设备,将铀矿石破碎成更小的颗粒。
同时,还需要对破碎后的矿石进行磨矿,使其达到一定的粉末度,以便于下一步的处理。
二、铀的转化铀矿石经过破碎、磨粉等处理后,需要进行铀的转化。
这个过程包括了一系列的化学反应,主要目的是将铀从铀矿石中提取出来,制成更易于制造燃料棒的形式。
铀的转化主要采用两种不同的方法,分别是化学法和物理法。
化学法:这种方法主要是通过一系列的化学反应来实现的,主要原料是氢氧化钠和氧化钠。
这种方法的优势在于,操作简单,可以回收利用,同时可以将铀从铀矿石中分离出来。
物理法:这种方法主要是通过高温和高压下的作用,将铀从铀矿石中分离出来。
这种方法的优势在于,可以实现较高的铀回收率,但操作复杂,成本较高。
三、核燃料的制造核燃料的制造主要分为两个步骤,一是核燃料的制备,二是核燃料的元件制作。
核燃料的制备:核燃料的制备需要将铀从铀矿石中提取出来,制成更易于制造燃料棒的形式。
在这个过程中,需要使用一系列的化学药剂,对铀进行处理,使其成为燃料棒的原材料。
核燃料元件制作:核燃料元件制作主要采用两种方法,一种是将铀直接制成燃料棒,另一种是将铀制成棒材,再进行加工制成燃料棒。
这种方法可以实现较高的铀回收率,但操作复杂,成本较高。
四、核燃料的运输与贮存核燃料在制备完成之后,需要进行运输和贮存。
运输过程中需要采取一系列的安全措施,以确保核燃料的安全。
核燃料循环核燃料以反应堆为中心循环使用。
(一)铀的开采、冶炼、精制及转化:铀是比较分散的元素。
世界上重要的产铀国家有:加拿大、美国、独联体、澳大利亚、刚果、尼日利亚等。
我国的东北、西北、西南及中南地区都蕴藏有铀。
但是可提供一定铀产量的铀矿石的含铀量的品位较低(10-4~10-2),掘出的含铀矿石必须经过复杂的化学富集,才能得到可作粗加工的原料。
过去开采铀矿石都采用传统的掘进方式(耗能大、成本高、生产周期长,还有运输、尾矿等问题)。
近来根据铀矿石性质的多样性,又开发了地表堆浸、井下堆浸以及原地浸取等方式。
我国的铀矿石属低品位等级,一般在千分之一含量就要开采,成本较高。
为了降低成本,充分利用低品位矿石,80年代以来就积极开发堆浸、地浸技术,现已投产。
例如地表堆浸,处理品位为8×10-4的沙岩矿,成本降低 40%。
原地浸取工程也已经开工。
原地浸取采矿的优点是:成本低(投资只有掘进的1/2)、工艺简单、节约能源(省去了磨碎、运输等工序,可节约能源 60%)、节约劳动力、减轻劳动强度(节约劳动力数十倍,工人进行流体物操作,劳动条件大为改善)、矿山建设周期短、可以充分利用低品位铀资源。
因此受到重视而被称为铀矿冶技术上的一场革命。
浸取液经过离子交换、萃取以富集铀,再经过酸性条件下沉淀(与硷金属及碱土金属分离)和碱性条件下溶解(与过渡元素分离)以进一步净化铀,最后得到铀的精炼物。
将此精炼物进一步纯化,并将铀转化成低沸点的UF6(升华温度:1大气压下56℃;0.13大气压下25℃),即可用作浓缩235U同位素的原料。
(二)235U同位素的浓缩:235U是唯一天然存在的易裂变核素。
不同设计的反应堆需要不同浓缩度的铀(如:压水堆——当前核电站应用最多的堆型——需要2~3%;游泳池堆需要10%;快堆需要25%;高通量材料试验堆需要90%)。
而核弹则需要更高的浓缩度。
因此生产浓缩铀是核工业中十分重要的环节。
同一元素的同位素化学性质相同,只在质量上有所差别。
核燃料循环简介邓泽和(核工业五○四厂)关键词 核燃料循环,235U1 概述核反堆技术的进步与成熟加速了50年代核电站的兴起。
目前全球约有十几种堆型近500座核电站。
核能发电已占世界总发电量的20%左右。
铀是当前核电站的主要燃料,一座100万k W 的核电站每年消耗3.0%左右的浓缩铀约27t ;相同规模的燃煤电站则需270万吨标煤,相当于5400个车皮的标煤。
可见铀同位素为人类提供的能源是多么丰富的。
核电站的发展,促进了核燃料的开发利用,加快了核燃料循环的深入发展。
用于裂变反应的235U 的天然铀中含量极微,其天然丰度仅为0.7%左右。
从铀矿开采、冶炼,经铀化工转换,到浓缩成核动力堆用产品,需要经过一系列的加工处理;经过核反应堆卸出的乏燃料需要经冷却、贮存和后处理后,再对其有用部分加以利用,对其放射性废物则需进行处理。
这样就形成了一个庞大的核燃料循环系统工程。
核燃料循环系统主要包括:铀矿的开采与冶炼、铀化工转换、铀同位素浓缩、核燃料元件制造和乏燃料的后处理五个方面。
核燃料的循环过程,就是在相应的企业中,分别进行相应的加工和处理,使其具备使用功能和条件,提供给下一循环利用。
核燃料循环的主要过程见图1。
66图1核燃料循环系统示意图UF 钚-239矿渣矿石乏燃料冷却贮存生产堆废物处理矿石开采与冶炼天然铀元件加工转化为UF 乏燃料后处理核动力堆浓缩铀元件加工贫化铀浓缩铀2转化为UO 2 铀矿的开采与冶炼(图2)铀矿地质勘查是提供铀矿储量的基础工作。
在我国,要探明铀矿的储量,一般要经过地质普查、详查和勘探三个阶段,约需5年的时间。
铀矿开采分露天和地下开采两种方式,类似于煤矿开采。
区别在于铀矿开采面的地质条件差,工作环境恶劣。
铀矿冶是指从铀矿石中提出、浓缩和纯化精制天然铀产品的过程。
目的是将具有工业品位・62・ 北方八省(市、区)第二次核技术应用学术会议的矿石,加工成有一定质量要求的固态铀化学浓缩物,以作为铀化工转换的原料。