超级电容器的结构
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
超级电容的结构和工作原理超级电容器又称双电层电容器、黄金电容、法拉第电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。
如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。
高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
1.(3):对使外部2.由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。
赝电容与双电层电容的形成机理不同,但并不相互排斥。
大比表面积准电容电极的充放电过程会形成双电层电容,双电层电容电极(如多孔炭)的充放电过程往往伴随有赝电容氧化还原过程发生,实际的电化学电容通常是两者共存的宏观体现,要确认的只是何者占主要的问题。
实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。
混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。
(1)双电层电容器一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。
作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。
双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对的电荷层就像平板电容器的两个平板一样。
超级电容器结构及特点超级电容器( supercapacitor,ultracapacitor),又名电化学电容器(Electrochemical Capaci-tors)、黄金电容、法拉电容,超级电容器通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,其储能过程是可逆的,可以反复充放电数十万次。
超级电容器是20世纪七八十年代发展起来的一种新型的储能装置。
它是一种介于传统电容器与蓄电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原原理储存电能,因而不同于传统的化学电源。
超级电容器其容量可达法拉级甚至数千法拉,它兼有常规电容器功率密度大,比普通蓄电池能量密度高的优点,并且具有充放电时间短,循环性能好,使用寿命长,使用温度范围宽,对环境无污染等特点。
因此,从某种意义上讲,超级电容器有着传统电容器和蓄电池的双重功能,弥补了两个传统技术间的空白,因此具有很大的发展潜力。
超级电容器的准确名称是化学或双电屡电容器(具体名称取决于制造商),简称EDLC。
超级电容器的表现与传统电容器(包括多层陶瓷电容器、钽电容器、电解电容器等)相似,但能量密度更高。
这是由具有极大的电荷存储表面积的多孔炭电极与专门的电解质提供的极薄的板分离层相结合而形成的。
超级电容器属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其他种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近,如图3-6所示。
超级电容器的能量储存在双电层和电极内部,当用直流电源为超级电容器单体充电时,电解质中的正、负离子取向聚集到固体电极表面,形成电极/溶液双电层,用以贮存电荷。
超级电容器工作原理超级电容器,也被称为超级电容或者超级电容器电池,是一种能够储存和释放大量电能的装置。
它的工作原理基于电荷的分离和电场的形成。
1. 电容器的基本原理电容器由两个导体板(通常是金属)和介质(通常是电介质)组成。
当电容器连接到电源时,正电荷会会萃在一个导体板上,负电荷则会萃在另一个导体板上。
这种分离的电荷会在两个导体板之间形成一个电场。
2. 超级电容器的结构超级电容器的结构与普通电容器相似,但它的电极和电介质材料有所不同。
超级电容器的电极通常由活性炭或者金属氧化物制成,这些材料具有高比表面积和良好的导电性能。
电介质通常是有机溶液或者聚合物。
3. 双电层电容效应超级电容器的工作原理主要依赖于双电层电容效应。
当超级电容器连接到电源时,电荷会在电极表面形成一个双电层。
这个双电层由电解质和电极表面之间的离子层组成。
由于活性炭等材料具有高比表面积,双电层的电容量非常大。
4. 能量存储和释放超级电容器能够存储大量的电能,因为它的电容量比传统电容器大得多。
当超级电容器连接到电源时,电荷会在电极表面积累,储存电能。
当需要释放电能时,超级电容器会通过连接到负载的导线释放电荷。
5. 充放电过程超级电容器的充放电过程比较快速,这是因为电荷可以在电极表面直接存储和释放。
充电时,电流会流入电容器,电荷会在电极表面积累。
放电时,电流会从电容器流出,电荷会从电极表面释放。
6. 应用领域超级电容器具有快速充放电、长寿命、高效能量存储等特点,因此在许多领域得到广泛应用。
它们可以用于电动车辆的启动和制动能量回收系统、电力系统的峰值负荷平衡、可再生能源的储能系统等。
此外,超级电容器还可以用于电子设备的备份电源和无线通信设备的蓄电池。
总结:超级电容器利用双电层电容效应,能够储存和释放大量电能。
它的工作原理基于电荷的分离和电场的形成。
超级电容器的结构与普通电容器类似,但电极和电介质材料不同。
超级电容器具有快速充放电、长寿命和高效能量存储等特点,被广泛应用于电动车辆、电力系统和可再生能源等领域。
知识创造未来
超级电容器结构
超级电容器的结构主要分为两种:电双层电容器和赋存电容器。
1. 电双层电容器(Electric Double-Layer Capacitor,EDLC):电双层电容器的结构由两个电极(正极和负极)和电解质组成。
电极
通常采用活性炭材料,具有高比表面积和孔隙结构,以增加电极与
电解质接触的面积。
电解质既可以是有机物质,也可以是无机盐溶液。
当电压施加在电极上时,电解质中的正、负离子会在电极表面
形成电双层,形成电荷分离,从而存储电能。
2. 赋存电容器(Pseudocapacitor):赋存电容器的结构类似于传
统的电化学储能器件,如铅酸蓄电池等。
它包括两个电极和电解质,但电极材料不同于电双层电容器,而是采用具有赋存效应的材料,
如金属氧化物和导电聚合物。
这些材料具有较高的可逆氧化还原反应,并能够通过红ox反应来存储电能。
以上是超级电容器的两种常见结构,每种结构都有其特定的优势和
应用领域。
电双层电容器具有高功率密度、长寿命和低内阻的特点,适用于短时高功率输出和储能装置中的能量平衡;赋存电容器具有
较高的能量密度和较长的充放电周期,适用于需要较长工作时间和
较高能源密度的应用。
1。
超级电容器的分类与优缺点分析1.1 超级电容器的原理"双电层原理"是超级电容器的核心,这是由该装置的双电层结构决定的。
超级电容器是利用双电层原理的电容器。
当外加电压作用于普通电容器的两个极板时,装置存储电荷的原理是一样的,即正电极与正电荷对应、负电极与负电荷对应。
图1 超级电容的结构原理1.2 超级电容器的应用目前,超级电容器凭借强大的储存容量及存储性能,在许多大中小型设备中得到了普遍运用,且涉及到的行业较为广泛。
具体运用在:真空开关、仪器仪表、数码相机等微小电流供电的后备电源;太阳能产品以及小型充电产品的充电电池。
由于超级电容器的功能优势显着,在使用时可适当添加辅助元件以优化电容器结构,从而进一步增强了超级电容器的结构性能。
2 超级电容器的主要功能与普通电容器相比,超级电容器在结构上进行了改进调整,且在原理上得到了优化。
但在使用期间超级电容器与常规电容器的功能相近。
新型电容装置的功能集中表现在:旁路、去耦、储能等方面,这些对于电路运行或存储电荷都有着明显的调控作用。
具体功能如下:(1)旁路。
超级电容器中的旁路电容可以定期储存电能,但其它元器件在运行中需要能量时,则能及时释放出电荷维持使用。
旁路电容器的最大功能表现于稳压器电荷输出的均衡,避免了电荷传输混乱而引起电路故障,装置充电、放电的灵活性较强,如图2.图2 旁路电容原理(2)去耦。
