微机原理6-基本输入输出接口
- 格式:ppt
- 大小:1.24 MB
- 文档页数:55
何谓计算机?计算机是一种能够自动进行算术和逻辑运算的电子装置。
关键词:电子装置、运算、自动计算机特点:二进制、高速计算机的编码系统。
运算是计算机的核心功能。
它所有的扩展功能都和编码有关。
计算机中只能存储和处理二进制数码,一些数据、字符、汉字、图像声音等信息在计算机中都是用规定好的二进制组合代码来表示的,称为计算机的编码系统。
计算机硬件由运算器、控制器、存储器、输入设备、输出设备五大基本部件组成:计算机分类: 超级计算机、大型计算机、小型计算机、微型计算机或个人计算机嵌入式计算机是目前发展最快, 应用最普及的计算机。
微型计算机或个人计算机CPU是电脑的核心,即中央处理器。
微型计算机的应用:1、科学计算2、信息处理3、计算机辅助技术4、过程控制5、人工智能6、网络通信总线是计算机系统模块化的产物。
分时和共享是总线的两个基本特性。
系统总线包括:地址总线、数据总线、控制总线。
微型计算机的性能指标:1. 运算速度2. 字长(目前常用的微型机都是32位或64 位。
)3. 存储器的容量常见的寄存器有:缓冲寄存器、移位寄存器、计数器、累加器。
微型计算机的软件系统:计算机软件是指支持计算机运行的各种程序,以及开发、使用和维护这些程序的各种技术资料的总称。
计算机的硬件和软件二者缺一不可,否则不能正常工作系统软件的主要功能是简化计算机操作,充分发挥硬件功能,支持应用软件的运行并提供服务。
应用软件处于软件系统的最外层,直接面向用户,为用户服务。
应用软件是为了解决各类应用问题而编写的程序,包括用户编写的特定程序,以及商品化的应用软件和套装软件。
程序设计语言,是人机交流信息的一种特定语言。
在编写程序时用指定的符号来表达语义。
8086 微处理器的内部结构1.构成:8086 由执行部件(EU)和总线接口部件(BIU)组成。
2.功能:执行部件(EU)负责指令的执行,总线接口部件(BIU)负责对总线的操作,进行与存储器或I/O 接口的数据交互。
2. 什么是机器码?什么是真值?解:把符号数值化的数码称为机器数或机器码,原来的数值叫做机器数的真值。
3. 8位和16位二进制数的原码 、补码和反码可表示的数的范围分别是多少? 解:原码(-127~+127)、(-32767~+32767)补码 (-128~+127)、(-32768~+32767) 反码(-127~+127)、(-32767~+32767)4.一般来说,其内部基本结构大都由 算数逻辑单元、控制单元、寄存器阵列、总线和总线缓冲器 四个部分组成。
高性能微处理器内部还有指令预取部件、地址形成部件、指令译码部件和存储器管理部件等。
二 1.总线接口单元BIU (Bus Interface Unit )包括段寄存器、指令指针寄存器、20位地址加法寄存器和先入先出的指令队列、总线控制逻辑。
负责与存储器、I/O 设备传送数据,即BIU 管理在存储器中获取程序和数据的实际处理过程。
20位地址加法器将16位段地址和16位偏移量相加,产生20位物理地址。
总线控制逻辑产生总线控制信号对存贮器和I/O 端口进行控制。
IP 指针由BIU 自动修改,平时IP 内存储下条要取指令的偏移地址;遇到跳转指令后,8086将IP 压栈,并调整其内容为下条要执行指令地址。
2.执行单元EU (Execution Unit )包括ALU 、状态标志寄存器、通用寄存器、暂存器、队列控制逻辑与时序控制逻辑等。
负责指令的执行。
将指令译码并利用内部的ALU 和寄存器对其进行所需的处理。
3.EU 和BIU 的动作管理—流水线技术原则控制器运算器 寄存器输入/输出接口存储器 CPU主机外部设备应用软件系统软件微型机软件微型机系统 微型机硬件(1)每当8086的指令队列中有2个空字节且EU 未向BIU 申请读写存储器操作时,BIU 就会自动把指令取到指令队列中。
(2)每当EU 要执行一条指令时,它会先从BIU 的指令队列前部取出指令代码,然后执行指令。
微机原理及接口技术一、前言随着信息时代的到来,计算机技术的不断发展,微机技术已经得到了广泛的应用和发展。
微机原理及接口技术作为微机技术的重要基础,对于了解微机的结构和工作原理,以及实现微机与外部设备的通信具有十分重要的意义。
