人教版九年级数学上册第二十四章 圆 单元同步测试题
- 格式:docx
- 大小:354.94 KB
- 文档页数:39
(完整word版)人教版九年级数学上册第二十四章圆单元测试题(含答案解析)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~人教版九年级数学上册第二十四章圆单元测试题(含答案)一、选择题1、如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2、☉O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则☉O的半径为( )A. B.2 C. D.33、一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④4、下列语句中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个5、如图,☉C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则☉C的半径为( )A.4B.5C.6D.26、在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,I是△ABC的内心,延长AI交△ABC的外接圆于点D,则∠ICD的度数是( )A.50°B.55°C.60°D.65°7、边心距为2的等边三角形的边长是( )A.4B.4C.2D.28、如图,把正六边形各边按同一方向延长,使延长的线段长与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,那么AB∶A'B'的值是( )A.1∶2B.1∶C.∶D.1∶9、已知△ABC中,AC=3,CB=4,以点C为圆心,r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( )A.r>3B.r≥4C.3<r≤4D.3≤r≤410、正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3二、填空题11、如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.12、如图,为了拧开一个边长为a的正六边形螺帽,扳手张开b=30 mm时正好把螺帽嵌进,则螺帽的边长a为mm.13、如图,点B,O,O',C,D在一条直线上,BC是半圆O的直径,OD是半圆O'的直径,两半圆相交于点A,连接AB,AO',若∠BAO'=67.2°,则∠AO'C=度.14、如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.15、如图所示,三圆同心于O,AB=4 cm,CD⊥AB于O,则图中阴影部分的面积为cm2.16、下图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17、如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.18、如图,已知AB是☉O的直径,PA=PB,∠P=60°,则所对的圆心角等于度.19、如图,AB是☉O的一条弦,点C是☉O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与☉O交于G、H两点.若☉O的半径为7,则GE+FH的最大值为.20、如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.三、解答题21、如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.22、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.23、如图,AB为☉O的直径,D为的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.(1)求证:DE是☉O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.24、如图,正方形ABCD的外接圆为☉O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若☉O的半径为8,求正方形ABCD的边长.25、如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP 的外接圆☉O的直径.(1)求证:△APE是等腰直角三角形;(2)若☉O的直径为2,求PC2+PB2的值.参考答案一、1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 C 过A作AD⊥BC于点D,由题意可知AD必过点O,连接OB.∵△ABC是等腰直角三角形,AD⊥BC,BC=6,∴BD=CD=AD=3,∴OD=AD-OA=2.在Rt△OBD中,根据勾股定理,得OB===.故选C.3、答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.4、答案 A ①同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;②被平分的弦是直径时不成立,故此选项错误;③能重合的弧是等弧,而长度相等的弧不一定能够重合,故此选项错误;④经过圆心的每一条直线都是圆的对称轴,此选项正确.故正确的有1个,选A.5、答案 A 如图,连接OC.∵∠AOB=90°,∴AB为☉C的直径,∵A(0,4),∴OA=4.∵∠BMO=120°,∴∠BAO=180°-120°=60°.∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴☉C的半径=OA=4.故选A.6、答案 C 在△ABC中,∠BAC=180°-∠ACB-∠ABC=180°-50°-60°=70°,又∵I是△ABC的内心,∴∠BCD=∠BAD=∠BAC=35°,∠BCI=∠ACB=25°,∴∠BCD+∠BCI=35°+25°=60°,即∠ICD=60°,故选C.7、答案 B 如图所示,∵△ABC是等边三角形,边心距OD=2,∴∠OBD=30°,∴OB=4,在Rt△OBD中,由勾股定理可得BD=2.∵OD为边心距,∴BC=2BD=4.故选B.8、答案 D ∵六边形ABCDEF是正六边形,∴∠A'CB'=60°,设AB=BC=a,又延长的线段长与原正六边形的边长相等,所以A'C=2a,易知∠A'B'C=90°,所以B'C=a,由勾股定理可得A'B'==a,∴AB∶A'B'=a∶a=1∶.故选D.9、答案 C 当点A在圆内时,点A到点C的距离小于圆的半径,即r>3;点B在圆上或圆外时,点B到圆心的距离不小于圆的半径,即r≤4,故3<r≤4.故选C.10、答案 A 如图,△ABC是等边三角形,AD是高,点O是其外接圆的圆心,由等边三角形三线合一的性质得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠2=30°,∴BO=2OD,又OA=OB,∴AD=3OD,∴AD∶OA∶OD=3∶2∶1,故选A.二、11、答案解析∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2.∵∠PAB=∠ACP,∠PAC+∠PAB=60°,∴∠PAC+∠ACP=60°,∴∠APC=120°.当PB⊥AC时,PB长度最小,延长BP交AC于点D,如图所示.此时PA=PC,AD=CD=AC=1,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°.由勾股定理得PD=,BD=.∴PB=BD-PD=-=.12、答案10解析设正多边形ABCDEF的中心是O,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,∠BAM=30°,∴AB=2BM,AM=CM=15.在Rt△ABM中,BM2+AM2=AB2,即BM2+152=(2BM)2,解得BM=5(舍负),∴a=AB=2BM=10(mm).13、答案89.6解析连接OA,∵OA=OB,∴∠BAO=∠B,∴∠AOO'=2∠B.∵O'A=O'O,∴∠O'AO=∠AOO'=2∠B.∵∠BAO'=∠BAO+∠O'AO=67.2°,∴∠B=22.4°,∴∠AO'C=∠B+∠BAO'=89.6°.14、答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.15、答案π解析S阴影=S大圆=π(4÷2)2=π(cm2).16、答案50解析设符合条件的圆为☉O,由题意知,圆心O在对称轴l上,且点A、B都在☉O上.