八年级数学相似图形
- 格式:ppt
- 大小:1014.01 KB
- 文档页数:20
八年级上册数学a字模型一、A字模型的概念。
在三角形中,A字模型是一种常见的相似三角形模型。
它类似字母“A”的形状,通常由一条与三角形一边平行的直线所截得的图形构成。
(一)基本图形结构。
1. 在三角形ABC中,DE平行于BC,这样就形成了一个典型的A字模型。
- 其中三角形ADE和三角形ABC相似。
- 对应角相等,即∠ADE = ∠ABC,∠AED = ∠ACB,∠A是公共角。
2. 相似比。
- 根据相似三角形的性质,相似三角形对应边成比例。
在这个A字模型中,(AD)/(AB)=(AE)/(AC)=(DE)/(BC)。
二、A字模型的性质及应用。
(一)求线段长度。
1. 例1:在三角形ABC中,DE平行于BC,AD = 2,DB = 3,AC = 10,求AE的长度。
- 因为DE平行于BC,所以三角形ADE相似于三角形ABC。
- 根据相似三角形对应边成比例,(AD)/(AB)=(AE)/(AC)。
- 首先求AB的长度,AB = AD+DB = 2 + 3 = 5。
- 设AE=x,则(2)/(5)=(x)/(10),通过交叉相乘可得5x = 20,解得x = 4,即AE = 4。
2. 例2:已知三角形ABC中,EF平行于BC,AF = 3,FC = 2,BC = 10,求EF 的长度。
- 由于EF平行于BC,三角形AEF相似于三角形ABC。
- 此时(EF)/(BC)=(AF)/(AC)。
- 先求AC的长度,AC = AF+FC = 3+2 = 5。
- 设EF = y,则(y)/(10)=(3)/(5),解得y = 6,即EF = 6。
(二)求比例关系。
1. 例3:在三角形ABC中,DE平行于BC,若AD:DB = 1:2,求三角形ADE与四边形DBCE的面积比。
- 因为DE平行于BC,三角形ADE相似于三角形ABC。
- 已知AD:DB = 1:2,那么AD:AB = 1:(1 + 2)=1:3。
- 根据相似三角形面积比等于相似比的平方,S_ ADE:S_ ABC=((AD)/(AB))^2 = ((1)/(3))^2=(1)/(9)。
第12周每周一练 相似图形复习班级:________ 姓名:_________________ 学号:________一、选择题:1.一个三角形三条高的比是6:4:3,那么三条高所在的边的长度之比为( ). A .6:4:3 B .3:4:6 C .2:3:4 D .1:2:3 2.如图,已知△ABC 中,DE ∥FG ∥BC ,且AD :DF :FB=1:1:1,则S △ADE :S 四边形DFGE :S 四边形FBCG 等于( ).A .1:2:3B .1:4:9C .1:3:5D .1:4:163.一个钢筋三脚架的三边长分别为20cm ,50cm ,60cm ,•现要做一个与其相似的钢筋三脚架,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为两边,•则不同的截法有( ).A .一种B .二种C .三种D .五种4.如图,已知M 是平行四边行ABCD 的AB 边的中点,•CM•交BD•于点E ,•则图中阴影部分面积与平行四边行ABCD 面积之比为( ).A .13B .14C .25D .512二、填空题:5.如图,△ABC 中,MN ∥BC ,若∠C=68°,AM :MB=1:2,则∠MNA=______度, AN :•NC=____________.6.已知D 、E 分别是△ABC 的边AB 、AC 上的点,且AD=2,AB=3,AE=2.4,AC=3.6,•则S △ADE :S 四边形BCED =______________.7.平行于△ABC 的边BC 的直线平分△ABC 的面积,且把BC 边上的高AD 分为AG•、•GD 两段,则AG :GD 的值是_______________.8.如图,在△ABC 中,AB>AC ,过AC 上一点D 作直线DE ,交AB 于E ,使△ADE•和△ABC 相似,这样的直线可作____________条. 三、解答题9.如图,E 、F 分别为矩形ABCD 的边AD 、BC 的中点,•若矩形ABCD•∽矩形EABF ,AB=1,求矩形ABCD 的面积.10.如图,已知点D 在BC 上,BD :DC=2:1,点E 在AD 上,AE :ED=2:3,BE•的延长线交AC 于点F ,求BE :EF 的值.11.如图,在△ABC 中,AB=AC ,BD ⊥AC .求证:BC 2=2CA ·CD .12.