数学建模插值法与曲线拟合讲课
- 格式:ppt
- 大小:1.05 MB
- 文档页数:65
Tel:86613747E-mail:*************授课: 68学分:45.1 问题的提出– 函数解析式未知,通过实验观测得到的一组数据, 即在某个区间[a, b]上给出一系列点的函数值y i = f(x i )– 或者给出函数表x x 0x 1x 2……x n yy 0y 1y 2……y n第五章插值与曲线拟合5.2 插值法的基本原理设函数y=f (x )定义在区间[a, b ]上,是[a, b ]上取定的n+1个互异节点,且在这些点处的函数值 为已知 ,即若存在一个f(x)的近似函数 ,满足则称为f (x )的一个插值函数, f (x )为被插函数, 点x i 为插值节点, 称(5.1)式为插值条件, 而误差函数R(x)= 称为插值余项, 区间[a, b ]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插n x x x ,,,10 )(,),(),(10n x f x f x f )(i i x f y =)(x ϕ),,2,1()()(n i x f x i i ==ϕ)(x ϕ(5.1))()(x x f ϕ-插值函数 在n+1个互异插值节点(i=0,1,…,n )处与 相等,在其它点x 就用的值作为f (x )的近似值。
这一过程称为插值,点x 称为插值点。
换句话说, 插值就是根据被插函数给出的函数表“插出”所 要点的函数值。
用的值作为f (x )的近似值,不仅希望能较好地逼近f (x ),而且还希望它计算简单。
由于代数多项式具有数值计算和理论分析方便的优点。
所 以本章主要介绍代数插值。
即求一个次数不超过n 次的多项式。
)(x ϕi x )(i x f )(x ϕ)(x ϕ)(x ϕ0111)(a x a xa x a x P n n n n ++++=--111)(a x a xa x a x P n n n n ++++=-- 满足),,2,1,0()()(n i x f x P i i ==则称P(x)为f(x)的n次插值多项式。
数学建模精品教材-第九章插值与拟合第九章插值与拟合插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。
而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
§1 插值方法下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。
1.1 拉格朗日多项式插值1.1.1 插值多项式用多项式作为研究插值的工具,称为代数插值。
其基本问题是:已知函数 f x 在区间[a,b]上n +1个不同点x ,x , L,x 处的函数值 y f x i 0,1, L,n,求一个0 1 n i i至多n次多项式nx a +a x + L +a x (1)n 0 1 n使其在给定点处与 f x同值,即满足插值条件 x f x y i 0,1, L,n(2) n i i ix称为插值多项式,x i 0,1, L,n称为插值节点,简称节点,[a,b]称为插值区n i间。
从几何上看,n次多项式插值就是过n +1个点 x , f x i 0,1, L,n,作一条i i多项式曲线 y x近似曲线 y f x。
nn次多项式(1)有n +1个待定系数,由插值条件(2)恰好给出n +1个方程2 na +a x +a x + L +a x y0 1 0 2 0 n 0 02 na +a x +a x + L +a x y0 1 1 2 1 n 1 1(3)L L L L L L L L L L L L2 na +a x +a x + L +a x y0 1 n 2 n n n n 记此方程组的系数矩阵为A,则2 n1 x x L x0 0 02 n1 x x L x1 1 1 detAL L L L L L L2 n1 x x L xn n n是范德蒙特Vandermonde行列式。