设OC=x mm,则OD=(70-x)mm,由OA=OB,得OC2+AC2=OD2+BD2,即x2+302=(70-x)2+402,解得x=40,∴OA===50 mm,即能完全覆盖这个平面图形的圆面的最小半径是50 mm.17、答案5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.18、答案60解析连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,∴∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°-∠COA-∠DOB=60°.故所对的圆心角等于60°.19、答案10.5解析连接OA、OB,根据圆周角定理得∠AOB=2∠ACB=60°,所以△AOB为等边三角形.因为☉O的半径为7,所以AB=7.因为点E、F分别为AC、BC的中点,所以EF=AB=3.5.当GH为☉O的直径时,GE+FH取得最大值,最大值为14-3.5=10.5.20、答案解析如图所示,作AB、AC的垂直平分线,交于点O,则点O为△ABC外接圆圆心,连接AO,AO为外接圆半径.在Rt△AOD中,AO===,所以能够完全覆盖这个三角形的最小圆面的半径是.三、21、证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.22、解析设直径CD的长为2x寸,则半径OC=x寸,∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2,解得x=13,∴CD=2x=2×13=26(寸).答:CD的长为26寸.23、解析(1)证明:∵D为的中点,∴OD⊥AC.∵AC∥DE,∴OD⊥DE,∴DE是☉O的切线.(2)如图,∵D为的中点,∴OD⊥AC,AF=CF.∵AC∥DE,且OA=AE,∴F为OD的中点,即OF=FD.在△AFO和△CFD中,∴△AFO≌△CFD(SAS),∴S△AF O=S△CFD,∴=S△ODE.在Rt△ODE中,OD=OA=AE=4,∴OE=8,∴DE==4,∴=S△ODE=×OD·DE=×4×4=8.24、解析(1)如图,连接OB,OC.∵四边形ABCD为正方形,∴∠BOC=90°,∴∠BPC=∠BOC=45°.(2)如图,过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∵OE⊥BC,∴OE=BE,∵OE2+BE2=OB2,∴BE===4,∴BC=2BE=2×4=8,即正方形ABCD的边长为8.25、解析(1)证明:∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∴∠AEP=∠ABP=45°,∵PE是☉O的直径,∴∠PAE=90°,∴∠APE=∠AEP=45°,∴AP=AE,∴△APE是等腰直角三角形.(2)∵∠CAB=∠PAE=90°,∴∠CAP=∠BAE,又AC=AB,AP=AE,∴△CAP≌△BAE,∴∠ACP=∠ABE=45°,PC=EB,∴∠PBE=∠ABC+∠ABE=90°,∴PC2+PB2=BE2+PB2=PE2=22=4.结尾处,小编送给大家一段话。
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。
人教版 九年级数学上册第二十四章 圆 同步测试(含答案)一、选择题(本大题共7道小题)1. 平面内,☉O 的半径为1,点P 到O 的距离为2,过点P 可作☉O 的切线条数为 ( ) A .0条 B .1条 C .2条 D .无数条2. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3. 如图,四边形ABCD 内接于☉O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若☉ABC =105°,∠BAC =25°,则☉E 的度数为( )A . 45°B . 50°C . 55°D . 60°4. 如图,A 、D 是☉O上的两个点,BC 是直径,若☉D =32°,则☉OAC 等于( ) A . 64° B . 58° C . 72° D . 55°5. 如图,⊙O 的半径为4,△ABC 是☉O 的内接三角形,连接OB 、OC ,若☉BAC 与☉BOC 互补,则弦BC 的长为( ) A . 3 3 B . 4 3 C . 5 3 D . 636. 如图,AB 是☉O的直径,AC 切☉O 于A ,BC 交☉O 于点D ,若☉C =70°,则☉AOD 的度数为( )A . 70°B . 35°C .20°D . 40°7. 如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A . 183-9πB . 18-3πC . 93-9π2 D . 183-3π二、填空题(本大题共4道小题)8. 如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE ,若∠ABC=64°,则∠BAE 的度数为 .9. 如图,△ABC内接于⊙O ,AC 是⊙O 的直径,∠ACB =50°,点D 是BAC ︵上一点,则∠D =________.10. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.11. 如图,⊙O是☉ABC的内切圆,若☉ABC=70°,∠ACB=40°,则∠BOC=________°.三、解答题(本大题共4道小题)12. 如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.13. 如图,在☉ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E、F.(1)试判断直线BC与☉O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).14. 如图☉,在☉ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是☉ABD的外接圆.(1)求证:AC是☉O的切线;(2)当BD是☉O的直径时(如图☉),求☉CAD的度数.15. 如图,已知☉ABC内接于☉O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE☉BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与☉O交于点G.设☉GAB=α,☉ACB=β,☉EAG+☉EBA=γ.(1)点点同学通过画图和测量得到以下近似数据猜想:β关于α(2)若γ=135°,CD=3,☉ABE的面积为☉ABC的面积的4倍,求☉O半径的长.2020-2021学年人教版九年级数学上册第二十四章圆同步测试-答案一、选择题(本大题共7道小题)1. 【答案】C[解析]∵☉O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与☉O的位置关系是:P在☉O外.∵过圆外一点作圆的切线有2条,故选C.2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.3. 【答案】B【解析】☉四边形ABCD是圆内接四边形,∠ABC=105°,∴∠ADC =75°,∵=,∴∠BAC=☉DCF=25°,∴∠E=∠ADC-☉DCF=50°.4. 【答案】B【解析】☉☉D与☉AOC同对弧AC,∴∠AOC=2☉D=2×32°=64°,∵OA=OC,∴∠OAC=☉OCA,在☉OAC中,根据三角形内角和为180°,可得☉OAC=12(180°-☉AOC)=12×(180°-64°)=58°.5. 【答案】B【解析】如解图,延长CO交☉O于点A′,连接A′B.设☉BAC=α,则☉BOC=2∠BAC=2α,∵∠BAC+☉BOC=180°,∴α+2α=180°,∴α=60°.☉☉BA′C=☉BAC=60°,∵CA′为直径,∴∠A′BC=90°,则在Rt△A′BC中,BC=A′C·sin∠BA′C=2×4×32=4 3.6. 【答案】D【解析】☉AB是☉O的直径,AC切☉O于点A,∴∠BAC=90°,∵∠C=70°,∴∠B=20°,∴∠AOD=☉B+☉BDO=2☉B=2×20°=40°.7. 【答案】A【解析】☉☉DAB=60°,DF⊥AB,AD=6,∴DF=AD·sin60°=33,∠ADC =120°,∴S 阴影=S 菱形ABCD -S 扇形EDG =6×33-120π×(33)2360=183-9π.二、填空题(本大题共4道小题)8. 【答案】52° [解析]∵圆内接四边形对角互补, ∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.9. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°.10. 【答案】10或70 [解析]作OD ⊥AB 于C ,OD 交☉O 于点D ,连接OB.