图解十步开关电源模块改可调
- 格式:pdf
- 大小:90.28 MB
- 文档页数:83
开关电源改可调,如此简单!
今天闲着无事,用一个明纬S-145-24开关电源试改可调电源基本上成功,废话少说,下面电路图:
名.JPG (69.5 KB, 下载次数: 189)
评分
本人认为:开关电源改可调,说简单真简单,说复杂非常复杂。
照着人家改好的原样拆几个电阻装几个可调电阻和接几根线,这样的事情本来就简单。
如果拿一个没有相关资料的要你改,这就一定很复杂。
要想将开关电源改为是压可调(电流可调),得先弄清楚其原理,特别是开关电源控制芯片的原理,特性和相关参数。
有必要时还要对相关电路进行改动,开关变压器重绕等工作,这样改制就非常复杂了。
红圈内二极管拿掉,绿框内为改动部分,调电流用,蓝框内可调电阻换成20K的,电压5——29V内可调,电流可调,数值不清楚,没时间了,有条件有兴趣自己研究。
ATX电源改可调24V7A仿造成功这篇文章只是写给像我一样想把ATX改可调的小白看的,也不知道对错!大神们权当路过吧其实ATX改可调几年前就有人做出来的了,有人成功,有人失败,在这,给大家分享一下,这是我参考的众多大神成功经验中的其中几个帖子/forum.php?mod=viewthread&tid=77478&page=1手电里找到的,这里有改造经典图,一开始我就是按照这图的参数改的/read.php?tid=371264“qq2006bt”大大这贴详细给出了调压所要拆换的元件/read.php?tid=416658猪蹄大大的帖子连接,对小白来说不太容易明白,可作参考下面结合大神们和我个人的改造经验,简单的说说对小白来说,怎么改,拆哪里,换哪里,最好是傻瓜式的教程才是最适合的,我也不例外,可惜这改可调不能,因为每个人的ATX电源都不太可能一样的,里面的电路就不一样了,虽然基本结构都差不多,但这差不多会害死人的。
首先,要知道哪里要拆,哪里要换话就要先了解自己的ATX电源电路的走向,所以我们先给电源的电路先拍张照片对小白来说要看懂哪根线怎么走很难,所以对图片做下处理,用电脑自带的画图软件或ACDSee将图片左右反转,这样就可以对着正面的电子元件来画走线了(我自己处理了一下,方便看,图中个别地方可能标错了,大家凑合看)走线图画好后,对着网上的几张ATX原理图(网上有,这里不提供了)还有大神们的改造经验,自己心里应该有个底了吧好,关于改造的原理什么的,我就不重复了,我也小白不懂,下面就说说怎么改,其实上面的帖子里都有了调压篇:摘至qq2006bt大大的(为简单方便改造,我只保留原12V输出,红字部分为我自己添加说明)1、把ATX电源原有的-5V,-12V,3.3V,5V输出拆除因为改装要大幅度改变电压,不拆除会影响到后面的改装输出。
拆除时必须把变压器出来的整流二极管(靠近输出端的贴着散热片的像三极管那样有三个脚的)也拆了(+5V和-5V,+12V和-12v是同一个绕组输出,一般-5v,-12v使用分立元件整流,+5V和+12V使用整流模块。
自己动手改制低压可调电源低压可调电源对普通维修者来说,虽然不常用,但有时是不可或缺的。
例如,对怀疑的IC块进行外加电源测试,对工作电压很另类的电子产品进行主板测试等,就需要低压可调电源了。
然而正常渠道购进的低压可调电源,价格往往较贵(约300元),这里介绍一种利用低压开关电源(+5V)进行改制的方法。
目前市场上海量销售的LED显示屏专用开关电源(价格便宜,仅60元左右),经过简单改制,即可实现连续调压功能。
例如:大家常见的诚联开关电源(CLA-200-5型,5V/40A)结构简单,无副电源,无过多保护控制电路,通电自启动(电路原理见附图,根据实物绘制)。
主芯片IC1为常见的KA7500B,其工作原理不再赘述,只简单介绍一下电源过载或短路保护电路。
如图所示,Q5(C1815)与R26、R27、R28、D17组合,负责过载或短路取样放大,连至IC1的○4脚。
当电源过载或短路时,+5V输出电压大幅降低,Q5 的b极为低电平,c 极呈现高电平,经D17传至IC1的○4脚,当上升的电压超过3V时,关闭IC1⑧、○11脚的脉宽调制电压输出,使T2推动变压器、T1主电源开关变压器停振,+5V输出电压消失,电源处于待机状态(一旦保护,需重启电源才能工作)。
而由电阻R29、R30、R31、电位器RW(1K)组成了输出电压控制及微调电路,连至IC1的○1脚。
