数字音频系统
- 格式:pptx
- 大小:1.24 MB
- 文档页数:59
分析Technology AnalysisDI G I T C W 技术118DIGITCW2019.011 CDR 传输系统简介CDR 传输系统框图如图1所示。
图1 CDR 传输系统框图CDR 系统分为前端系统、传输链路和地面覆盖网络三部分。
前端系统提供一路三套数字音频广播节目的传送码流作为信号源,通过传输链路分发到地面覆盖网络中的发射台站,各台站分别使用一个调频广播频率,以模拟和数字同时播出的方式进行传输覆盖。
1.1 前端系统1.1.1 DRA+编码器音频编码采用DRA 低码率扩展版本(DRA+)。
DRA+是以DRA 为核心,并利用带宽扩展和参数立体声增强工具而实现的低码率音频源编码技术。
编码器音频声道为立体声,每套节目的码率为32kbps ,共三套。
1.1.2 CDR 复用器CDR 复用器将输入的多个节目信号码流复合成一路多节目信号码流。
CDR 复用器的输入信息,除了音频节目、电子业务指南和数据业务等业务数据外,还有接收机处理信号需要的编码、调制等控制信息。
1.2 传输链路传输链路主要包括地球站,卫星转发器和地面接收设备等。
CDR 信号与其他数据信号复用后,送到上行地球站进行卫星传输。
卫星有中星6B (东经115.5度)S2转发器和亚太6号(东经134度)K1转发器。
地面接收和解调出CDR 信号与本地的模拟信号一同送进发射机。
1.3 发射机在发射机中,CDR 信号先经过激励器进行各种处理变成射频调频信号,再经过功率放大和滤波等电路用天线辐射出去。
2 调频频段数字音频广播发射机2.1 发射机组成原理介绍发射机(单频网)包括两台激励器、射频切换器、六个2000W 功放单元、六分配器、六合成器、六个开关电源、中央控制单元、工控LCD 和工业以太网交换机等部分。
发射机通过100M 以太网组网方式,采用集散控制方法,各部件间通过以太网交换数据。
除整机供电信息采集外,部件之间没有模拟量连接,控制速度极快,控制系统稳定可靠。
DAB 接收机方案基于核心芯片开发的 DAB 数字音频广播接收机, 可以在 DAB 开播地区接收数 字音视频和数据广播节目,CD 音质效果。
DAB 接收机构成: DAB 核心模块 + 底板,底版包括:音频 DAC + 外壳+液晶 +耳机+按键。
FM 是 DAB 模块上的可选择功能。
DAB 整机方案如下图所示。
技术指标:o o o o o o o o数字广播标准 DAB ETSI 300 401 我国 DAB 国家标准 GY/T214.2006 接收 L 波段和 3 波段的 DAB 信号,FM, DMB 视频 可实现 mode 1, 2, 4 的自动识别和接收 可在汽车高速移动接收 声道模式为单通道、双通道、立体声 可选择中文或英文显示, 可以接收全球范围的所有 DAB 电台的频道 提供台名,节目种类,动态文字,BER, 时间,日期, 频率,发射台总成 名,电池电量, 信号强度,接收模式,DAB 信号强 度和 BER 各种信息显示o o o提供 64 个 DAB 电台存储,和 32 个用户喜欢的 DAB 电台存储 提供 32-100 个 FM 电台存储 DAB 接收机样机典型功耗:220 mWDAB 数字音频广播接收机可以直接销售到中国和欧洲市场上。
目前在中国市场上,除了我们的产品外,其他的 DAB 接收机都不支 持中文显示, 因而无法正确显示中国境 内的 DAB 电台的文字信息, 包括台名, 和动态文字。
我们的 DAB 接收机是低功耗, 袖珍式产品, 特别适合中国的市场。
本公司主要提供整机方案,帮助客户实现批量生产,包括解决 测试和生产过程中的技术问题。
已有数家厂商有我们的方案和芯片 开发了高性能、低功耗的便携式 DAB 接收机。
。
基于FPGA的数字音频处理系统设计与优化在现代社会中,数字音频处理技术已经成为了音频产业中不可或缺的一部分。
为了满足人们对音质的要求和对特效的追求,基于FPGA的数字音频处理系统被广泛应用。
本文将以“基于FPGA的数字音频处理系统设计与优化”为题,从系统设计、优化和应用三个方面来探讨这个话题。