由垂径定理得:BC=12AB=30 cm .在Rt☉OBC 中,OC=√OB 2-BC 2=40(cm). 当水位上升到圆心以下且水面宽80 cm 时, 圆心到水面距离=√502-402=30(cm), 水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm 时,水面上升的高度为:40+30=70(cm). 综上可得,水面上升的高度为10 cm 或70 cm . 故答案为10或70.11. 【答案】125【解析】☉☉O 是☉ABC 的内切圆,∴OB 、OC 分别是☉ABC 、☉ACB的平分线,∴∠OBC+☉OCB=12(☉ABC+☉ACB)=12(70°+40°)=55°.☉☉BOC=180°-(☉OBC+☉OCB)=180°-55°=125°.三、解答题(本大题共4道小题)12. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.13. 【答案】(1)解:BC与☉O相切.理由如下:解图如解图,连接OD,∵AD平分☉BAC,∴∠CAD=☉OAD.又☉☉OAD=☉ODA,∴∠CAD=☉ODA.∴OD∥AC,(2分)∴∠BDO=☉C=90°,又☉OD是☉O的半径,∴BC与☉O相切.(4分)(2)解:设☉O的半径为r,则OD=r,OB=r+2,由(1)知☉BDO=90°,∴在Rt△BOD中,OD2+BD2=OB2,即r2+(23)2=(r+2)2.解得r=2.(5分)∵tan∠BOD=BDOD=232=3,∴∠BOD=60°.(7分)∴S阴影=S△OBD-S扇形ODF=12·OD·BD-60πr2360=23-23π.(8分)14. 【答案】(1)证明:如解图,连接OA,OD.设☉ABC=x,∵∠ABC∶∠ACB∶∠ADB=1☉2☉3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2☉ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又☉OA为☉O的半径,∴AC是☉O的切线.(4分)(2)解:☉BD是☉O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1☉2☉3,∠ABC+☉ADB=90°,∴∠ABC+3☉ABC=90°,(6分)解得☉ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=☉ADB-☉ACB=22.5°.(8分)15. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知☉EBD☉☉EGD,☉EBC=☉ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=☉BAG=45°,β=☉ACB=135°,☉☉ECB=45°,☉CEB=90°,☉ECD、☉BEC、☉ABG都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件☉ABE的面积是☉ABC的面积的4倍可得出AC的长,利用勾股定理在☉ABE中求出AB的长,再利用勾股定理在☉ABG求出AG的长,即可求出半径长.①(1)☉β=90°+α,γ=180°-α证明:如解图☉,连接BG,☉AG是☉O的直径,☉☉ABG=90°,☉α+☉BGA=90°,(1分)又☉四边形ACBG内接于☉O,☉β+☉BGA=180°,☉β-α=90°,即β=90°+α;(3分)☉☉D是BC的中点,且DE☉BC,☉☉EBD≌△ECD,☉☉EBC=☉ECB,☉☉EAG+☉EBA=γ,☉☉EAB+α+☉EBC+☉CBA=γ,☉☉EAB+☉CBA=☉ECB,☉2☉ECB+α=γ,(4分)☉2(180°-β )+α=γ,由☉β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图☉,连接BG,②☉γ=135°,γ=180°-α,☉α=45°,β=135°,☉☉AGB=☉ECB=45°,(8分)☉☉ECD和☉ABG都是等腰直角三角形,又☉☉ABE的面积是☉ABC的面积的4倍,☉AE=4AC,☉EC=3AC,(9分)☉CD=3,☉CE=32,AC=2,☉AE=42,(10分)☉☉BEA=90°,☉由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)☉AG=2AB=2×52=10,☉r=5.(12分)。
2020年人教版九年级数学上册 圆 单元测试卷一、选择题1.已知⊙O 的半径是4,OP=3,则点P 与⊙O 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定2.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BOD C .∠C=∠B D .∠A=∠BOD 3.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A .2B .3C .4D .54.下列说法正确的是( )A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若两个圆有公共点,则这两个圆相交5.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E.若∠AOB=3∠ADB ,则( )A .DE=EB B.2DE=EB C.3DE=DO D .DE=OB6.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( )A .24cmB .48cmC .96cmD .192cm7.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.123mm C.6mm D.63mm8.如图,直线AB,AD与⊙O分别相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70° B.105° C.100° D.110°9.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.4π3- 3 B.4π3-2 3 C.π- 3 D.2π3- 310.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC内切圆,则PQ长是()A.52B. 5C.52D.2 2二、填空题11.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=________°.12.如图,过⊙O上一点C作⊙O的切线,交⊙O的直径AB的延长线于点D.若∠D=40°,则∠A的度数为_______.13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是_________.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC的长为_______.15.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为__________.16.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__________.17.如图,圆O的直径AB为13cm,弦AC为5cm,∠ACB的平分线交圆O于点D,则CD的长是____________cm.18.如图,在矩形ABCD中,AD=8,E是边AB上一点,且4AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG∶EF=5∶2.当边AD或BC所在的直线与⊙O相切时,AB的长是______.三、解答题(共66分)19.(8分)如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.20.(8分)如图,AB是半圆O的直径,C,D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(8分)如图,已知四边形ABCD 内接于圆O ,连接BD ,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD ;(2)若圆O 的半径为3,求BC ︵的长.22.(10分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC=CD ,∠ACD=120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.23.(10分)如图,AB 是⊙O 的直径,点C ,D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 的延长线与OC 的延长线于点E ,F ,连接BF.