此时进行电压微调,上下不超过0.5V。
如按附图所示改动部分电路元件,便可实现输出电压在2.6V~9.5V之间连续可调。
首先是将R29(220)、R30(1K)改为跳线,电位器RW(1K)改为5K,R31(1.2K)改为220Ω/0.5W(该处阻值不能为0,以防止电位器RW调0时,输出电压短路)。
此外,为安全起见,还应将输出负载电阻R34(51Ω)改为560Ω,LED指示灯串联限流电阻RD(390Ω)改为1K(因工作需要,输出电压有可能长时间维持在9V)。
最后,输出滤波电容C24~C25也需全部更换为耐压值25V的电解电容。
开关电源模块的十大技巧
1. 确保输入电压的稳定性:开关电源的输入电压变化范围应在规定范围内,以确保输出电压的稳定性。
2. 选用恰当的输出电容:输出电容可以平滑输出电压的波动,并提供短时间的电源备份,选用合适的电容容值可以改善电源性能。
3. 降低输出电压噪声:噪声滤波电容和电感可以帮助减少输出电压的噪声,并改善电源的稳定性。
4. 设计合适的保护措施:开关电源应考虑过压、过流、过温等保护功能,以确保设备的安全运行。
5. 选择合适的开关频率:高开关频率可以减小开关器件尺寸,但可能会增加功耗和噪声;低开关频率则可能导致较大的尺寸和重量。
6. 优化散热设计:开关电源通常会产生一定的热量,在设计时要考虑散热问题,以避免过热引发故障。
7. 考虑EMC问题:开关电源可能会产生电磁干扰,要在设计时注意防止干扰其他设备或被其他设备干扰。
8. 选择适当的转换拓扑结构:有多种不同的开关电源拓扑结构,如Buck、Boost、Buck-Boost等,根据实际应用需求选择合适的拓扑结构。
9. 优化功率因数:开关电源的功率因数应尽可能接近1,以减小对电网的污染,并提高能源利用效率。
10. 严格测试和品质控制:开关电源的稳定性和可靠性至关重要,应进行严格测试,并建立有效的品质控制体系,确保产品质量。
【新提醒】菜鸟的0~50V,0~10A的ATX电源改可调电源的过程想到那就要付诸于⾏动,⾸先是在论坛搜索⼤神们的帖⼦,再仔细的阅读,把有⽤的全部收藏。
其中像猪蹄煮不烂⼤神的ATX改可调原理最经典,建议要改ATX可调的都去看看,帖⼦:/read.php?tid=328518。
但是由于⾃⼰的电⼦基础太差,猪蹄煮不烂的ATX改可调的原理也不是能完全理解。
所以我是看了另外⼀篇的帖⼦改的,那个相对于新⼿来说⽐较容易,可以说是⼿把⼿的教程了,原帖在这⾥:/read.php?tid=336224,在此对原贴作者表⽰感谢。
改造的步骤如下,⼀台能⽤的ATX电源,如果是坏的要先修好,建议别⽤太旧的电源,因为旧电源有很多元件都有可能失效了,虽然能改造成功,但是啸叫会很难解决。
1.⾸先把ATX电源的线全部拆掉,绿线跟地短接。
2.把+3.3V,-5V,+5V,-12V上的元件全部拆掉,不懂的话,从输出端往回拆。
3.把+12V线路通往494或者7500IC 1脚上的电阻换成24K的5⾊环电阻,+12V线路上的稳压⼆极管也要拆掉。
4.把+12V跟地之间的电容换成耐压30V以上的。
5.TL494的1脚再接⼀只12K的5⾊环电阻到地。
调压电位器⽤精密多圈可调电位器,阻值为10K的,中间脚串个10K的电阻再接到TL494的2脚(如果不能从0V起调就把10K电阻去掉,我的是加了后能减少⼀点啸叫),电位器的另外两个脚,⼀个接地,另外⼀脚接TL494的13、14、15脚(这3个脚是连起来的),到此就能调电压了,如下图:6.调压成功后,就可以改调流了。
调流我是按照这个帖⼦来做的(/read.php?tid=2419806,在此也表⽰感谢,对于⼩⽩来说真的很有⽤),⾸先把TL494的15脚跟13、14脚单独分开,TL494的16脚接⼀个5W 0.01欧的陶瓷电阻,然后电源输出的负极就接16脚。
调流电位器也是⽤精密多圈可调电位器,阻值为1K的,中间脚串⼀个10K电阻接到15脚,另外两个脚,⼀个接地,另⼀个串47K电阻接到13、14脚,根据原贴我⼿绘了⼀张调流的电路图,设置最⾼电流改图中红框处的电阻,我是⽤了300K+100K的可调电阻,电位器扭到最⼤后,再微调100K电位器,如下图:到此,调压调流的⼤概步骤就是这样。
A T X电源改装可调电源的实践与要领总结ATX电源改装可调电源的实践与要领总结在网上有很多关于ATX电源改可调电源的文章,我参阅了大量有关的文章和资料,先后拆掉了三个以TL494为方案的ATX电源进行改装调试,最终获得了圆满的成功。