本文将围绕着微机的结构、工作原理以及微机与外部设备的接口技术进行详细的介绍和分析。
二、微机的结构微机是由中央处理器(CPU)、内存(MEM)、输入/输出(I/O)接口电路、总线(BUS)等部分组成的。
CPU是微机的核心部分,它能对数据进行处理、控制微机的运作;内存是储存数据和指令的地方,CPU可以直接对内存进行读取和写入操作;I/O接口电路是微机与外部设备之间进行数据交换的桥梁;总线则是将CPU、内存和I/O接口电路连接在一起,并传递数据和控制信息。
三、微机的工作原理微机的工作过程主要由指令执行和数据存取两个部分组成。
当CPU需要执行下一条指令时,会从内存中读取这条指令,然后进行解析并执行相应的操作。
当CPU需要访问数据时,会从内存中读取数据,并将数据写入内存中。
而CPU与输入/输出设备之间的通信也是通过I/O接口电路完成的。
CPU可以根据需要对内存进行读写操作,这是因为内存与CPU的速度非常接近,对内存的操作是非常快速的。
而CPU与外设之间通过I/O接口电路进行通信,则是因为I/O接口电路需要实现对不同类型的设备接口进行适配,对设备的操作速度也受到限制。
四、微机的接口技术为了实现微机与外部设备的通信,需要通过不同的接口技术来实现对不同类型设备的连接。
常用的接口技术有串行接口(Serial Interface)、并行接口(Parallel Interface)、通用串行总线(USB)、蓝牙接口(Bluetooth Interface)等。
其中,USB接口已经成为目前最为普遍的接口技术之一。
串行接口技术和并行接口技术是早期应用比较广泛的接口技术,它们的主要区别在于对数据的传输方式不同。
微机原理及接口技术知识点总结微机原理和接口技术是计算机科学与技术专业中非常重要的一门课程,主要涉及到计算机的基本构造、工作原理和外部接口的设计与应用。
下面将对微机原理和接口技术的知识点进行总结,包括计算机的基本构成、计算机的工作原理、外部接口的设计与应用方面的内容。
一、计算机的基本构成1.主机和外部设备:计算机由CPU、内存、I/O设备组成。
外部设备包括输入设备(如键盘、鼠标)、输出设备(如显示器、打印机)和存储设备(如硬盘、光盘)等。
2.总线系统:计算机的内部通信系统,用于传输数据、地址和控制信号。
3.存储器:包括主存储器(RAM)和辅助存储器(硬盘、光盘等),主要用于存储指令和数据。
4.CPU:计算机的核心部件,包括控制单元和算术逻辑单元,负责执行指令和进行数据处理。
二、计算机的工作原理1.运行过程:计算机的运行过程分为取指令、译码、执行和访存四个阶段,其中取指令和访存是主存和CPU之间的数据交换,译码和执行是CPU对指令的操作过程。
2.指令周期:指令在计算机中的执行单位。
包括取指令周期、译码周期、执行周期和访存周期。
3.指令集结构:计算机支持的指令集合,分为精简指令集(RISC)和复杂指令集(CISC)。
4.中断和异常处理:当计算机发生中断事件(如外部设备请求)或异常情况(如除零错误)时,会中断当前指令的执行,并跳转到相应的中断处理程序或异常处理程序。
三、外部接口的设计与应用1.并行接口:通过多根信号线同时传输数据和控制信号,如并行打印接口(LPT)和辅助存储器接口(IDE)等。
2.串行接口:通过单根信号线逐位传输数据和控制信号,如串行通信接口(COM)和USB接口等。
3.总线接口:用于连接主机和外部设备之间的数据传输,如PCI总线和USB总线等。
4.DMA控制器:直接内存存取控制器,用于实现主存和外设之间的数据直接传输,减轻CPU的负担。
5.中断控制器:用于管理和处理外设的中断信号,实现中断的优先级和响应。
实验一:输入输出实验实验环境PC机+Win 2010+emu8086 实验日期2016.6.3 一.实验内容1.熟悉emu8086仿真系统,清楚调试环境,能熟练的查看8086仿真系统的寄存器、内存、堆栈等相关内容。
2.设计并单步调试实现一位十进制数的加法运算。
例如:屏幕显示效果为3+2=5,其中,加数和被加数为键盘输入,其他为屏幕自动输出。
3.在实现了一位十进制数加法运算的基础上,尝试实现两位十进制加法运算、一位十进制数的四则运算以及十进制多位数运算等扩展要求。