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F ,求证:EF GF CF ⋅=2.A BCDF G E13.如图,等腰梯形ABCD 中,AD ∥BC ,AB=4cm ,BC=7cm ,∠B=60°,P•为下底BC 上一点(不与B 、C 重合),连结AP ,过P 点作PE 交DC 于E ,使得∠APE=∠B . (1)求证:△ABP ∽△PCE ;(2)在底边BC 上是否存在一点P ,使得AP :PE =4:3,如果存在,求BP 、EC 的长;•如果不存在,请说明理由.第四章相似图形单元复习题参考答案一、选择题:1.若两个相似三角形的面积比为4:9,那么它们的相似比是( A ).A.2:3 B.4:9 C.16:81 D.1:2.252.一个三角形三条高的比是6:4:3,那么三条高所在的边的长度之比为( C ).A.6:4:3 B.3:4:6 C.2:3:4 D.1:2:33.如图1,已知△ABC中,DE∥FG∥BC,且AD:DF:FB=1:1:1,则S△ADE:S四边形DFGE:S四边形FBCG等于(C ).A.1:2:3 B.1:4:9 C.1:3:5 D.1:4:16(1) (2)4.用放大镜看一个Rt△ABC,该三角形边长放大10倍后,下列结论正确的是( B ).A.∠B是原来的10倍 B.周长是原来的10倍C.∠A是原来的10倍 D.面积是原来的10倍5.一个钢筋三脚架的三边长分别为20cm,50cm,60cm,•现要做一个与其相似的钢筋三脚架,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为两边,•则不同的截法有( D ). A.一种 B.二种 C.三种 D.五种6.已知b c a c a ba b c+++===k(a+b+c≠0),那么y=kx+k的图象一定不经过( D ).A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图2,已知M是平行四边行ABCD的AB边的中点,•CM•交BD•于点E,•则图中阴影部分面积与平行四边行ABCD面积之比为( A ).A.13B.14C.25D.512二、填空题:8.已知两个三角形对应中线之比为2:5,则它们周长的比是__2:5_.9.如图3,△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_68_度,AN:•NC=_1:2_.10.若32,234a b c a b ca++==则=__8__.(3) (4)11.已知D 、E 分别是△ABC 的边AB 、AC 上的点,且AD=2,AB=3,AE=2.4,AC=3.6,•则S △ADE :S 四边形BCED =__4:5_.12.平行于△ABC 的边BC 的直线平分△ABC 的面积,且把BC 边上的高AD 分为AG•、•GD 两段,则AG :GD13.如果两个相似三角形最短边长为4:5,而且周长和为36cm ,那么这两个三角形的周长分别为_16cm ,20cm __.14.如图4,在△ABC 中,AB>AC ,过AC 上一点D 作直线DE ,交AB 于E ,使△ADE•和△ABC 相似,这样的直线可作_2 条.15.雨后初晴,一学生在运动场上玩耍,在他前面2m 处一块小积水块,他看到了旗杆顶端的倒影.如果旗杆底端到积水处的距离为40m ,该生的眼部高度是1.5m ,那么旗杆的高度是__30_m . 三、解答题16.试作四边形,使它和已知的四边形位似比等于1:2,位似中心为O(1)使两个图形在点O 同侧(2)使两个图形在点O 两侧如图两四边形为所求17.如图,E 、F 分别为矩形ABCD 的边AD 、BC 的中点,•若矩形ABCD•∽矩形EABF ,AB=1,求矩形ABCD的面积.解:∵ 矩形ABCD•∽矩形EABF∴ABADEA AB =又E 为AD 的中点,AB=1 ∴AB ADAD AB =21 即2221AB AD = ∴2=ADO∴矩形ABCD 的面积=2=∙AD AB18.如图,梯形ABCD 中,AD ∥BC ,E 是AB•上的一点,•EF•∥BC ,•并且将梯形ABCD 分成两个相似梯形AEFD 、EBCF ,若AD=4,BC=9,求AE :EB 的值.解: ∵梯形AEFD ∽梯形EBCF, AD=4,BC=9∴EB AE BC EF EF AD == 即94EFEF =∴6=EF∴3264==EF AD∴AE :EB=AD:EF=2:319.如图,已知点D 在BC 上,BD :DC=2:1,点E 在AD 上,AE :ED=2:3,BE•的延长线交AC 于点F ,求BE :EF 的值.提示:过D 作DM ∥AC 交BF 于M易证△AEF ∽△DEM ∴EF :EM= AE :ED=2:3同理可证△BDM ∽△BCF ∴BM :BF=BD :BC=2:3由EF :EM =2:3 得EF :MF=2:5 由BM :BF =2:3 得MF :BF=1:3∴EF :BF=2:15 ∴BE :EF=13:220.ΔABC 为正三角形,D.B.C.E 在一条直线上,若∠DAE =1200,找出图中的相似三角形(写出证明过程)并探讨DB 、BC 、CE 之间的关系。