一些文章标称改装为“30V、40V,输出电流8A、10A”,其实,仔细阅读你会发现它们的改装过程、改装部位以及所用元器件基本是一模一样的,主要的区别是要求输出电压较高时,主开关变压器的次级线圈匝数多上那么一两圈就可以了。
因为P=U.I,改装时要兼顾到你要求的输出电压与电流的乘积,不能让它超过你的电源原额定输出功率。
边改装边查资料的过程是十分浪费时间的,下面就改装过程中涉及的重点基础知识和要领做一个归纳总结,对你的改装一定是十分必要的。
通过深入的分析,改装的最大难点是主开关管的异常发热问题,有时还没等到开关管发热就已经击穿烧毁了,烧上几对开关管后你的信心会大受折扣。
但只要解决了这个问题,你一定能改装成功的。
现将我的成功经验介绍如下:一、功能介绍。
利用废仪器壳改装好的外形图中左侧占据面板约2/3面积的是可调电源部分:依次是电压表、电流表、5V的USB接口、电源工作指示灯、正负接线柱、电源工作开关、输出电压调节电位器;图中右侧占据面板约1/3面积的是电烙铁电源调压部分:依次是烙铁电源指示灯、烙铁电源三段开关、烙铁工作开关、烙铁插座。
有关部位的放大图片:二、有关制作。
(一)、首先介绍简单电烙铁调压部分。
进行电子制作,经常需要电烙铁长时间通电,因为大功率的干烧而烧死烙铁头。
我设计了以下简单可靠的电路,对30W的烙铁实现了在全功率、80%功率和半功率的三个不同状态,足以满足烙铁的不同工作状态要求:说明:W4和W5是一个双刀单掷开关,它是烙铁电源的总开关。
总开关闭合后,当仅闭合W1时,烙铁为全功率,用于正常焊接;当仅闭合W2时,烙铁为半功率,用于预热待机;当W2和W3同时闭合时,烙铁工作在约80%功率的状态,用于较小零件的焊接。
开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWMFDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
三、 功率变换电路:1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS 管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。
在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。
从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。
pwm 开关电源,图解开关电源的pwm 反馈机制
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC 和MOSFET 构成。
随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。
目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
开关电源工作原理
1.交流电源输入经整流滤波成直流;
2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
3.开关变压器次级感应出高频电压,经整流滤波供给负载;
4.输出部分通过一定的电路反馈给控制电路,控制PWM 占空比,以达到稳定输出的目的。
交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;。
电源改造教程:改造成可调开关电源前几天把放床底N年的开关电源改了可调的,其实是缺个可调电源来DIY这开关电源是12V 29A的,可以改成最高16V27A的可调,但调到16v那主变使劲的叫,我微调到15V时才不叫了,那也好15V刚刚好合适内部用常见的TL494,干扰比3842小到几乎可以忽视。
难度的话论坛每个人都可以DIYTL494采用外部电源供电,如果不改接也可以工作,只是tl494工作电压变化,可能会有参数变化。
这是改好的可调电源,稳定性不错把47K,5.6K电阻连494的15,2脚挑出来,接电位器UTC的TL494,如果有TI的或摩托的建议更换欧姆龙继电器,用12V的最好494外部供电负极接主变压器下494地线正极接在拆除二极管那里找到TL494的13、14脚(电路上是直接短接在一起的),找到去15脚的电阻(47K),挑起接13、14脚这一端,电阻接电位器动臂,电位器一端接13、14脚,另外一端接地组成调流。