二.理论分析或算法分析1、Emu8086的使用(1)打开桌面上的云端软件,选择微机原理分类,点击Emu8086的图标,,选择【新建】。
(2)选择COM模板,点击【确定】,软件出现源代码编辑器的界面在源代码编辑器的空白区域,编写如下一段小程序:代码编写结束,点击菜单【文件】【另存为……】,将源代码换名保存。
本例将源代码保存为.asm。
:(3)如果源程序无错误,则编译通过单击【单步运行】可以单步调试,程序将每执行一条指令便产生一次中断(建议使用)。
单击【后退一步】可以返回到上一条指令(这个功能也是一般调试器没有的)。
单击【运行】,程序将从第一句直接运行到最后一句。
2、设计并单步调试实现一位十进制数的加法运算。
(1)选择新建一个.COM类型的文件。
(2)在编辑界面中,键入代码。
(3)点击工具栏的【模拟】按钮,进入调试窗口,单步调试并观察寄存器的变化情况。
3、进一步完善上述程序,实现一位十进制数的加法运算。
4、在实现了一位十进制数加法运算的基础上,选择完成如下题目:两位十进制加法运算、一位十进制数的四则运算、十进制多位数运算等。
三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)一位加法:org 100hmov ah, 1int 21hmov bl, al mov ah, 2 mov dl, '+' int 21hmov ah, 1int 21hand bl, 0fh and ax, 0fh add al, bl aaaor ax, 3030h mov bx, ax mov ah, 2 mov dl, '=' int 21h cmp bh, 30hje j1mov ah, 2 mov dl, bhint 21hj1:mov ah, 2 mov dl, blint 21hret 多位加法:org 100hmov ah, 1int 21hmov bh, al int 21hmov bl, al mov ah, 2mov dl, '+'int 21hmov ah, 1int 21hmov ch, al int 21hmov cl, aland bx, 0f0fh and cx, 0f0fh mov ax, cxadd ax, bxaaaor ax, 3030h mov bx, ax mov ah, 2mov dl, '='int 21h cmp bh, 30hje j1mov ah, 2mov dl, bhint 21hj1:mov ah, 2mov dl, blint 21hret一位减、乘、除:mov ah, 1int 21hand al, 0fhmov bl, al mov ah, 1int 21hmov dl, alint 21hand al, 0fhxor ah, ahcmp dl, '+'jne jp1add al, blaaajmp short jp4jp1:cmp dl, '-'jne jp2xchg al, blsub al, blaasjmp short jp4jp2:cmp dl, '*'jne jp3mul blaamjmp short jp4jp3:xchg al, bldiv blaam jp4:mov bx, axmov ah, 2mov dl, '='int 21hor bx, 3030h cmp bh, '1'jc j1mov dl, bhint 21hj1:mov dl, blint 21h四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)一位数加法:多位数加法:一位数减、乘、除法五.结论通过这次实验,我对EMU8086实验模拟环境有相应的了解,熟悉了基本的EMU8086的使用方法,同时也对mov这个指令有了深入的理解,并且知道了各个存储器里面的值得存储过程,为以后的的学习打下了坚实的基础。
第1章计算机基础知识三、简答题1.微型计算机的基本组成?答:以微型计算机为主体,配上相应的系统软件、应用软件和外部设备之后,组成微型计算机系统。
(微型计算机+软件系统,也可)2.简述冯.诺依曼型计算机基本思想?答:冯.诺依曼型计算机是由运算器,控制器,存储器,输入设备和输出设备组成的。
