详解Hadoop作业平台宙斯Zeus
- 格式:pdf
- 大小:1.84 MB
- 文档页数:27
云计算学习笔记Hadoop+HDFS和MapReduce+架构浅析 34IT168文云计算学习笔记hadoop+hdfs和mapreduce+架构浅析-34-it168文hadoophdfs和mapreduce架构浅析前言hadoop是一个基于java的分布式密集数据处理和数据分析的软件框架。
hadoop在很大程度上是受google在2021年白皮书中阐述的mapreduce技术的启发。
mapreduce工作原理是将任务分解为成百上千个小任务,然后发送到计算机集群中。
每台计算机再传送自己那部分信息,mapreduce则迅速整合这些反馈并形成答案。
简单来说,就是任务的分解和结果的合成。
hadoop的扩展性非常杰出,hadoop可以处置原产在数以千计的低成本x86服务器排序节点中的大型数据。
这种高容量低成本的女团引人注目,但hadoop最迎合人的就是其处置混合数据类型的能力。
hadoop可以管理结构化数据,以及诸如服务器日志文件和web页面上涌的数据。
同时还可以管理以非结构化文本为中心的数据,如facebook和twitter。
1hadoop基本架构hadoop并不仅仅是一个用于存储的分布式文件系统,而是在由通用计算设备组成的大型集群上执行分布式应用的框架。
apachehadoop项目中包含了下列产品(见图1)。
图1hadoop基本共同组成pig和hive是hadoop的两个解决方案,使得在hadoop上的编程更加容易,编程人员不再需要直接使用javaapis。
pig可加载数据、转换数据格式以及存储最终结果等一系列过程,从而优化mapreduce运算。
hive在hadoop中饰演数据仓库的角色。
hive需向hdfs嵌入数据,并容许采用相似sql的语言展开数据查阅。
chukwa就是基于hadoop集群的监控系统,直观来说就是一个watchdog。
hbase就是一个面向列于的分布式存储系统,用作在hadoop中积极支持大型稠密表的列存储数据环境。
Hadoop 生态系统介绍Hadoop生态系统是一个开源的大数据处理平台,它由Apache基金会支持和维护,可以在大规模的数据集上实现分布式存储和处理。
Hadoop生态系统是由多个组件和工具构成的,包括Hadoop 核心,Hive、HBase、Pig、Spark等。
接下来,我们将对每个组件及其作用进行介绍。
一、Hadoop核心Hadoop核心是整个Hadoop生态系统的核心组件,它主要由两部分组成,一个是Hadoop分布式文件系统(HDFS),另一个是MapReduce编程模型。
HDFS是一个高可扩展性的分布式文件系统,可以将海量数据存储在数千台计算机上,实现数据的分散储存和高效访问。
MapReduce编程模型是基于Hadoop的针对大数据处理的一种模型,它能够对海量数据进行分布式处理,使大规模数据分析变得容易和快速。
二、HiveHive是一个开源的数据仓库系统,它使用Hadoop作为其计算和存储平台,提供了类似于SQL的查询语法,可以通过HiveQL 来查询和分析大规模的结构化数据。
Hive支持多种数据源,如文本、序列化文件等,同时也可以将结果导出到HDFS或本地文件系统。
三、HBaseHBase是一个开源的基于Hadoop的列式分布式数据库系统,它可以处理海量的非结构化数据,同时也具有高可用性和高性能的特性。
HBase的特点是可以支持快速的数据存储和检索,同时也支持分布式计算模型,提供了易于使用的API。
四、PigPig是一个基于Hadoop的大数据分析平台,提供了一种简单易用的数据分析语言(Pig Latin语言),通过Pig可以进行数据的清洗、管理和处理。
Pig将数据处理分为两个阶段:第一阶段使用Pig Latin语言将数据转换成中间数据,第二阶段使用集合行处理中间数据。
五、SparkSpark是一个快速、通用的大数据处理引擎,可以处理大规模的数据,支持SQL查询、流式数据处理、机器学习等多种数据处理方式。
hadoop通俗讲解Hadoop通俗讲解大数据时代已经来临,海量的数据涌入各行各业,如何高效地处理和分析这些数据成为了一项重要的任务。
而Hadoop作为一种分布式计算框架,正在成为处理大数据的首选工具,下面我们就来通俗地介绍一下Hadoop是什么以及它的工作原理。