(1)求证:BF 是⊙O 的切线;(2)已知⊙O 的半径为1,求EF 的长.24.(10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB=8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CD ,OD.若AC=CD ,求∠B 的度数;(3)在(2)的条件下,OD 交BC 于点E ,求由线段ED ,BE ,BD ︵所围成区域的面积(其中BD ︵表示劣弧,结果保留π和根号).25.(12分)如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P 上.(1)求⊙P 的半径及圆心P 的坐标;(2)M 为劣弧OB ︵的中点,求证:AM 是∠OAB 的平分线;(3)连接BM 并延长交y 轴于点N ,求N ,M 点的坐标.参考答案1.A2.B3.A4.B5.D6.B7.A8.C9.A10.B.11.6012.25°13.8cm14.2 215.15π16.1817.172218.4或12;解析:当边BC 所在的直线与⊙O 相切时,如图①,过点G 作GN ⊥AB ,垂足为N ,∴EN=NF.又∵GN=AD=8,∴设EN=x ,则GE=5x ,根据勾股定理得(5x )2-x 2=64,解得x=4,∴GE=4 5.设⊙O 的半径为r ,连接OE ,由OE 2=EN 2+ON 2得r 2=16+(8-r )2,∴r=5,∴OK=NB=5,∴EB=9.又AE=14AB ,∴14AB +9=AB ,∴AB=12. 同理,当边AD 所在的直线与⊙O 相切时,如图②,连接OH ,∴OH=AN=5,∴AE=1.又AE=14AB ,∴AB=4.故答案为4或12.19.解:∵∠A=30°,OC=OA ,∴∠ACO=∠A=30°,∴∠COD=60°.∵DC 切⊙O 于C ,∴∠OCD=90°,∴∠D=30°.∵OD=30cm ,∴OC=12OD=15cm , ∴AB=2OC=30cm.20.解:(1)∵AB 是半圆O 的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=90°-70°=20°. ∵OD ∥BC ,∴∠AEO=∠ACB=90°,即OE ⊥AC ,∠AOD=∠B=70°.∵OA=OD ,∴∠DAO=∠ADO=180°-∠AOD 2=180°-70°2=55°,∴∠CAD=∠DAO -∠CAB=55°-20°=35°;(2)在直角△ABC 中,BC=AB2-AC2=42-32=7.∵OE ⊥AC ,∴AE=EC.又∵OA=OB ,∴OE=12BC=72. 又∵OD=12AB=2, ∴DE=OD -OE=2-72. 21.(1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD=180°.∵∠BAD=105°,∴∠DCB=180°-105°=75°.∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD ;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得BC ︵的度数为60°,故BC ︵的长为n πR 180=60π×3180=π. 22.(1)证明:连接OC.∵AC=CD ,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC ,∴∠2=∠A=30°.∴∠OCD=∠ACD -∠2=120°-30°=90°.即OC ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠A=∠2=30°,∴∠1=2∠A=60°.∴S 扇形BOC =60π×22360=2π3. 在Rt △OCD 中,∠D=30°,OC=2,∴OD=4,∴CD=2 3.∴S Rt △OCD =12OC ×CD=12×2×23=2 3. ∴图中阴影部分的面积为23-2π3. 23.(1)证明:连接OD ,∵四边形AOCD 是平行四边形,而OA=OC ,∴四边形AOCD 是菱形,∴△OAD 和△OCD 都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°.∵EF 为切线,∴OD ⊥EF ,∴∠FDO=90°.在△FDO 和△FBO 中,∴△FDO ≌△FBO ,∴∠OBF=∠ODF=90°,∴OB ⊥BF ,∴BF 是⊙O 的切线;(2)解:在Rt △OBF 中,∵∠OFB=90°-∠FOB=30°,OB=1,∴OF=2,∴BF= 3.在Rt △BEF 中,∵∠E=90°-∠AOD=90°-60°=30°,∴EF=2BF=2 3. 24.解:(1)如图所示,AP 即为所求的∠CAB 的平分线;(2)如图所示,∵AC=CD ,∴∠CAD=∠ADC.又∵∠ADC=∠B ,∴∠CAD=∠B. ∵AD 平分∠CAB ,∴∠CAD=∠DAB=∠B.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB +∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得∠CAD=∠BAD=∠B=30°.又∵∠DOB=∠DAB +∠ADO=2∠DAB ,∴∠BOD=60°,∴∠OEB=90°.在Rt △OEB 中,OB=12AB=4, ∴OE=12OB=2, ∴BE=OB2-OE2=42-22=2 3.∴△OEB 的面积为12OE ·BE=12×2×23=23, 扇形BOD 的面积为60π·42360=8π3, ∴线段ED ,BE ,BD ︵所围成区域的面积为8π3-2 3. 25.(1)解:∵O (0,0),A (0,-6),B (8,0),∴OA=6,OB=8,∴AB=62+82=10.∵∠AOB=90°,∴AB 为⊙P 的直径,∴⊙P 的半径是5.∵点P 为AB 的中点,∴P (4,-3);((2)证明:∵M 点是劣弧OB 的中点,∴OM ︵=BM ︵,∴∠OAM=∠MAB ,∴AM 为∠OAB 的平分线;(3)解:连接PM 交OB 于点Q.∵OM ︵=BM ︵,word 版 初中数学11 / 11 ∴PM ⊥OB ,BQ=OQ=12OB=4. 在Rt △PBQ 中,PQ=PB2-BQ2=52-42=3,∴MQ=2,∴M 点的坐标为(4,2).∵PM ⊥OB ,AN ⊥OB ,∴MQ ∥ON ,而OQ=BQ ,∴MQ 为△BON 的中位线,∴ON=2MQ=4,∴N 点的坐标为(0,4).。
第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
第二十四章圆单元复习与检测题(含答案)一、选择题1、点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm2、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P 与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定3、下列说法正确的是()A.三点确定一个圆 B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线 D.三角形的内心到三角形三个顶点距离相等4、同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是()A.外离B.相切C.相交D.内含5、在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°6、如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65C.72 D.757、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与轴相离、与轴相切 B.与轴、轴都相离C.与轴相切、与轴相离 D.与轴、轴都相切8、如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24B.C.等于48 D.最大为489、已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有()A、2个B、4个C、5个D、6个10、已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题11、如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.12、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8㎝,则AC的长等于_______㎝。