相似三角形尊敬的各位评委老师,上午好!我是来应聘小学数学的5号考生。
今天,我说课的题目是:《相似三角形》。
下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行我的说课。
下面开始我的说课。
一、说教材《相似三角形》是北师大版初中数学八年级下册第四章第五节课的教学内容。
本节课主要介绍了相似三角形的定义及应用这一概念解决一些实际问题。
本节课是在学生学习了相似多边形,知道了相似多边形的本质特征的基础上进行教学的,并为下一步学习相似三角形的判断定理做感性的准备,因此本节课具有承上启下的作用。
根据对教材地位和作用的分析,在新课改理念的指导下,我对这个课时确定了如下三维目标:知识与技能目标:了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,并在实际应用中加深对相似三角形的认识和理解。
过程与方法目标:在相似三角形概念的学习过程中,引导学生对问题观察、分析等,养成良好的思维习惯,并在应用的过程中进行对比学习,渗透类比的思想方法。
情感、态度与价值观目标:通过本节课的课的学习,学生体验数学学习活动中探索与创造的乐趣。
根据本节教材的地位和作用以及课改中明确要求学生了解两个三角形相似的概念和利用这个概念解决一些实际问题,因此本节课的教学重点是相似三角形的概念和初步应用,相似三角形概念中的对应边对应角理解起来还是有一些难度的,因此这是这节课的教学难点。
二、说学情分析学生的学习数学的基本情况,对于把握教材和教学具有重要指导意义。
因此在教学之前我来分析一下学情。
八年级学生还处于形象思维阶段,他们乐于尝试、探索、思考,好奇心和求知欲较强。
对于相似图形的概念有了一定的积累,初步具有比较、理解的能力,但是对于三角形相似概念中的对应关系的抽象能力还不够强,因此,在授课中我会注意这方面的问题,帮助学生建立相关知识体系。
三、说教法在新课改理念的指导下,教学中应关注学生交流能力的培养及探究问题的意识。
根据初中学生的心理特征及本节的内容特点,这节课我主要采用小组探究法和启发教学法,这两种教法的应用能够很好的引导学生探索知识,加快形成完整的认知结构,提高学生这方面知识的应用能力。
八年级前四章知识点八年级前四章,分别是《全等形与相似形》、《平面直角坐标系与直线方程》、《角的概念与运算》、《三角形的性质与分类》。
这些章节内容的深度与难度不一,但都是初中数学中必须掌握的知识点。
全等形与相似形《全等形与相似形》是八年级数学中难度较低的一章,但也不可小觑。
全等形的定义是两个图形,它们的形状、大小、面积完全相同。
而相似形则是两个图形,它们的形状相同,但大小可以不同,比例相同。
通过全等性质,我们可以知道两个全等形的对应部分一定相等。
而相似形也有其特殊的性质,比如两个相似三角形的对应边比相等,对应角相等。
理解并掌握这些概念,可以更好地理解和解决与全等形和相似形相关的问题。
平面直角坐标系与直线方程《平面直角坐标系与直线方程》是一章难度较大的数学内容。
它主要涉及坐标系、直线和方程的关系,以及如何通过坐标系和方程来解决一些几何问题。
在这一章中,我们需要掌握二维平面直角坐标系的构建与运用;直线的方程与求解;如何求直线与坐标轴的交点;如何通过两点坐标求直线方程;如何通过直线方程确定直线的性质,比如斜率、截距等等。
在实际应用中,这些知识点能够在解决诸如直线垂直平分线、两条直线的夹角、作图等问题上起到巨大优势。
角的概念与运算《角的概念与运算》是数学中不可或缺的重点之一,它主要涉及角度、角平分线、同角、对应角等概念。
在这一章中,我们需要掌握如何表示角度,如何作角等分类的几何图形,如何确定角平分线,如何利用同角和对应角的性质来进行角度的计算等内容。
理解并掌握这些概念,可以有效地帮助我们解决许多与角度相关的问题,比如直角、平角、钝角等。
掌握角度的概念和运算,也为后续的三角函数打下了坚实的基础。
三角形的性质与分类《三角形的性质与分类》是八年级数学中必须掌握的重难点内容。