Hadoop最初是由Apache基金会作为一个开源项目开发的,它的目标是解决传统关系型数据库无法处理的大规模数据的存储和分析问题。
Hadoop主要由两部分组成:Hadoop分布式文件系统(HDFS)和Hadoop分布式计算框架(MapReduce)。
HDFS是Hadoop的存储层,它将大文件分割成多个小文件,并将这些小文件存储在不同的计算机节点上。
这样做的好处是可以将数据分散存储在多个计算机上,实现数据的冗余备份和高可靠性。
同时,HDFS还具备高吞吐量的特点,可以快速地读取和写入大量的数据。
而MapReduce则是Hadoop的计算层,它采用了分布式计算的思想,将数据分成多个小块,分发到不同的计算机节点上进行并行计算。
MapReduce将计算任务分为两个阶段:Map阶段和Reduce 阶段。
在Map阶段,每个计算机节点都会对数据进行处理,并生成中间结果。
而在Reduce阶段,所有中间结果会被汇总起来,最终得到最终的计算结果。
通过这种方式,Hadoop可以高效地处理大规模数据的计算任务。
Hadoop的工作原理可以用以下几个步骤来概括:1. 数据切分:Hadoop将大文件切分成多个小文件,每个小文件都会被分发到不同的计算机节点上进行处理。
2. Map阶段:在Map阶段,每个计算机节点都会对自己所负责的数据进行处理,并生成中间结果。
这些中间结果会被保存到本地磁盘上。
3. Shuffle阶段:在Shuffle阶段,Hadoop会将相同的中间结果收集到一起,并按照某种规则进行排序和分组,以便后续的Reduce阶段进行处理。
4. Reduce阶段:在Reduce阶段,Hadoop会对Shuffle阶段得到的中间结果进行汇总和计算,得到最终的计算结果。
阿里巴巴的10款开源项目一、框架react-web:Readt Web是为那些使用React Native兼容的API构建的Web应用而提供的一个框架。
React Web的目的及意义非常明确: 让React Native代码跑在Web上让一套代码运行在各个移动终端,对前端及业务来说,这是开发效率中一个质的提升。
Jstrom:JStorm是参考storm的实时流式计算框架,在网络IO、线程模型、资源调度、可用性及稳定性上做了持续改进,已被越来越多企业使用。
经过4年发展,阿里巴巴JStorm 集群已经成为世界上最大的集群之一,基于JStorm的应用数量超过1000个。
数据显示,JStorm集群每天处理的消息数量达到1.5PB。
在2015年,JStorm正式成为Apache Storm里的子项目。
JStorm将在Apache Storm里孵化,孵化成功后会成为Apache Storm主干。
Apache基金会官方表示,非常高兴JStorm能够成为Apache Storm社区的一员。
Dubbo:高性能优秀的服务框架,使得应用可通过高性能的RPC 实现服务的输出和输入功能,可以和Spring框架无缝集成。
Dubbo is a distributed, high performance RPC framework enpowering applications with service import/export capabilities.Kissy:KISSY 是一款跨终端、模块化、高性能、使用简单的JavaScript 框架。
除了完备的工具集合如DOM、Event、Ajax、Anim 等,它还提供了经典的面向对象、动态加载、性能优化解决方案。
作为一款全终端支持的JavaScript 框架,KISSY 为移动终端做了大量适配和优化,使用户的程序在全终端均能流畅运行。
Dexposed:Dexposed是面向Android应用开发的一个强大的非侵入式的运行时AOP框架。
hadoop hdfs amazon s3 技术原理Hadoop HDFS (Hadoop Distributed File System)和Amazon S3 (Simple Storage Service)都是分布式的文件存储系统,但它们在技术原理上有一些区别。
Hadoop HDFS技术原理:1. 数据切块:HDFS将待存储的文件切分为固定大小的数据块,通常为64MB或128MB。
2. 数据副本:每个数据块会在集群中的多个节点上存储副本,保证数据的高可用性和容错性。