最新人教版九年级数学上册第二十四章圆单元测试题及答案时间:45分钟 分数:100分一、选择题(每小题3分,共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为10,最小距离为4则此圆的半径为( ) A .14 B .6 C .14 或6 D .7 或32.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( ) A .16π B .36π C .52π D .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( )图24—A —5 图24—A —6图24—A —1 图24—A —2 图24—A —3图24—A —4A .310 B .512 C .2 D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= .13.如图24—A —9,AB 、AC 与⊙O 相切于点B 、C ,∠A=50゜,P 为⊙O 上异于B 、C 的一个动点,则∠BPC 的度数为 .14.已知⊙O 的半径为2,点P 为⊙O 外一点,OP 长为3,那么以P 为圆心且与⊙O 相切的圆的半径为 .15.一个圆锥的底面半径为3,高为4,则圆锥的侧面积是 .16.扇形的弧长为20πcm ,面积为240πcm 2,则扇形的半径为 cm.17.如图24—A —10,半径为2的圆形纸片,沿半径OA 、OB 裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为 .18.在Rt △ABC 中,∠C=90゜,AC=5,BC=12,以C 为圆心,R 为半径作圆与斜边AB 相切,则R 的值为 .19.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 .20.已知扇形的周长为20cm ,面积为16cm 2,那么扇形的半径为 .21.如图24—A —11,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D.若AC=8cm ,DE=2cm ,则OD 的长为 cm.三、作图题(7分)22.如图24—A —12,扇形OAB 的圆心角为120°,半径为6cm. ⑴请用尺规作出扇形的对称轴(不写做法,保留作图痕迹). ⑵若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积.图24—A —7 图24—A —8 图24—A —9图24—A —10 图24—A —11四.解答题(23小题8分、24小题10分, 25小题12分,共30分) 23.如图24—A —13,AD 、BC 是⊙O 的两条弦,且AD=BC , 求证:AB=CD.24.如图24—A —14,已知⊙O 的半径为8cm ,点A 为半径OB的延长线上一点,射线AC 切⊙O 于点C ,BC 的长为cm 38,求线段AB 的长.25.已知:△ABC 内接于⊙O ,过点A 作直线EF.(1)如图24—A —15,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(只需写出三种情况):① ;② ;③ .(2)如图24—A —16,AB 是非直径的弦,∠CAE=∠B ,求证:EF 是⊙O 的切线.⌒图24—A —13 图24—A —14九年级数学第二十四章圆测试题(B )时间:45分钟 分数:100分一、选择题(每小题3分,共30分) 1.已知⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定2.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 3.在△ABC 中,I 是内心,∠ BIC=130°,则∠A 的度数为( ) A .40° B .50° C .65° D .80° 4.如图24—B —1,⊙O 的直径AB 与AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为( ) A .6 B .3 C .3 D .33圆,则ABB A 115.如图24—B —2,若等边△A 1B 1C 1内接于等边△ABC 的内切的值为( ) A .21B .22C .31D .336.如图24—B —3,⊙M 与x 轴相切于原点,平行于y 轴的直线交圆于P 、Q 两点,P 点在Q 点的下方,若P 点的坐标是(2,1),则圆心M 的坐标是( )A .(0,3)B .(0,25) C .(0,2) D .(0,23) 7.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为( ) A .cm 23B .3cmC .4cmD .6cm 8.如图24—B —4,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长是( )图24—B —1图24—B —2图24—B —3图24—B —4A .2B .4C .3D .59.如图24—B —5,⊙O 的直径为AB ,周长为P 1,在⊙O 内的n 个圆心在AB 上且依次相外切的等圆,且其中左、右两侧的等圆分别与⊙O 内切于A 、B ,若这n 个等圆的周长之和为P 2,则P 1和P 2的大小关系是( )A .P 1< P 2B .P 1= P 2C .P 1> P 2D .不能确定 10.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S 1、S 2、S 3,则下列关系成立的是( )A .S 1=S 2=S 3B .S 1>S 2>S 3C .S 1<S 2<S 3D .S 2>S 3>S 1 二、填空题(每小题3分,共30分)11.如图24—B —6,AB 是⊙O 的直径, BC=BD,∠A=25°,则∠BOD= . 12.如图24—B —7,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm.13.如图24—B —8,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD=CE ,则AC 与BC 弧长的大小关系是 . 14.如图24—B —9,OB 、OC 是⊙O 的 半径,A 是⊙O 上一点,若已知∠B=20°, ∠C=30°,则∠BOC= .15.(2005·江苏南通)如图24—B —10,正方形ABCD 内接于⊙O ,点P 在AD 上,则∠BPC= . 16.(2005·山西)如图24—B —11,已知∠AOB=30°,M 为OB 边上一点,以M 为圆心,2cm 长为半径作⊙M ,若点M 在OB 边上运动,则当OM= cm 时,⊙M与OA 相切.17.如图24—B —12,在⊙O 中,弦AB=3cm ,圆周角∠ACB=60°,则⊙O 的直径等于cm. 18.如图24—B —13,A 、B 、C 是⊙O 上三点,当BC 平分∠ABO 时,能得出结论: (任写一个).19.如图24—B —14,在⊙O 中,直径CD 与弦AB 相交于点E ,若BE=3,AE=4,DE=2,则⊙O 的半径是 . 20.(2005·潍坊)如图24—B —15,正方形ABCD 的边长为1,点E 为AB⌒图24—B — 5图24—B —6 图24—B —7 图24—B —8图24—B —9 图24—B —10 图24—B —11 图24—B —12 图24—B —13 图24—B —14 ⌒ ⌒的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于点P ,则图中阴影部分的面积是 .三、作图题(8分)21.如图24—B —16,已知在△⊙ABC 中,∠ A=90°,请用圆规和直尺作⊙P ,使圆心P 在AC 上,且与AB 、BC 两边都相切.(要求保留作图痕迹,不必写出作法和证明)四、解答题(第22、23小题每题各10分,第23小题12分,共32分) 22.如图24—B —17,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD.求证:OC=OD.23.如图24—B —18,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD. (1)P 是优弧CAD 上一点(不与C 、D 重合),求证:∠CPD=∠COB ;(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.五、综合题24.如图24—A —19,在平面直角坐标系中,⊙C 与y 轴相切,且C 点坐标为(1,0),直线l 过点A (—1,0),与⊙C 相切于点D ,求直线l 的解析式.图24—B —16 图24—B —17 图24—B —18《圆》测试题C1.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内含2.