在这一章中,我们需要学习与三角形相关的性质和分类,比如三角形内角和定理、三角形外角和定理、直角三角形的性质、等腰三角形的性质、等边三角形的性质等。
初二数学暑假专题 图形的相似北师大版【本讲教育信息】一.教学内容:暑假专题——图形的相似二.教学目标:1.了解线段的比、成比例线段、黄金分割.2.了解相似多边形的性质,掌握两个三角形相似的条件.3.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小,利用图形的相似解决一些实际问题.三.知识要点分析: 1.线段的比(1)比例的性质:①a b =c d ⇔ad =bc ;②a b =c d ⇒b a =d c ;③a b =c d ⇒a ±b b =c ±d d ;④a b =cd=e f =…=mn (b +d +f +…+n ≠0)⇒a +c +e +…+m b +d +f +…+n =a b. (2)点C 把线段AB 分成AC 和BC 两条线段.如果AC AB =BCAC ,那么称线段AB 被点C黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.相似三角形的判定、性质(1)相似三角形的对应角相等,对应边成比例.(2)两个三角形相似的条件:①两角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 3.相似多边形的性质(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. (2)相似多边形的周长比等于相似比,面积比等于相似比的平方.4.位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点.位似图形上任意一对对应点到位似中心的距离之比等于位似比. 5.本讲内容结构如下:线段的比黄金分割形状相同的图形相似多边形的概念相似三角形及其判定条件的探索相似的综合应用,测量旗杆的高度相似多边形的性质图形的放大与缩小【典型例题】知识点1:线段的比例1.已知a 2=b 3=c 4=d5≠0,求a +b +c +d b +c的值.题意分析:本例考查比例的性质,从已知和所求来看不能直接利用比例的性质解题. 思路分析:根据已知比例式的特点,设一个参数表示出a 、b 、c 、d ,再代入所求代数式求解.或利用比例的性质把已知和所求变形,以寻求中间比. 解:∵a 2=b 3=c 4=d5≠0,∴a +b +c +d 2+3+4+5=a 2,b +c 3+4=b 3=a 2, ∴a +b +c +d 14=b +c 7,∴a +b +c +d b +c=147=2.解题后的思考:本例是等比性质与反比性质的综合运用.例2.已知线段AB =6,C 为AB 的黄金分割点,求AC -BC 的值.题意分析:黄金分割点把已知线段分成的较长线段与原线段的比是黄金比.思路分析:由黄金比和AB 的长度可求出AC 、BC 的长度,再求差即可.但应注意点C 的位置有两个.解:(1)若AC >BC ,如图所示:AB C∵点C 是线段AB 的黄金分割点,∴AC =5-12·AB =5-12×6=35-3,BC =AB -AC =6-(35-3)=9-35. ∴AC -BC =(35-3)-(9-35)=65-12. (2)若AC <BC ,如图所示:ABC则BC =5-12·AB =35-3. ∴AC =AB -BC =6-(35-3)=9-35, ∴AC -BC =(9-35)-(35-3)=12-65. 综上所述,AC -BC 的值为65-12或12-65.解题后的思考:本例极容易忽视一条线段上有两个黄金分割点,即AC 不一定是较长线段,应分情况计算.注意,本例两种情况下的结果可分析出是互为相反数,因此可先计算其中一种的结果,另一种取其相反数即可.小结:解决比例问题除了要熟练掌握比例的性质,还有一种重要方法,那就是引入比值k 的方法.利用这种方法可以很方便地推导出比例的性质、解决比例式求值问题.知识点2:相似图形例3.如图所示,△ABC ∽△DBA ,∠BAC =80°,∠C =70°,AB =5cm ,AC =3cm ,BC =6cm ,求∠BDA 、∠BAD 、∠DAC 、BD 、AD 、DC .BCD题意分析:本题根据相似三角形的性质求相似三角形的对应角的度数和对应边的长度. 思路分析:把已知的角、线段和所求的角、线段分类,化归到相应的相似三角形中,其中∠DAC 和DC 不能转化为相似三角形的角和边,应利用求差的方法来解.解:∵△ABC ∽△DBA ,∴∠BDA =∠BAC =80°,∠BAD =∠C =70°. ∴∠DAC =∠BAC -∠BAD =80°-70°=10°.