找到TL494的13、14脚(电路上是直接短接在一起的),找到去2脚的电阻(5.6K),挑起接13、14脚这一端,电阻接电位器动臂,电位器一端接13、14脚,另外一端接地组成调压了。
来个电位器特写X宝上5块钱的10圈电位器,质量不错背面不忍直视...30W的电烙铁不给力呐用一段铜线当负载,电压调到5V,调15V不敢,线都快软了电流19.5A,已经够用了断开电源继电器闭合把电放完,电压为0V微调,这里调合适的电压且主变压器不叫就可以了我这里微调最高是16V,但主变压器叫的厉害,改为15就ok这是这次所需拆除的元件完,过几天电压表电流表到了再进一步完善---详细说图改可调-注意仔细看!这是参照电路图-------去掉启动电阻在电源里找到功率三极管的c极(一般为中间脚),会看到连接有一个二极管一个电阻。
这个电阻一般就为启动电阻,它直接或间接连到三极管b极。
有的地方是一个电阻,有的用两个电阻串联,以分摊功耗和压降。
连续可调稳压电源电路图连续可调稳压电源电路图,一般的双电源(正负对称电源)都没有连续可调的功能,给使用带来不便。
本文介绍用一块7815和一块7915三端稳压器对称连接,即可获得一组正负对称的稳压电源,而且输出电压值可各自单独调节,也可同步调节。
电路如附图所示,由变压器输出的交流双18V电压经D1~D4整流,C1、C2滤波得到一直流电压,其中变压器双电源的中心抽头作为公共接地端,然后分别把该直流电压正负极接入7815的①脚和7915的③脚。
7815的③脚接到电位器W2的滑动触片“d”上,7915的①脚接到电位器W1的滑动触片“C”上。
当将触片“C”滑到“0”端接地时,调节W2,即可从“a”端得到“+6~+15V”的正向可变电压;若将触片“d”滑到“0”端接地,调节W1,在“b”端就可得到“-6~-15V”的负向可变电压,将W1、W2换成同轴电位器,将获得正负对称的可调电源,输出电压值在±6V~±15V之间连续可调,可达到同步调节的目的。
本电路的7815、7915三端稳压块上应加装散热片.5.1-40V连续可调开关电源的电路图下图是由CW4960组成的开关电源,电路简单,外围元件极少。
最高输入电压为50V,输出电压汇范围为5.1-40V连续可调,额定电流为2.5A,变换效率为90%,脉冲占空比可以在0-100%内调整。
同时CW4960内部还有软启动、过热、过流保护功能。
过流保护电流为3-4.5A,工作频率高达100KHz。
CW4960内部基准源为5.1V,采样由2脚输入,其输出电压为Uo=5.1×(R2+R4/R2)。
其中C1滤波用来减小输入电压的纹波,R1和C2决定开关电源的工作频率,f=1/RC,上图工作频率为106KHz,R3和C4为频率补偿网络,用以防止产生寄生振荡。
D1为续流二极管,可选用肖特基或快恢复二极管,C3为软启动电容,一般取1-4.7uF。
中国开关电源行业门户网 大电流可调稳压电源电路图电路图及工作原理:稳压电源电路如下图所示,经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。
电脑开关电源维修图解一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。
相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
首先,我们要知道计算机开关电源的工作原理。
电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。
此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。
接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的方法。
一、在断电情况下,“望、闻、问、切”由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。
因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。