其中,运算器是对信息进行加工和运算的部件;控制器是整个计算机的控制中心,所以数值计算和信息的输入,输出都有是在控制器的统一指挥下进行的;存储器是用来存放数据和程序的部件,它由许多存储单元组成,每一个存储单元可以存放一个字节;输入设备是把人们编写好的程序和数据送入到计算机内部;输出设备是把运算结果告知用户。
(写出主要内容,即可)3.什么是微型计算机?答:微型计算机由CPU、存储器、输入/输出接口电路和系统总线构成。
(只要答出五大组成部分即可)4.什么是溢出?答:溢出就是在运算中,使用已经确定的二进制位数,没有办法表示运算结果。
二、简答题1.在内部结构中,微处理器主要有哪些功能部件组成?答:1) 算术逻辑部件 2) 累加器和通用寄存器组3) 程序计数器 4) 时序和控制部件(意思相近即可)2. 微处理器一般应具有哪些功能?答:1)可以进行算术和逻辑运算 2)可保存少量数据3)能对指令进行译码并完成规定的操作 4)能和存储器、外部设备交换数据5)提供整个系统所需的定时和控制 6)可以响应其他部件发来的中断请求3. 什么是总线周期?答:CPU使用总线完成一次存储器或I/O接口的存取所用的时间,称为总线周期,一个基本的总线周期包含4个T状态,分别称为T1、T2、T3、T4。
(意思相近即可)?2.中断服务程序结束时,。
RET应该可以使中断服务程序返回主程序,但因为RETF是子程序返回指令,它只从堆栈中恢复CS和IP,而不能使状态字PSW得以恢复,所以不能使断点完全恢复,对源程序的继续执行造成不良影响。
(回答可以返回2分,出现的问题3分,意思相近即可)3.写出把首地址为 BLOCK1) MOV BX,OFFSET BLOCK+6 2) LEA BX,BLOCK 3) LEA BX,BLOCKMOV DX,[BX] MOV DX,[BX+12] MOV SI,12MOV DX,[BX+SI]4. 设BX=134AH,BP=1580H,DI=0528H,SI=0234H,DS=3200H,SS=5100H,求在各种寻址方式下源操作数的物理地址。
第六章输入/输出方式与接口芯片第一节输入/输出方式第二节中断第三节可编程定时/计数器8254及其应用第四节可编程并行I/O接口芯片8255A及其应用第五节可编程中断控制器8259及其应用第一节输入/输出方式●教学目标介绍I/O 接口的基本概念介绍I/O端口的编址方式介绍CPU与外设间的数据传送关系●学习要求掌握I/O接口的基本功能,了解接口的一般结构熟悉I/O端口的编址方式,了解IN/OUT指令的执行过程掌握微机与外设的各种传送方式,了解DMA传送过程一、I/O接口1)I/O接口的基本概念I/O接口是连接CPU与外设的逻辑控制部件,它主要在CPU与外设间起着传输状态与命令信息,实现数据的缓冲、数据格式转换等作用。
它的主要功能有:选择外设对外设进行控制和监视进行数据寄存和缓冲进行数据格式转换进行信号电平转换I/O接口的分类并行I/O接口和串行I/O接口可编程接口和不可编程接口专用接口和通用接口2)I/O接口的基本结构主要包含有数据端口、状态端口和控制端口数据端口用于存放数据信息,包括数据输入寄存器和数据输出寄存器,主要作用是协调CPU和外设之间的数据传输速度。
控制端口用于存放控制信息,控制信息是CPU通过接口传送给外设的,其主要作用是控制外设工作,如控制输入输出装置的启/停等。
状态端口用于存放状态信息,即反映外设当前工作的状态信息,CPU可通过读取这些信息,了解外设当前的工作情况。
3)I/O端口的寻址方式在一个微机系统中既有存储单元地址又有I/O端口地址,根据两者地址的不同安排可分为以下两种寻址方式。
存储器统一编址在这种方式中,把I/O端口作为存储器的一个单元来对待,即每个端口占用一个存储单元地址。
此时,对I/O端口操作可以使用全部的存储器指令,而不必另设专门的I/O指令。
由于该方式是将I/O地址映射到了存储器地址空间,所以也称为存储器映像方式。
I/O端口独立编址在这种方式下,I/O端口与存储器各自独立编址,这样存储器地址和I/O端口地址可以重叠。
微机原理与接口技术总结第一章1、总线是计算机系统中互连各部件的一组公用信号线,负责在CPU与存贮器和输入输出设备之间传送地址、数据和控制信息,是计算机系统的神经中枢。