如图,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一定..正确的是( ) A .AE =OE B .CE =DE C .OE =错误!CE D ∠AOC =60°3.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为( )A .25°B .30°C .40°D .50°4.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB =( ) A .4cm B .5cm C .6cm D .8cm 5.(2009湖北十堰)如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( ). A .55° B .60° C .65° D .70°6.如图,P A 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°,那么∠AOB 等于( ) A .60° B .90° C .120° D .150° 7.已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是( )A .在点B 右侧 B .与点B 重合C .在点A 和点B 之间D .在点A 左侧8.如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列BA(第7题)第2题(第3题) A BO CD A BPOC(8题)C BAO四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有( )A .①②B .①③④C .②③④D .①②③④ 9.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情 况是(A)0,1,2,3(B)0,1,2,4(C)0,1,2,3,4(D)0,1,2,4,510.(2009年湖南怀化)如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则=∠P __ ___度.11.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.12.如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.13.如图AB 是⊙O 的直径,点D 在⊙O 上∠AOD =130°,BC ∥OD 交O 于C ,则∠A = .14.(2010湖北省咸宁市)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 顺时针旋转90︒得到OA ',则点A '的坐标是15.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是16如图,已知A 、B两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠A BAE O FBDCAOP =45°,则点P 的坐标为 .17.(本题满分6分)先化简,再求值:22211()x y x y x y x y+÷-+-,其中1,1x y ==18.已知关于x 的一元二次方程x 2 = 2(1-m )x -m 2 的两实数根为x 1,x 2. (1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.19.如图,AB 、AC 为⊙O 的弦,连接CO 、BO 并延长分别交弦AB 、AC 于点E 、F ,∠B =∠C .求证:CE =BF .20.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径; (2)求切线CD 的长.21. (本题满分10分)如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°时,求∠EFG 的度数第21第二十四章圆(A ) 一、选择题1.D 2.D 3.C 4.C 5.B 6.D 7.D 8.B 9.B 10.A 11.A 二、填空题12.30゜ 13.65゜或115゜ 14.1或5 15.15π 16.24 17.2321或18.1360 19.8 20.2或8 21.3 三、作图题22.(1)提示:作∠AOB 的角平分线,延长成为直线即可; (2)∵扇形的弧长为)(41806120cm ππ=⨯,∴底面的半径为cm 224=ππ,∴圆锥的底面积为π42cm .23.证明:∵AD=BC ,∴AD=BC ,∴AD+BD=BC+BD ,即AB=CD ,∴AB=CD.24.解:设∠AOC=︒n ,∵BC 的长为cm π38,∴180838⨯=ππn ,解得︒=60n . ∵AC 为⊙O 的切线,∴△AOC 为直角三角形,∴OA=2OC=16cm ,∴AB=OA-OB=8cm.25.(1)①BA ⊥EF ;②∠CAE=∠B ;③∠BAF=90°. (2)连接AO 并延长交⊙O 于点D ,连接CD , 则AD 为⊙O 的直径,∴∠D+∠DAC=90°. ∵∠D 与∠B 同对弧AC ,∴∠D=∠B , 又∵∠CAE=∠B ,∴∠D=∠CAE , ∴∠DAC+∠EAC=90°, ∴EF 是⊙O 的切线.第二十四章圆(B ) 一、选择题1.A 2.C 3.D 4.D 5.A 6.B 7.B 8.C 9.B 10.C 二、填空题11.50° 12.3 13.相等 14.100° 15.45° 16.4 17.32 18.AB//OC⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒19.4 20.6431π-- 三、作图题21.如图所示四、解答题22.证法一:分别连接OA 、OB.∵OB=OA ,∴∠A=∠B.又∵AC=BD ,∴△AOC ≌△BOD ,∴OC=OD ,证法二:过点O 作OE ⊥AB 于E ,∴AE=BE.∵AC=BD ,∴CE=ED ,∴△OCE ≌△ODE ,∴OC=OD.23.(1)证明:连接OD ,∵AB 是直径,AB ⊥CD ,∴∠COB=∠DOB=COD ∠21.又∵∠CPD=COD ∠21,∴∠CPD=∠COB.(2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠CPD=∠COB ,∴∠CP ′D+∠COB=180°.五、综合题24.解:如图所示,连接CD ,∵直线l 为⊙C 的切线,∴CD ⊥AD.∵C 点坐标为(1,0),∴OC=1,即⊙C 的半径为1,∴CD=OC=1.又∵点A 的坐标为(—1,0),∴AC=2,∴∠CAD=30°.作DE ⊥AC 于E 点,则∠CDE=∠CAD=30°,∴CE=2121=CD , 第24题23=DE ,∴OE=OC-CE=21,∴点D 的坐标为(21,23). 设直线l 的函数解析式为b kx y +=,则 解得k=33,b=33, ∴直线l 的函数解析式为y=33x+33.0= —k+b ,23=21k+b.。
人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。
2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
大于半圆的弧叫做优弧。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能重合的弧叫等弧。
2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
圆内接四边形的性质:圆内接四边形的对角互补。
5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。
性质:不在同一条直线上的三个点确定一个圆。