一、系统设计基于FPGA的数字音频处理系统设计是整个系统的关键。
首先,我们需要选择合适的FPGA芯片,考虑其资源、时钟频率、性能等因素,从而保证系统能够满足音频信号处理的需求。
其次,在设计过程中应考虑到音频接口的选取,如I2S接口,以保证音频数据的传输准确性。
此外,还需要设计适当的控制逻辑和硬件接口,以便与其他外设交互。
综合考虑这些因素,可以设计出一个完整的基于FPGA的数字音频处理系统。
二、系统优化系统优化是为了提高系统的性能和效率。
对于基于FPGA的数字音频处理系统而言,一方面可以通过优化硬件布局,例如合理安排模块的位置和连接,减少信号线的长度和相互干扰,以提高系统的抗噪声能力和稳定性。
另一方面,可以通过优化算法和处理过程,以减少资源消耗和延迟,提高系统的实时性。
此外,还可以应用并行计算和流水线技术,以加快处理速度。
三、系统应用基于FPGA的数字音频处理系统在很多领域都有广泛的应用。
首先,在音频录制和处理中,可以利用系统进行信号去噪、均衡、降噪等处理,提高音质和录音效果。
其次,在音乐制作和演奏中,可以利用系统实现声音特效、实时控制等功能,增加音乐的创新性和表现力。
此外,在通信领域中,基于FPGA的数字音频处理系统可用于语音编解码、降噪等处理,提高音频通信的质量。
总结:基于FPGA的数字音频处理系统的设计与优化,是一个复杂而又重要的课题。
通过合适的系统设计和优化,可以实现高性能、低延迟的数字音频处理系统。
这将为音频产业带来更多的可能性和发展空间。
相信随着技术的不断进步,基于FPGA的数字音频处理系统将会在未来得到更广泛的应用,并为人们带来更好的音频体验。
数字音频工作站工作站是一种用来处理、交换信息、查询数据的计算机系统。
数字音频工作站(Digital Audio Workstation,简称DAW)是一种用来处理、交换音频信息的计算机系统。
它是随着数字技术的发展和计算机技术的突飞猛进,将两者相结合的新型设备。
数字音频工作站的出现,实现了广播系统高质量的节目录制自动化播出,同时也创造了更加良好的高效的工作环境。
90年代中期以来,随着采用数字技术处理音频信号技术的出现和成熟,尤其是计算机软硬件技术和多媒体技术的日趋完善,各种性能优、功能齐、质量好的自动化程序高的数字化产品纷纷面市。
最近几年,数字音频工作站(DAW)已经发展成为专门的计算机化硬盘录音系统,且基于它们能够实现基本和先进的编辑和信号处理功能在多媒体数字音频应用中,使用音频工作站有很多优点,下面列出一些:1.处理长样本文件的能力。
硬盘录音时间只受硬盘本身大小的限制(通常44.1KHz取样频率、16比特精度下1分钟立体声信号需要10.5MB硬盘存储器)。
2.随机存取编辑。
因为信号记录在硬盘上,节目中任何点可以随即访问,不论它们以什么顺序记录。
无损编辑在丝毫不改变或影响原始录音文件的情况下允许信号片段安排在节目中的任何次序上。
一旦编辑结束,这些片段可以连续重放来产生一个演奏,或者个别的在一个指定的SMPTE时间码地址上重放。
3.DSP数字信号处理可以在一个片断或整个样本文件上实现,不管是实时的还是非实时的,这一切都对信号没有损害。
除了上述这些优点之外,以计算机为基础的数字音频设备还能够综合进行与数字视频、音频和MIDI制作有关的一些工作。
计算机音频工作站主要用于对声音信号的录音、剪辑、处理和缩混。
但细分起来,它的应用可以分为经下几个方面:1.声音剪辑和CD刻录在这种场合下,计算机音频工作站不是用于从头制作音乐,而是主要对现成的音乐进行剪辑处理,或是将现成的音乐制成CD唱片。
比如,它可以使音乐进行重新剪接、为歌曲伴奏移调(但不改变音乐速度)、变化舞蹈音乐的长度(但不改变音乐的音调)、将音乐中的噪声去除,或是将各种现成音乐制作成CD唱片等。
什么是数字音频人耳是声音的主要感觉器官,人们从自然界中获得的声音信号和通过传声器得到的声音电信号等在时间和幅度上都是连续变化的,时间上连续,而且幅度随时间连续变化的信号称为模拟信号(例如声波就是模拟信号,音响系统中传输的电流,电压信号也是模拟信号),记录和重放信号的音源即使模拟音源,例如磁带/录音座、LP/LP电唱机等;时间和幅度上不连续或是离散的,只有0和1两种变化的信号称为数字信号,记录和重放数字信号的音源叫做数字音源,例如CD/CD机,DVD/DVD播放机等。