3. 分布式存储:数据块在集群中的不同节点上存储,分布式文件系统管理这些块的存储和访问。
4. 元数据管理:HDFS使用单独的名字节点来管理文件系统的元数据,包括文件和目录结构、数据块位置等。
5. 数据读写:应用程序可以通过Hadoop API来读写HDFS中的数据,数据会被分片读取,并通过数据副本来提高读取性能。
Amazon S3技术原理:1. 对象存储:Amazon S3是一个对象存储系统,将文件存储为对象,每个对象具有唯一的键和值。
2. 数据分区:S3根据键将存储的对象分为多个分区,以提高数据访问的效率。
3. 数据一致性:S3提供了强一致性和事件ual一致性的数据访问模型,确保读取到的数据是最新的。
4. 可扩展性:S3可以容纳大规模的数据、处理并发请求,并提供自动扩展的能力。
5. 安全性和可靠性:S3提供了数据加密、多地域备份和故障恢复等安全和可靠性机制。
总结:Hadoop HDFS和Amazon S3都是用于存储大规模数据的分布式文件系统,但它们的设计和实现有所不同。
HDFS更适合于大数据处理领域,提供了高吞吐量和容错性;而S3则适用于云存储情景,提供了高扩展性和可靠性。
hadoop mapreduce工作原理Hadoop MapReduce工作原理什么是Hadoop MapReduceHadoop MapReduce是Hadoop分布式计算框架中的一个重要组件。
它提供了分布式处理大量数据的能力,结合Hadoop分布式文件系统(HDFS),可有效地进行数据处理和分析。
MapReduce的基本原理MapReduce的基本原理是将大数据集分解为若干小的数据块,然后在集群中分配多个节点并行处理这些小数据块。
关键在于将数据分发到各个节点上进行处理,最终将结果合并到一起,得到最终的结果。
具体来说,MapReduce由两个任务组成:Map和Reduce。
Map任务负责将原始输入数据分割成若干独立的部分,并将每个部分交给Reduce任务来进行处理。
Reduce任务负责接收Map任务输出的结果,并将它们合并成一个输出结果。
MapReduce的实现过程MapReduce的实现过程可以分为以下几个步骤:•输入:将输入数据分成若干小数据块,并将它们分发到多个计算节点上。
•Map阶段:每个计算节点都会启动Map任务,对分配到的小数据块进行处理。
Map任务将每个小数据块映射为若干个键值对,并将它们分组成不同的组。
•Shuffle阶段:在Map任务的输出结果中,每个组的键值对需要按照键值进行排序,并按照键值将它们归类为不同的组。
这个过程叫做Shuffle,它会将不同计算节点上的输出结果合并为一个更大的键值对列表。
•Reduce阶段:所有节点都会启动Reduce任务,拿到Shuffle阶段的键值对列表,对它们进行处理,并将它们输出到结果文件中。
MapReduce的优点MapReduce具有以下优点:•适合处理大数据问题。
由于MapReduce使用了分布式计算,可以将大数据分成多个小块,并并行地处理,可大大降低数据处理时间。
•易于扩展。
只需要增加计算节点,即可完成计算能力的扩展。
•容错性强。
由于MapReduce是分布式处理,即便其中一个节点出现故障,也不会影响整个计算过程。
详解Hadoop核心架构通过对Hadoop分布式计算平台最核心的分布式文件系统HDFS、MapReduce 处理过程,以及数据仓库工具Hive和分布式数据库Hbase的介绍,基本涵盖了Hadoop分布式平台的所有技术核心。
通过这一阶段的调研总结,从内部机理的角度详细分析,HDFS、MapReduce、Hbase、Hive是如何运行,以及基于Hadoop数据仓库的构建和分布式数据库内部具体实现。
如有不足,后续及时修改。
HDFS的体系架构整个Hadoop的体系结构主要是通过HDFS来实现对分布式存储的底层支持,并通过MR来实现对分布式并行任务处理的程序支持。
HDFS采用主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode 和若干个DataNode组成的(在最新的Hadoop2.2版本已经实现多个NameNode 的配置-这也是一些大公司通过修改hadoop源代码实现的功能,在最新的版本中就已经实现了)。
NameNode作为主服务器,管理文件系统命名空间和客户端对文件的访问操作。