人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8−4πB.16−4πC.32−4πD.32−8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A .B .C .D .6.如图.将扇形AOB 翻折,使点A 与圆心O 重合,展开后折痕所在直线l 与AB 交于点C ,连接AC .若OA =2,则图中阴影部分的面积是( )A .2π3−32B .2π3−3C .π3−32D .π37.如图,⊙O 是正△ABC 的外接圆,△DOE 是顶角为120°的等腰三角形,点O 与圆心重合,点D ,E 分别在圆弧上,若⊙O 的半径是6,则图中阴影部分的面积是( )A .4πB .12π−9 3C .12π−923D .24π− 9 38.如图,在正方形ABCD 中,点E ,F 分别是边BC 和CD 上的动点(不与端点重合),∠EAF =45°,AF 、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43−1B.3+5C.1+25D.35−110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC=x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2−AC2=0.52−0.42=0.3m,∴CD=OD−OC=0.5−0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°−∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG−S梯形OEDF−S扇形BOF=6×23−12×(2+4)×23−60π⋅42360=63−83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(−2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,∠HAM=∠CMOMC=MA∴△AMH≌△MCO(ASA),∠OCM=∠AMH故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,∠CMO=∠MPECM=PM∴△MCO≌△PME(ASA)∠MCO=∠PME∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(−1,−3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24−t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2−C F2=x2−(24−t)2,在Rt△BFO中,B F2=B O2−O F2=242−t2,于是有:x2−(24−t)2=242−t2,整理得,t=−148x2+24,∴y=−124x 2+2x+96=−124(x−24)2+120,当x=24时,y max=120。
人教版九年级数学上册第二十四章圆单元同步测试题一、选择题1.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣3.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:24.如图,Rt△ABC中,∠BCA=90°,将Rt△ABC绕点A按逆时针方向旋转30°得到Rt △AB′C′,点B'在直线AC上,若BC=1,则点C和△AB'C′外心之间的距离是()A.1B.﹣1C.2﹣D.5.如图,以正六边形ABCDEF的对角线CF为边,再作一个正六边形CFGHMN,若AB=,则EG的长为()A.2B.2C.3D.26.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠QOB的度数是()A.30°B.20°C.18°D.15°7.如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,=2,点P是OC上的一个动点,则BP+DP的最小值为()A.2B.2C.2D.38.如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.159.如图,在正五边形ABCDE中,连结AC,以点A为圆心,AB为半径画圆弧交AC于点F,连接DF.则∠FDC的度数是()A.18°B.30°C.36°D.40°10.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°二、填空题11.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是_______12.如图,AB为⊙O的切线,AC为弦,连接CB交⊙O于点D,若CB经过圆心O,∠ACB =28°,则∠B的度数为_______13.如图,长为定值的弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),点E是CD的中点,过点C作CF⊥AB于F,若CD=3,AB=8,则EF的最大值是____14.如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为____15.如图,PQ、PB、QC是⊙O的切线,切点分别为A、B、C,点D在上,若∠D=100°,则∠P与∠Q的度数之和是____16.如图,⊙O的直径AB=2,弦BC=,点D在优弧上,则∠CDB的度数是____三.解答题17.如图,半圆O的直径AB=20,将半圆O绕点B顺针旋转45°得到半圆O′,与AB交于点P.(1)求AP的长;(2)求图中阴影部分的面积(结果保留π).18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.19.如图,已知圆O的圆心为O,半径为3,点M为圆O内的一个定点,OM=,AB、CD是圆O的两条相互垂直的弦,垂足为M.(1)当AB=4时,求四边形ADBC的面积;(2)当AB变化时,求四边形ADBC的面积的最大值.20.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.21.如图,在▱ABCD中,过A,B,C三点的⊙O交AD于E,且与CD相切.(1)求证:AC=BC;(2)若AB=4,BE=6,求⊙O的半径长.22.如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,求AF的长.23.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).25.如图,AB是⊙O的直径,PB⊥AB,过点B作BC⊥OP交⊙O于点C,垂足为D,连接PC并延长与BA的延长线交于点M.(1)求证:PM是⊙O的切线;(2)若,求的值.参考答案一、选择题1.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°【解答】解:连接OA、OB、OD,OC,∵∠BDC=60°,∴∠BOC=2∠BDC=120°,∵AB=DC,∴∠AOB=∠DOC,∵A为的中点,∴=,∴∠AOB=∠AOD,∴∠AOB=∠AOD=∠DOC=×(360°﹣∠BOC)=80°,∴∠ADB=AOB=40°,故选:A.2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.3.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2【解答】解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:则AH=BH=AB,∵等边三角形ABC和正方形ADEF,都内接于⊙O,∴∠AOB=120°,∠AOD=90°,∵OA=OD=OB,∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,∴AD=OA,AH=OA•sin60°=OA,∴AB=2AH=2×OA=OA,∴==,故选:B.4.如图,Rt△ABC中,∠BCA=90°,将Rt△ABC绕点A按逆时针方向旋转30°得到Rt △AB′C′,点B'在直线AC上,若BC=1,则点C和△AB'C′外心之间的距离是()【解答】解:∵将Rt△ABC绕点A按逆时针方向旋转30°得到Rt△AB′C′,点B'在直线AC上,∴∠C′AB′=∠B′AB=30°,∵BC=1,∴AB=AB′=2,∴AC==,设△AB'C′外心为点O,∠C′=90°,∴外心O在斜边AB′的中点,∴AO=AB′=1,∴OC=﹣1,故选:B.5.如图,以正六边形ABCDEF的对角线CF为边,再作一个正六边形CFGHMN,若AB=,则EG的长为()【解答】解:延长DE交AG于T.由题意FG=2EF,∠EFC=∠EFT=60°,∵∠DEF=120°,∴∠EFT=60°,∴∠EFT=∠FET=∠ETF=60°,∴EF=FT=ET,∴TG=TF=ET,∴∠FEG=90°,∵AB=AF=EF=,∴EG=EF•tan60°=3,故选:C.6.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠QOB的度数是()A.30°B.20°C.18°D.15°【解答】解:连接OA.∵△PQR是等边三角形,∴=,∴OP⊥QR,∵AD∥CB∥QR,∴OP⊥AD,∴=,∴∠AOP=45°,∵△PQR是等边三角形,四边形ABCD是正方形,∴∠POQ=120°,∠AOB=90°,∴∠AOQ=120°﹣45°=75°,∴∠BOQ=∠AOB﹣∠AOQ=90°﹣75°=15°,故选:D.7.如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,=2,点P是OC上的一个动点,则BP+DP的最小值为()A.2B.2C.2D.3【解答】解:如图,连接AD,P A,PD,OD.