去耦主要是针对电路内产生的"耦合"现象而言,耦合是由于电路中电流、电阻失去均衡而引起的一种"噪声",不利于电路内部载荷的均衡布置。
超级电容器使用之后,能有效地消除耦合现象,让电路中的各项指标参数维持在标准状态。
(3)储能。
无论是普通的电容器或者超级电容器,储存电荷或电能都是极为关键的性能。
超级电容器的电荷储存容量更大,能满足更多电子元件的使用需求。
超级电容器把存储的能量利用变换器引线传送至电源的输出端之后,经过优化处理能进一步强化电容的存储性能。
五、结果与分析1、实验过程总结与知识点查阅○1超级电容器的结构:[1]超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。
本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。
○2超级电容器的分类及原理分为双电层电容器和赝电容器双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。
在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。
在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。
同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。
整个超级电容器相当于两个电容器串联。
循环性能好,比电容较低。
赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。
在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。
循环性能差,比电容高。
○3超级电容器的电极材料[2]:(1)炭材料:活性炭、碳纳米管、石墨烯等。
主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。
( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。
(3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。
○4循环伏安法测试及其原理循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。
从伏安图的波形、氧化还原电流的数值及其比值、峰电位等可以判断电极反应机理。
而在本实验中运用循环伏安法,在得到CV 曲线后首先可以从曲线的对称性分析得到样品的循环性能,之后可以通过曲线围成的面积计算样品的电容大小。
超级电容的结构和工作原理超级电容器又称双电层电容器、黄金电容、法拉第电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。
如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。
高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。
1.超级电容器的结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。
由于制造商或特定的应用需求,这些材料可能略有不同。
所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
超级电容器的结构如图1所示.是由高比表面积的多孔电极材料、集流体、多孔性电池隔膜及电解液组成。
电极材料与集流体之间要紧密相连,以减小接触电阻;隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。
电解液的类型根据电极材料的性质进行选择。
图1 超级电容器的基本结构上图中各部分为:(1):聚四氟乙烯载体;(2)(4):活性物质压在泡沫镍集电极上;(3):聚丙烯电池隔膜。
超级电容器的部件从产品到产品可以有所不同。
这是由超级电容器包装的几何结构决定的。
对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。
这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。
对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。
最后将电极箔焊接到终端,使外部的电容电流路径扩展。
图1.2超级电容器电极2.超级电容器的工作原理由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。
超级电容器的结构
1. 超级电容器的结构
图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如碳酸类或乙腈类。
工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c 由下式确定:
其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s
是电极界面的表面面积。
由图1中可见,其多孔化电极是使用多孔性的活性碳有极大的表面
积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的
静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。
电
池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,
也可以应用在传统电池不足之处与短时高峰值电流之中。
这种超级电容
器有几点比电池好的特色。
1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。
当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。
当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。
由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。
由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。
因此性能是稳定的,与利用化学反应的蓄电池是不同的。
1.3 主要特点
由于超级电容器的结构及工作原理使其具有如下特点:
①.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电
解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,
则电容量越大。
因此,一般双电层电容器容量很容易超过1F ,它的出现使普通
电容器的容量范围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容
量可达5000F 以上。
②.充放电寿命很长,可达500 000次,或50000小时,而蓄电池的充放电
寿命很难超过2000次,
③.可以提供很高的放电电流(如2700F 的超级电容器额定放电电流不低于
950A ,放电峰值电流可达1680A ,一般蓄电池通常不能有如此高的放电电流一
些高放电电流的蓄电池在杂如此高的放电电流下的使用寿命将大大缩短。
图1 超级电容器结构框图
图2 超级电容器结构框图
④.可以数十秒到数分钟内快速充电,而蓄电池再如此短的时间内充满电将是极危险的或几乎不可能。
⑤.可以在很宽的温度范围内正常工作(-40~+70℃)而蓄电池很难在高温特别是低温环境下工作。
⑥.超级电容器用的材料是安全的和无毒的,而铅酸蓄电池、镍镉蓄电池军具有毒性。
⑦.等效串联电阻ESR相对常规电容器大。
⑧可以任意并联使用增加电容量,如采取均压后,还可以串联使用。
并联时总容量增倍电压不变,串联时总容量减倍电压增倍。