灰色关联分析计算实例演示
- 格式:ppt
- 大小:414.50 KB
- 文档页数:18
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==灰色关联度范例篇一:灰色关联分析应用实例(求灰色关联度)灰色关联分析应用实例设序列X1?(30.5,34.7,35.9,38.2,41)X2?(22.1,25.4,27.1,28.3,31.5)求其绝对关联度、相对关联度和综合关联度(??0.5)(数据取自教材77页第二题)由题目可知,原序列为等时距序列,且皆为1时等时距。
第一步:求始点零像化,得000000X0?(x0(1),x0(2),x0(3),x0(4),x0(5))?(0,4.2,1.2,2.3,2.8)000000X1?(x1(1),x1(2),x1(3),x1(4),x1(5))?(0,3.3,1.7,1.2,3.2)第二步:求s0,s1,s1?s0s0?s1??x00(k)?k?24410x0(5)?9.12x1(5)?7.82?x10(k)?k?24s1?s0?计算灰色绝对关联度10000(x(k)?x(k))?(x1(5)?x0(5)?1.3?102k?2?01?1?s0?s11?s0?s1?s1?s0?0.9323因此可以看出两个序列是高度相关的类似的再求相对关联度第一步:将序列初值化'0'0'0'0'0'0X0?(x0(1),x0(2),x0(3),x0(4),x0(5))?(1,1.138,1.035,1.064,1.073)X?(x(1),x(2),x(3),x(4),x(5))?(1,1.149,1.0 67,1.044,1.113)01'01'01'01'01再将其始点零像化'0'0'0'0'0'0X0?(x0(1),x0(2),x0(3),x0(4),x0(5))?(0,0.138,?0.104,0.029,0.009)X?(x(1),x(2),x(3),x(4),x(5))?(0,0.149,?0 .082,?0.023,0.069)01'01'01'01'01'01第二步:求s'0,s'1,s'1?s'0?x'00(k)?k?24410x'0(5)?0.0687210x'1(5)?0.07872s'1??x'10(k)?k?24s'1?s'0?100'0(x'(k)?x(k))?(x'1(5)?x'0?100(5)?0.0099952k?2第三步:求相对关联度?01?1?s0?s11?s0?s1?s1?s0?0.9914两个序列的相对关联度也是高度相关的。
灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
灰色关联分析应用实例设序列12(30.5,34.7,35.9,38.2,41)(22.1,25.4,27.1,28.3,31.5)==X X求其绝对关联度、相对关联度和综合关联度(0.5ρ=)(数据取自教材77页第二题)由题目可知,原序列为等时距序列,且皆为1时等时距。
第一步:求始点零像化,得000000000000000000111111((1),(2),(3),(4),(5))(0,4.2,1.2,2.3,2.8)((1),(2),(3),(4),(5))(0,3.3,1.7,1.2,3.2)====X x x x x x X x x x x x第二步:求0110,,-s s s s400000240011124000010101021()(5)9.121()(5)7.821(()())((5)(5) 1.32====+==+=-=-+-=∑∑∑k k k s x k x s x k x s s x k x k x x计算灰色绝对关联度0101011010.93231ε++==+++-s s s s s s因此可以看出两个序列是高度相关的类似的再求相对关联度 第一步:将序列初值化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(1,1.138,1.035,1.064,1.073)((1),(2),(3),(4),(5))(1,1.149,1.067,1.044,1.113)====X x x x x x X x x x x x再将其始点零像化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(0,0.138,0.104,0.029,0.009)((1),(2),(3),(4),(5))(0,0.149,0.082,0.023,0.069)==-==--X x x x x x X x x x x x第二步:求0110',',''-s s s s400002400111240'00010101021'()'(5)0.068721''()'(5)0.078721''('()())('(5)'(5)0.0099952===+==+=-=-+-=∑∑∑k k k x k x s x k x s s x k x k x x第三步:求相对关联度0101011010.99141ε++==+++-s s s s s s两个序列的相对关联度也是高度相关的。
灰色关联度分析一、关联度分析的意义关联度是表征两个事物的关联程度设有参考序列和比较序列xxx四个时间数据序列如图所示:则关联度为r12>r13>r14关联度分析是一种曲线间n何形状的分析比较,即n何形状越接近,则关联程度越大,反之则小。
二、面积关联度分析法关联度应用关联系数来表示,我们用曲线间的差值大小作为一种衡量关联度的尺度。
设母因素时间数列和子因素时间数列分别是:xx记f k时刻x j对x i的关联系数为§ij(f k),其绝对差值为:︱x︱= k=1,2,……,n这是对两个方列各时刻的最小绝对差为:=︳x︳各时刻的最大绝对差为:︳x︳则母因素为子因素两曲线在各时刻的相对差值用下式表示:式中称为x j对x i在K时刻的关联系数关联系数的上界值=1关联系数的下界值=K∈(0,1),称为分辨系数,减少极值对计算的影响,提高分辨率。
⑵原始数据标准化处理方法关联系数的值主要决定于x i和x j在各时刻的差值,由于x i和x j数据单位不同,会影响的值,因此若是要对原始数据作无量纲处理,即标准化处理。
数据标准化有两种方法:初值化处理和均值化处理。
初值化处理即把序列第一个数据除以该序列所有数据,得到一个新数列。
均值化处理即把序列平均值除以该序列所有数据,得到一个新数列。
⑶面积关联度关联系数只表示各时刻数据间的关联程度,我们用基本均值表示两条曲线间的关联程度r=k=1,2,……,N称r为子因素曲线x j对母因素曲线x i的关联度。
⑷多个序列的最小绝对差和最大绝对差。
在灰色关联度分析中,无论序列有多少,和各只有一个。
和的求法,以为例解释,类似。
=︳x︳例母序列:子序列:第一步:固,,j变动时,得到:︳︳,︳︳,……, ︳︳第二步:从中可以选出:︳︳第三步:当k变动时,可以得到:︳︳, ︳︳,……, ︳︳第四步:从中又可以选出最小的=⑸关联度比较及实际意义当计算出子因素对母因素的关联度后,将排序则子因素对母因素影响的重要程度依次是序列:灰色系统优势分析1、优势分析的意义如果母函数数列不止一个,被比较的子函数数列也不止一个,则可以构成关联矩阵,通过关联矩阵多元素间的关系,可以分析哪些因素是优势,哪些是劣势。