∵OC⊥AB,OA=OB,∴P A=PB,∠COB=90°,∵=2,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD=2,∵PB+PD=P A+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值为2,故选:A.8.如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.15【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BCO=∠AOC﹣∠AOB=30°,由题意30°=,∴n=12,故选:C.9.如图,在正五边形ABCDE中,连结AC,以点A为圆心,AB为半径画圆弧交AC于点F,连接DF.则∠FDC的度数是()A.18°B.30°C.36°D.40°【解答】解:∵五边形ABCDE是正五边形,∴∠AED=∠EAB=∠ABC=108°,∵BA=BC,∴∠BAC=∠BCA=36°,∴∠EAC=72°,∴∠AED+∠EAC=180°,∴DE∥AF,∵AE=AF=DE,∴四边形AEDF是菱形,∴∠EDF=∠EAF=72°,∵∠EDC=108°,∴∠FDC=36°,故选:C.10.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=∠EOF=60°,故选:B.二、填空题11.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是_______【解答】解:∵AF是⊙O的直径,五边形ABCDE是⊙O的内接正五边形,∴,,∠BAE=108°,∴,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,12.如图,AB为⊙O的切线,AC为弦,连接CB交⊙O于点D,若CB经过圆心O,∠ACB =28°,则∠B的度数为_______【解答】解:如图,连结OA,∵∠ACB=28°,∴∠AOB=2∠ACB=56°.又∵AB为⊙O的切线,OA是半径,∴OA⊥AB,即∠OAB=90°.∴∠B=90°﹣∠AOB=34°.13.如图,长为定值的弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),点E是CD的中点,过点C作CF⊥AB于F,若CD=3,AB=8,则EF的最大值是()【解答】解:如图,延长CF交⊙O于T,连接DT.∵AB是直径,AB⊥CT,∴CF=FT,∵DE=EC,∴EF=DT,当DT是直径时,EF的值最大,最大值=×8=4,14.如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为()【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵四边形OABC为平行四边形,∴OA=BC,∵OA=OB,∴OB=BC,∴△OBC是等腰直角三角形,∴∠BOC=45°,∴∠BDC=BOC=22.5°,15.如图,PQ、PB、QC是⊙O的切线,切点分别为A、B、C,点D在上,若∠D=100°,则∠P与∠Q的度数之和是()【解答】解:连接OA,OB,OC,AB,AC,∵∠D=100°,∴∠BAC=180°﹣∠D=80°,∴∠BOC=2∠BAC=160°,∴∠AOB+∠AOC=360°﹣160°=200°,∵PQ、PB、QC是⊙O的切线,∴∠PBO=∠P AO=∠QAO=∠QCO=90°,∴∠P+∠Q=2×360°﹣∠PBO﹣∠P AO﹣∠QAO﹣∠QCO﹣∠AOB﹣∠AOC=720°﹣4×90°﹣200°=160°,16.如图,⊙O的直径AB=2,弦BC=,点D在优弧上,则∠CDB的度数是()【解答】解:如图,∵AB是直径,∴∠ACB=90°.∵AB=2,弦BC=,∴sin∠A==.∴∠A=60°.∴∠CDB=∠A=60°.三.解答题17.如图,半圆O的直径AB=20,将半圆O绕点B顺针旋转45°得到半圆O′,与AB交于点P.(1)求AP的长;(2)求图中阴影部分的面积(结果保留π).【解答】解:(1)∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=BO,∴AP=AB﹣BP=20﹣10;(2)阴影部分面积为:S阴影=S扇形O′A′P+S△O′PB=×π×100+10×10×=25π+50.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.【解答】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得AD==4.∵S ACD=AD•CD=AC•DE,∴×4×3=×5DE.∴DE=.19.如图,已知圆O的圆心为O,半径为3,点M为圆O内的一个定点,OM=,AB、CD是圆O的两条相互垂直的弦,垂足为M.(1)当AB=4时,求四边形ADBC的面积;(2)当AB变化时,求四边形ADBC的面积的最大值.【解答】解:(1)作OE⊥CD于E,OF⊥AB于F,连接OB,OC,那么AB=2=4,∴OF=,又∵OE2+OF2=OM2=5,∴OE=0,∴CD=6,∴S四边形ADBC=AB×CD=12;(2)设OE=x,OF=y,则x2+y2=5,∵AB=2,CD=2,∴S四边形ADBC=AB×CD=2×=2=2,∴当x2=时,四边形ADBC的最大面积是13.20.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.21.如图,在▱ABCD中,过A,B,C三点的⊙O交AD于E,且与CD相切.(1)求证:AC=BC;(2)若AB=4,BE=6,求⊙O的半径长.【解答】(1)证明:连接CO,延长CO交AB于H.∵CD是⊙O的切线,∴OC⊥CD,∵四边形ABCD是平行四边形,∴CH⊥AB,∴AH=BH,∵CH⊥AB,∴CA=CB.(2)解:连接EC、OB.∵四边形ABCD是平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∴=,∴=,∴BC=AC=BE=6,在Rt△BCH中,∵∠CHB=90°,BH=2,BC=6,∴CH==4,设OB=r.在Rt△OBH中,r2=22+(4﹣r)2,解得r=.22.如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,求AF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴∠DAB=2∠EAB,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC是⊙O的切线;(2)∵∠EAC+∠EAB=90°,∠DAE+∠AFD=90°,∠EAD=∠EAB,∴∠EAC=∠AFD,∴CF=AC=6,∴DF=2,∵AD2=AC2﹣CD2=62﹣42=20,∴23.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.【解答】(1)证明:如图,连接OE,∵EG是⊙O的切线,∴OE⊥EG,∵EG⊥CD,∵四边形ABCD是平行四边形,∴OE∥CD∥AB,∴∠CEO=∠CAB,∵OC=OE,∴∠CEO=∠ECO,∴∠ACB=∠CAB,∴AB=BC,∴▱ABCD是菱形;(2)如图,连接BD,由(1)得,OE∥CD,OC=OB,∴AE=CE,∴CE:AC=1:2,∴点E是AC的中点,∵四边形ABCD是菱形,∴BD经过点E,∵BC是⊙O的直径,∴BF⊥CD,∵EG⊥CD,∴EG∥BF,∴△DGE∽△DFB,∴DG:DF=GE:BF=DE:BD=1:2,∴DF=2,BF=4,在Rt△BFC中,设CF=x,则BC=x+2,由勾股定理得,x2+42=(x+2)2,解得:x=3,∴CF=3.24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==π.25.如图,AB是⊙O的直径,PB⊥AB,过点B作BC⊥OP交⊙O于点C,垂足为D,连接PC并延长与BA的延长线交于点M.(1)求证:PM是⊙O的切线;(2)若,求的值.【解答】(1)证明:连接OC,∵OC=OB,BC⊥OP,∴∠COP=∠BOP,∵OP=OP,∴△PBO≌△PCO(SAS),∴∠OCP=∠OBP,∵PB⊥AB,∴∠ABP=90°,∴∠OCP=90°,∴PM是⊙O的切线;(2)解:连接OC,∵∠OCP=∠CDO=90°,∴∠OCD=∠CPO,∴△OCD∽△OPC,∴=,∴OC2=OD•OP,∵,∴设OD=x,PD=9x,∴OP=10x,∴OC=x,∴BC=6x,∴AC==2x,∵∠ACM+∠ACO=∠OCD+∠ACO=90°,∴∠ACM=∠OCD,∴∠ACM=∠CPO,∴AC∥OP,∴△ACM∽△OPM,∴==,∴=.。