首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB 板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。
老工人进来,你要的电脑电源改可调电源原理图家里有个旧ATX电源,一直想改为可调电源,找了很久终于找到了相关的一些资料,但自己现在又没时间玩了,要学习,拿来给有空之人玩玩。
下边是我找到的原文原图:PC 电脑的ATX 标准电源技术成熟可靠,电路简单,廉价经济,功率适中200-300W。
将其改造成0-110 伏的通用直流可调电源,并且0-2A 可调限流。
非常适合家电修理、电子爱好者、学校实验室等使用。
其它杂志上见过废电源改制文章,都是固定恒压输出。
本文改动较大,包括主输出变压器,电流电压反馈环节,电压电流给定环节,及输出整流电路,去掉电源开关机电路等。
适合于有较高水平的爱好者。
如从新制作电路板批量生产也容易。
本人改制两台,一台用于某工厂230W110V 直流他励电机测试,另一台用于模拟直流埋弧电焊机输出电压,调试焊接控制电路。
因为带有完善的恒流特性,使用安全可靠,两年来使用效果非常好。
现奉献给大家,仅供参考。
一、 ATX 电源结构现在PC 电脑电源结构大部分相同,可以说是经典设计。
它是推挽式脉宽调制PWM 开关电源,核心的PWM 控制器是TL494 芯片,资料网上有地是,读者可以搜之。
辅助5V 电源多采用单管自激电源,LM339 电压比较器构成PG 信号和其它检测保护电路,基本原理不是本文重点,读者可以参考相关书籍。
二、改制说明改制后的电路如图(1)。
为了尽量减少投入,大部分采用原部件。
依据电路图把LM339 周边器件焊掉,开关机器件去掉,主变压器,各路整流二极管,滤波电容,滤波电感全部焊掉。
然后清理线路板。
注意保护好主变压器和滤波电感以便改制。
按下面说明选择器件,利用原来焊孔和线路计划安放新器件,因为器件较少很容易放下,无法走通时可通过切断,焊连线跳线措施如图完成线路。
输出部分主要是变压器TF2,因为输出电压较高,需要改绕二次线圈。
方法是:将变压器磁芯加热70 多度(温度不能太高),拆开磁芯,然后拆掉外层的一次绕组,记清这一绕组的匝数,注意保存绝缘材料和原铜线一会再用。
本帖最后由kangdage 于2014-6-21 15:26 编辑昨天文字说明了下如何改可调,今天有翻到两个电源模块,准备改了做可调电源用。
拍的不是很仔细,大家将就着看。
第一次发图文,又不懂的大家尽管提。
今天翻出来的两个电源模块,现场拆回来的旧的,很脏但没坏。
懒得画了,从网上找到的电路图。
以上电路基本和手里的模块电路相同,大家可以参考下,对比手上的模块。
可以看出这个电路比atx的简洁,没有需要大面积拆除的部分。
有我们需要的恒流恒压控制环路,不需要刻画pcb。
整体改造顺利的话半天就可搞定。
首先先肢解模块,我拆的比较彻底实际只要能取出电路就可以了。
因为是就模块,需要清洗和涂硅脂,所以就拆散了。
第一个模块是带风扇的,风扇已经废了。
开上盖。
俯视内部,灰尘遍布。
取出电路板后的躯壳。
取出的电路板,大家拆到这里就好了。
模块的特征已经很明显,两个功率管,两个高压电容,一个主变,还有一个驱动变压器,当然还有tl494。
电路板反面。
后面,注意保护绝缘垫。
接线端子,最左侧的电位器是微调输出的。
功率三极管,两个。
主变,肖特基,滤波电感,输出电容。
再拆另一个,先拆掉右边的那颗螺丝。
端子排旁边还有一颗。
向左一推,就能拿下来了。
这个相对干净些,同样的两个高压电容,两个功率管,一个控制变压器,tl494芯片。
拆下外壳外边剩余的螺丝。
即可取出电路板。
看到额外的散热片了没,比带风扇的那个强。
同样端子排旁边有个微调电位器。
右下角的就是tl494,除此之外没有别的芯片。
固定功率管的螺丝,拆。
背面还带绝缘膜,不错!再近点看看,大面积的铺铜是功率输出部分。
功率管近照。
左边是高压电容,图中间是控制变压器,右边是tl494。
高压电容和电压转换开关,不出国的话直接把开关拆掉就好。
输入滤波部分。
tl494特写。
肖特基特写。
暂时用不到的外壳和螺丝,堆一起。
先去给电路板洗澡,回来再收拾战场。
洗完澡的电路板,干净多了。
第一步:去掉自启动电阻。
为什么要去掉自启动电阻呢?因为这个电源上电时,高压部分会产生微弱的自激震荡,次级感应出一定能量。