大学线性代数期末考试试题
- 格式:doc
- 大小:3.05 MB
- 文档页数:3
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。
答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。
答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。
答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。
答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。
答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。
最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 s n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
《线性代数》期末考试试卷附答案一、填空题(每小题3分,共30分)1.如果行列式2333231232221131211=a a a a a a a a a ,则=---------333231232221131211222222222a a a a a a a a a 。
2.设2326219321862131-=D ,则=+++42322212A A A A 。
3.设1,,4321,0121-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=A E ABC C B 则且有= 。
4.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a 。
5.A 、B 均为5阶矩阵,2,21==B A ,则=--1A B T 。
6.设T )1,2,1(-=α,设T A αα=,则=6A 。
7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。
8.若31212322212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。
9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。
10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。
二、单项选择(每小题4分,共20分)1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( )A .1或2B . -1或-2C .1或-2D .-1或2.2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( )A .5B .-5C .-3D .33.设A 、B 均为n 阶矩阵,满足O AB =,则必有( )A .0=+B A B .))B r A r ((=C .O A =或O B =D .0=A 或0=B4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是( )A .21+ββB .()212351ββ+ C .()21221ββ+ D .21ββ-5. 若二次型32312123222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( )A . 1B .2C . 3D . 4三、计算题 (每题10分,共50分)1.计算n 阶行列式abbb a b b b aD n=线性代数答案:一、填空题1.-16; 2. 0; 3.⎪⎪⎭⎫⎝⎛21107; 4. 1; 5.-4;6. ⎪⎪⎪⎭⎫ ⎝⎛----=1212421216655A ;7.λ1A ;8.3535<<-t ; 9. 2π;10. 24。
《线性代数》期终试卷1( 2学时)本试卷共七大题一、填空题(本大题共7个小题,满分25分):1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是, 则的属于的两个线性无关的特征向量是();2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随矩阵, 则的行列式();3.(4分)设, , 则();4.(4分)已知维列向量组所生成的向量空间为,则的维数dim();5.(3分)二次型经过正交变换可化为标准型,则();6.(3分)行列式中的系数是();7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个解向量, 其中, , 则该方程组的通解是()。
二、计算行列式:(满分10分)三、设, , 求。
(满分10分)四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。
(满分15分)五、设向量组线性无关, 问: 常数满足什么条件时, 向量组, , 也线性无关。
(满分10分)六、已知二次型,(1)写出二次型的矩阵表达式;(2)求一个正交变换,把化为标准形, 并写该标准型;(3)是什么类型的二次曲面?(满分15分)七、证明题(本大题共2个小题,满分15分):1.(7分)设向量组线性无关, 向量能由线性表示, 向量不能由线性表示 . 证明: 向量组也线性无关。
2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组必有非零解。
《线性代数》期终试卷2( 2学时)本试卷共八大题一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分):1. 若阶方阵的秩,则其伴随阵。
()2.若矩阵和矩阵满足,则。
()3.实对称阵与对角阵相似:,这里必须是正交阵。
()4.初等矩阵都是可逆阵,并且其逆阵都是它们本身。
()5.若阶方阵满足,则对任意维列向量,均有。
()6.若矩阵和等价,则的行向量组与的行向量组等价。
()7.若向量线性无关,向量线性无关,则也线性无关。
线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。
左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
大学线性代数期末考试试
题
The Standardization Office was revised on the afternoon of December 13, 2020
a 0 0
一、选择题 线性代数测试
a 1
b 1
c 1
c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( )
A. - D
a 3
b 3
c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 .
(A )13524876; (B )51324867;
(C )38124657;
(D )76154283. 3. 设 A m ⨯s , B t ⨯n , C s ⨯t ,则下列矩阵运算有意义的是( )
A. ACB ;
B. ABC ;
C. BAC ;
D. CBA .
4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有()
A. A = B ;
B. A ≠ B ;
C. R ( A ) = R (B ) ;
D. R ( A ) ≠ R (B ) .
5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( )
A. 4
B.5
C.2
D.3
6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ).
A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示;
B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示;
C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示;
D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示.
⎛ a b + 3 0 ⎫ ⎪
7. 矩阵 A = a - 1 a 0 ⎪ 为正定矩阵,则 a 满足 . ⎪ ⎝ ⎭ 1 1
(1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2
8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 .
(A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量;
(C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似.
二、判断题
1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。
2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。
3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。
4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例.
5、若 A 是实对称矩阵,则 A 一定可以相似对角化.
三、填空题
1 1 0 ⎩ ⎝ ⎭ 5 1 - 1 1
2
3 1 、已知行列式 D = 1 1 1 3
4 5
A 11 + A 12 + A 13 = .
, 其中 A ij 是 D 的( i,j ) 元的代数余子式, 则
2、设方阵 A 满足 A 2 + 2 A + 2E = O ,则( A + 2E )-1 = .
3、若向量组
α1
= (-2,3,1)T , α = (2, t ,-1)T , α = (0,0,1)T 线性相关,则t = . 4、若向量α= (1, s ,1) 与β= (t , 2, 0) 正交,则s , t 满足 .
5 、已知 3 阶方阵 A 的特征值为 1 , -1 , 2 , 则 3A 2 - 2 A - 2E 的特征值为
.
四、计算题 ⎛1 1 1 ⎫ ⎪ ⎛ 1 2 3⎫ ⎪
1、已知矩阵 A = 1 1 - 1⎪, B = - 2 - 1 0⎪ ,求3AB - 2 A 与AB T ⎪ ⎪ ⎝ ⎭
2、设向量组:α = (1,1,-1)T ,α = (3,4,-2)T ,α = (2,4,0)T ,α = (0,1,1)T ,试求此向 1 2 3 4
量组秩和一个极大无关组,并将其余向量用最大无关组线性表示.
3、求下列非齐次线性方程组的通解.
⎧x 1 + x 2 = 5, ⎪2x + x + x + 2x = 1, ⎨ 1 2 3 4
⎪5x 1 + 3x 2 + 2x 3 + 2x 4 = 3. 2 3。