DataNode管理存储的数据。
HDFS支持文件形式的数据。
从内部来看,文件被分成若干个数据块,这若干个数据块存放在一组DataNode 上。
NameNode执行文件系统的命名空间,如打开、关闭、重命名文件或目录等,也负责数据块到具体DataNode的映射。
DataNode负责处理文件系统客户端的文件读写,并在NameNode的统一调度下进行数据库的创建、删除和复制工作。
NameNode是所有HDFS元数据的管理者,用户数据永远不会经过NameNode。
如图:HDFS体系结构图图中涉及三个角色:NameNode、DataNode、Client。
NameNode是管理者,DataNode是文件存储者、Client是需要获取分布式文件系统的应用程序。
文件写入:1)Client向NameNode发起文件写入的请求。
hadoop mapreduce工作原理
Hadoop MapReduce是一种分布式计算模型,用于处理大数据集。
它有两个主要组件:Map和Reduce。
Map阶段:在MapReduce任务中,数据被拆分成几个小块,
然后并行传输到不同的节点上。
每个节点上都运行着一个
Map任务。
在Map阶段,每个节点独立地对其分配到的数据
块进行处理。
这些数据块被输入给一个映射函数,该函数将输入数据转换成<Key, Value>对。
映射函数将生成许多中间<Key, Value>对,其中Key是一个唯一的标识符,Value是与该Key
相关联的数据。
Shuffle阶段:在Map阶段之后,中间的<Key, Value>对被分
区并按照Key进行排序。
然后,相同Key的值被分组在一起,并传输到下一个Reduce节点。
在此过程中,数据在不同的节
点之间进行移动,以便形成适合进行Reduce操作的数据分区。
Reduce阶段:在Reduce阶段,每个Reduce节点只处理与特
定Key相关联的所有Value。
Reduce节点将这些Value作为输
入传给一个归约函数。
归约函数可以对这些Value执行合并、
计算或其他操作来得到最终的输出结果。
整个MapReduce过程的主要思想是将大任务分解成更小的子
任务,然后并行执行这些子任务,并将结果进行合并以生成最终的输出。
这种计算模型能够充分利用分布式计算集群的处理能力,从而高效地处理大规模的数据集。
Hadoop生态系统知识介绍首先我们先了解一下Hadoop的起源。
然后介绍一些关于Hadoop生态系统中的具体工具的使用方法。
如:HDFS、MapReduce、Yarn、Zookeeper、Hive、HBase、Oozie、Mahout、Pig、Flume、Sqoop。
Hadoop的起源Doug Cutting是Hadoop之父,起初他开创了一个开源软件Lucene(用Java语言编写,提供了全文检索引擎的架构,与Google类似),Lucene后来面临与Google同样的错误。
于是,Doug Cutting学习并模仿Google解决这些问题的办法,产生了一个Lucene的微缩版Nutch。
后来,Doug Cutting等人根据2003-2004年Google公开的部分GFS和Mapreduce 思想的细节,利用业余时间实现了GFS和Mapreduce的机制,从而提高了Nutch的性能。
由此Hadoop产生了。
Hadoop于2005年秋天作为Lucene的子项目Nutch的一部分正式引入Apache基金会。
2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入Hadoop的项目中。
关于Hadoop名字的来源,是Doug Cutting儿子的玩具大象。
Hadoop是什么Hadoop是一个开源框架,可编写和运行分布式应用处理大规模数据。
Hadoop框架的核心是HDFS和MapReduce。
其中HDFS 是分布式文件系统,MapReduce 是分布式数据处理模型和执行环境。
在一个宽泛而不断变化的分布式计算领域,Hadoop凭借什么优势能脱颖而出呢?1. 运行方便:Hadoop是运行在由一般商用机器构成的大型集群上。
Hadoop在云计算服务层次中属于PaaS(Platform-as-a- Service):平台即服务。
2. 健壮性:Hadoop致力于在一般的商用硬件上运行,能够从容的处理类似硬件失效这类的故障。