∵△ABC ∽△DBA ,∴AB DB =BC BA =ACDA.即5BD =65=3AD ,解得BD =256,AD =52, ∴DC =BC -BD =6-256=116.解题后的思考:解决相似三角形的性质问题时,注意对应位置上的字母必须对应,这样才能保证其中的角、线段的对应关系.例4.如图所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A .△EFBB .△DEFC .△CFBD .△EFB 与△DEFAB CDEF题意分析:要判定两个三角形是否相似,只需看这两个三角形是否具备相似条件,另外还要注意矩形的四个角都是直角这一隐含条件.思路分析:由题中给的已知条件可知,∠EAB =∠FDE =90°,∠DEF +∠EFD =∠DEF +∠BEA =90°,故∠EFD =∠BEA ,所以△ABE 与△DEF 相似,选项A 、C 中均没有△DEF ,故可排除,而我们又无法找到△EFB 与△ABE 相似所具备的条件,因此选项B 是正确的.解:B解题后的思考:一般情况下,在判断两个三角形是否相似时,若不知道两个三角形各边长度关系时,应考虑两角是否对应相等.小结:判断两三角形相似的方法有三种,其中“两角对应相等,两三角形相似”最简单,也最常用.知识点3:相似图形的应用例5.有一块三角形形状的铁板,如图所示,其中,AB =90cm ,AC =60cm ,BC =45cm ,现要在AB 、AC 上确定两点D 、E ,然后沿DE 将上面部分剪去,使剩下的四边形部分BDEC 为梯形,且DE =15cm ,如何确定点D 和点E 的位置?B CDE题意分析:欲确定点D 、E 的位置,只要求出AD 、AE 的长即可.思路分析:由已知条件,较易推出△ADE ∽△ABC ,利用其对应边成比例,即可求出AD 、AE 的长.解:由四边形BDEC 为梯形,得DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,△ADE ∽△ABC .所以DE BC =AD AB =AE AC ,即1545=AD 90=AE 60.因此AD =30(cm ),AE =20(cm ).即点D 应距顶点A30cm ,点E 应距顶点A20cm .解题后的思考:本题利用相似三角形的性质求出AD 、AE 的长,进而确定点D 和点E 的位置.题中要求“使剩下的四边形部分BDEC 为梯形”,如果将这一要求去掉,又该如何剪呢?例6.如图,电影胶片上每一个图片的规格为cm ×cm ,放映银幕的规格为2m ×2m ,若放映机的光源S 距胶片20cm 时,问银幕应在离镜头多远的地方才能使放映的图像刚好布满整个银幕?S题意分析:如图所示,可以看作一个正四棱锥.光源S 到胶片的距离正好是点S 到胶片中心的距离,光源S 到银幕的距离正好是点S 到银幕中心的距离.思路分析:设胶片和银幕两个正方形的中心(对角线交点)分别为O 2、O 1.则SO 1SO 2=SD 1SD 2=A 1D 1A 2D 2. B 1C 1D 1SA 1O 1O 2B 2A 2C 2D 2解:设银幕距镜头xcm ,根据题意,得2m =200cm . x 20=200,解得x =80007. 80007cm =807m . 答:银幕距镜头807m 时,放映的图像刚好布满整个银幕.解题后的思考:解决此类问题首先应建立数学模型,把实物立体图形转化为平面几何图形,从而构造出相似三角形.小结:图形相似与现实世界有着密切的联系,常见的应用问题有两类:一是阳光下测量物体的高度.二是从某一点观测物体.总结:学习本讲应注意两点:一是利用比例的性质、相似图形的性质解决一些计算类的题目;二是在判断三角形相似或说明角相等、线段之间的关系时逐步加强逻辑推理的力度,认识和把握更为复杂的图形,提高研究“空间与图形”的水平.【预习导学案】(暑假专题——证明)一.预习前知1.什么是定义、命题、定理、公理、推论、证明?2.平行线的性质有哪些?如何判定两直线平行?3.三角形内角和定理及其推论是什么?二.预习导学1.下列语句中不是命题的是()A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线2.地理老师在黑板上画了一幅世界五大洲的图形,并给每个洲都写上了代号,然后,他请5个同学每人认出2个洲来,5个同学的回答是:甲:3号是欧洲,2号是美洲乙:4号是亚洲,2号是大洋洲丙:1号是亚洲,5号是非洲丁:4号是非洲,3号是大洋洲戊:2号是欧洲,5号是美洲地理老师说:“你们每个人都认对了一半。