总线包括数据总线DB:双向,用来传递数据信息。
地址总线AB:单向,用于传送CPU发出的地址信息。
控制总线CB:用来传送CPU与存储器和I/O设备之间的读、写控制信号,时序信号和状态信号。
2、进位计数制十进制:数:0、1、2、3、4、5、6、7、8、9权:10的幂。
逢十进一,借一当十(245.25)10=2×102 +4×101 +5×100 +2×10-1 +5×10-2二进制:数:0、1权:2的幂。
逢二进一,借一当二(1101.01)2 =1×23 +1×22+0×21+1×20+0×2-1+1×2-2 =(13.25)10十六进制:数:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F权:16的幂。
即逢十六进一,借一当十六(F5.4)16 =F×161+5×160 +4×16-1 =()103、进位计数制之间的转换第二章1、通用寄存器:存放数据或地址AX:累加器BX:基址寄存器CX:计数器DX:寄存器SI :源变址寄存器DI:目标变址寄存器BP:基址寄存器SP:堆栈指针2.段寄存器(16位):存放存储器逻辑段的起始地址CS:代码段寄存器DS:数据段寄存器SS:堆栈段寄存器ES:附加段寄存器3.标志寄存器(FR)运算结果标志:CF:最高位向前有进位(或借位)CF=1 PF:偶数个1 PF=1 AF:低四位向前有进位(或借位)AF=1ZF:结果为零ZF=1 SF:结果为负SF=1OF;结果溢出OF=1 控制标志:TF:单步标志IF:中断标志DF:方向标志5、实模式下,物理地址=段基址×16+偏移地址第三章指令系统一、数据类型类型所占位数字节8位字16位双字32位单字符8位(ASCII码)例:‘A’存储形式为01000001(65),‘a’为01100001(97)近指针32位远指针48位BCD码压缩BCD码;1字节存放两位BCD码例:25 存储形式为00100101非压缩BCD码:1字节存放一位BCD码(低4位)例:25存储形式为00000010 00000101二、寻址方式1、立即数方式:立即数位于操作码之后,存放在代码段中。
单片微机原理与接口技术单片微机(Single-chip Microcomputer)是指将微处理器、存储器、输入输出接口、时钟电路等组成一个完整的计算机系统集成在一颗芯片上的微型电脑。
单片微机在控制领域有着广泛的应用,如机器人控制、电子制造业、航空航天等。
一、单片微机的组成和性能特点单片微机由微处理器、存储器、输入输出接口、时钟电路等组成。
微处理器是单片微机核心部件,通过总线连接其他外围部件,控制整个系统工作。
存储器主要包括程序存储器(Programmable Read Only Memory,PROM)、数据存储器(Random Access Memory,RAM)、EPROM(可擦除可编程只读存储器)等。
EPROM和RAM有时也称为内存(Memory)。
输入输出接口包括并行口、串行口、通用接口等,它们通过总线与微处理器相连接。
单片微机的主要性能特点是小巧、可靠、灵活、成本低廉。
它可以实现各种数字逻辑功能,可编程性强,可编程的语言有汇编语言、C语言等,支持强大的软件功能。
单片微机系统接口技术涉及到微处理器与各种外围设备(如显示器、打印机、键盘等)之间数据交换和信号控制的接口电路的设计和实现。
为了充分发挥单片微机的功能,必须采用适当的接口电路设计。
1.输入输出接口的基本原理输入输出接口是微处理器与外部设备之间的桥梁。
它包括数据总线、地址总线、控制总线等。
数据总线用于传输数据,地址总线用于传输地址,控制总线用于传输控制信号。
在接口芯片中,通过各种控制信号的控制,实现读写数据、选通设备等。
2.串行口接口技术串行口是一种简单的输入输出接口,它使用单根传输线传输数据,通讯速度较慢,但传输距离远。
串行口一般采用异步通讯协议,通讯方式有两种:同步通讯和异步通讯。
并行口是一种高速输入输出接口,它使用多根传输线传输数据,通讯速度较快,但传输距离有限。
并行口通讯方式有两种:SPP(Standard Parallel Port,标准并口)和EPP (Enhanced Parallel Port,增强并口)。