半导体物理-3-第二章
- 格式:ppt
- 大小:2.04 MB
- 文档页数:72
2023春半导体物理习题课第二章载流子中的平衡统计分布⚫当E −E F 为1.5k 0T ,4k 0T ,10k 0T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各该能级的概率。
根据量子统计理论,服从泡利不相容原理的电子遵循费米统计律。
对于能量为E 的一个量子态被电子占据的概率f(E)为f E =11+e E−E F k 0T当E −E F ≫k 0T 时,eE−E F k 0T≫1,此时费米分布(简并系统) 可以近似为玻尔兹曼分布(非简并系统)f B E =e −E−E F k 0T当E −E F =1.5k 0T ,f E =0.1824,f B E =0.2231;当E −E F =4k 0T ,f E =0.01799,f B E =0.01832;当E −E F =10k 0T ,f E =4.540×10−5,f B E =4.540×10−5;在半导体中,E F 一般位于禁带中且与允带距离较远,因此一般可以认为E −E F ≫k 0T 。
3-3 电子的统计分布①在室温下,锗的有效状态密度N c=1.05×1019cm−3,N v=3.9×1018cm−3,试求锗的载流子有效质量m n∗,m p∗。
计算77K时的N c和N v。
已知300K时,E g=0.67eV。
77K时E g=0.76eV。
求这两个温度时锗的本征载流子浓度。
以导带有效状态密度N c举例,它是把导带中所有量子态都集中在导带底E c时的状态密度,此时导带中的电子浓度是N c中有电子占据的量子态数,有效状态密度表达式为N c=2(2πm n∗k0T)Τ32ℎ3,N v=2(2πm p∗k0T)Τ32ℎ3由此可算出m n∗=12πk0TN cℎ32Τ23=5.0968×10−31kg=0.5596m0m p∗=12πk0TN vℎ32Τ23=2.6336×10−31kg=0.2892m0①在室温下,锗的有效状态密度N c=1.05×1019cm−3,N v=3.9×1018cm−3,试求锗的载流子有效质量m n∗,m p∗。
1第二章半导体中的杂质和缺陷能级要求:●掌握半导体中杂质的作用与杂质能级;●掌握半导体中的缺陷及其影响重点:浅能级和深能级杂质及其作用,杂质的补偿作用2原子并非固定不动,格点原子在平衡位置附近振动;半导体并非纯净,含有若干杂质(基质以外的任何元素);半导体晶格并非完美(完整),存在各种缺陷:点缺陷线缺陷面缺陷⎩⎨⎧实际半导体材料:⎪⎩⎪⎨⎧杂质来源:⎪⎩⎪⎨⎧§2.1 Si 、Ge 晶体中的杂质能级1、替(代)位式杂质间隙式杂质①原材料纯度不够;②工艺过程中引入玷污;③人为掺入杂质—为改善半导体材料性能;(1)Si 、Ge 都具有金刚石结构,一个晶胞内含有8个原子。
3(2)若视晶体中的原子为球体,且最近原子相切:a r ⋅=⋅3412%34)381(34834883333=×=×=a a a r ππ晶胞体积个原子体积则66%是空的相邻两球的半径之和(直径)为立方体体对角线的1/4。
4(3)杂质原子进入半导体中的存在方式:①位于格点原子间的间隙位置——间隙式杂质(一般杂质原子较小)②取代格点原子而位于格点上——替代式杂质(一般杂质原子大小与被取代的晶格原子大小近似,且价电子壳层结构也较相似){Si 、Ge 是Ⅳ族元素,Ⅲ、Ⅴ族元素在Si 、Ge 中是替位式杂质。
杂质浓度:单位体积中的杂质原子数,表示半导体晶体中杂质含量的多少,杂质浓度的单位为cm -3或/cm 3。
替位式杂质和间隙式杂质52、施主杂质施主能级Si中掺P效果上形成正电中心P + +一个价电子被正电中心P +束缚,位于P +周围,此束缚远小于共价键束缚,很小的能量△E 就可以使其挣脱束缚,形成“自由”电子,在晶格中运动(在导带)。
杂质电离:电子脱离杂质原子的束缚成为导电电子的过程。
杂质电离能:电子脱离杂质原子的束缚,成为导电电子所需的能量。
记作△E D 。
△E D 的值Si 中约0.04~0.05eV Ge 中约0.01eV {}<< E g以Si中掺入Ⅴ族替位式杂质P 为例6施主杂质或N 型杂质:Ⅴ族元素施放电子的过程——施主电离;Ⅴ族元素未电离时呈中性——束缚态或中性态;Ⅴ族元素电离后形成正电中心——施主离化态;⎩⎨⎧E cE vE D+++E g△E D一般情况下,杂质浓度较低杂质原子间的相互作用可以忽略所以施主能级是一些相同能量的孤立能级,即不形成能带。
平衡PN 结 能带图:
突变结PN 结的扩散电势2ln i
A D D n N N q kT V = 缓变结PN 结的扩散电势)2ln(2i
m D n ax q kT V = m x 势垒区宽度,j
x x dx dN
a ==为PN 结前沿杂质浓度的梯度,
q kT =0.026V
正向偏置的PN 结能带图:
反向偏置的PN 结能带图:
理想PN 结满足的条件:①小注入;②耗尽层近似;③不考虑耗尽层的产生与复合;④ 玻尔兹曼边界条件;⑤忽略半导体表面对电流的影响; 理想PN 结的正向电流:))((1-+=kT qU p p no n n
po e L D p L D n Aq J
PN 结的击穿:
1:突变PN 结空间电荷区的电场:
在PN 结交界面处(x=0)的电场强度:0εεs n
D M x qN
E =;
在N 型一侧:)0)(1()(n n
M x x x x E x E <<-= 在P 型一侧:)0)(1()(<<-+=x x x x E x E p p
M 耗尽层宽度:0
0)(2qN V V x D s m -=εε(0N 表示低掺杂一边的杂质浓度) 2:缓变结最大场强:20)2(2m s M x qa
E εε=
耗尽层宽度:3/10])(12[qa
V V x D s m -=εε
3:突变结势垒电容m S T x A C 0εε=。
重点和难点
第一章半导体中的电子状态
1、Si和GaAs的晶体结构
2、Ge、Si和GaAs的能带结构
3、本征半导体及其导电机构、空穴
4、本征半导体及其导电机构、空穴
第二章半导体中的杂质和缺陷
l、本征激发与本征半导体的特征 2、杂质半导体与杂质电离第三章半导体中载流子的统计分布
1、热平衡态时非简并半导体中载流子的浓度分布
2、费米能级E F的相对位置。
第四章半导体中的导电性
1、迁移率
2、散射——影响迁移率的本质因素
3、电导率
4、弱电场下电导率的统计理论
第五章非平衡载流子
1、非平衡载流子的产生
2、非平衡载流子的复合
3、非平衡载流子的运动规律
4、扩散方程
5、爱因斯坦关系
6、连续性方程
第六章金属和半导体接触
1、阻挡层与反阻挡层的形成
2、肖特基势垒的定量特性
3、欧姆接触的特性
4、少子的注入
第七章半导体表面与MIS结构
1、表面电场效应
2、理想与非理想MIS结构的C-V特性
3、Si-SiO2系统的性质
4、表面电导。