传统的信号都是以模拟手段进行处理的,称为模拟信号处理。
模拟音频信号处理有很多弊端,如抗干扰能力很差,容易受机械振动、模拟电路的影响产生失真,远距离传输受环境影响较大等。
数字信号是以数字化形式对模拟信号进行处理,它在时间和幅度上都是离散的。
把模拟的电信号变为数字电信号这一过程称为模拟信号数字化,即模/数转换(A/D)。
(A/D)转换通常次啊用PCM(脉冲编码调制)技术来实现。
A/D转换过程包括三个阶段,即取样、量化、编码。
取样取样也叫采样,是指将时间轴上连续的信号每隔一定的时间间隔抽取出一个信号的幅度样本,把连续的模拟量用一个个离散的点来表示,使起称为时间上离散的脉冲序列。
乃奎斯特取样定理:要想取样后能够不失真的恢复出原信号,则取样频率必须大于信号最高频率的两倍,即fs>2fm 式中,fs表示取样频率,fm为原信号频率。
量化所谓量化,就是度量采样后离散信号幅度的过程,度量结果用二进制数来表示。
量化精读就是度量时分级的多少。
编码抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。
声音的三个要素(响度、音调、音色)可以由传声器转变成相应的电流的三个特性(幅度、频率、波形)。
在对数字音频信号进行存储和传输,通常要对其进行压缩编码和纠错编码。
压缩编码的目的是降低数字音频信号的资料量和数码率,以提高存储和传输的有效性;纠错编码的目的是为信号提供纠错、检错的能力,以提高存储和传输的可靠性。
第3期中央广播节目调频频段数字音频广播系统简介张 齐(辽宁省广播电视技术保障中心)【摘 要】本文主要介绍辽宁省中央广播节目无线数字化覆盖工程的调频频段数字音频广播系统架构、传输和模数同播技术,CDR发射机具有在原有调频频段一个频道内模数同播多套广播节目的优势,原有的调频频段广播发射机现在逐渐被CDR发射机取代。
【关键词】数字音频广播;CDR;模数同播数字音频广播技术是广播数字化技术的基础,通过引入先进的数字编码、调制、传输技术,能够有效的消除其他干扰对接收音频质量的影响。
提高频谱的利用率,在相同的射频带宽内,传输更多的节目内容,能够用更低的发射功率达到与模拟广播同样的覆盖范围。
调频频段数字音频广播是我国自主开发的调频频段数字音频广播系统,国家新闻出版广电总局正式将其发布成为行业标准,为我国数字音频广播的发展提供了技术保证。
一、中央广播节目调频数字音频广播系统结构中央广播节目调频数字音频广播系统主要包括四个部分:前端系统、传输系统、发射系统和接收系统,系统结构如图1所示。
·7·总第105期中心技术System Technology前端系统主要完成音频编码、节目码流复用、信道编码等任务。
中央广播节目的前端设在中央人民广播电台节目播出中心,3套中央广播节目的音频信号由前端的DAB+音频编码器转换成DAB+编码格式的TS流,经过节目流复用生成音频节目包码流,经过信道编码调制后,将信号送至卫星地面站进行传输。
传输系统的主要任务是将前端生成的数字音频广播信号传输到调频数字音频广播发射系统(即各个发射台站)。
卫星地面站将上述信号发送至广播通讯卫星,发射台站通过卫星接收天线进行接收。
发射系统的主要任务是将接收的数字音频广播节目进行调制、变频、放大,通过天线进行无线发射。
卫星接收机将卫星天线接收的信号分别解调成数字音频TS码流和模拟音频信号送至调频率合成分配单元、定向耦合器单元、显示系统单元、供电单元等部分组成。
关于CAS1000网络音频矩阵和传输系统中音频信号的同步在数字音频系统中,各数字设备间的同步一直是一个重要的环节。
如果同步设计的不好,将会产生数字噪音,严重时导致系统无法工作。
时钟的同步根据系统的不同主要分成两大类:1、音视频系统的同步在这种系统中,要求音频信号和视频信号保持同步2、音频系统的信号同步在这种系统中,只要求各音频设备之间保持同步。
在这里只讨论音频系统的时钟同步(Synchronization of Digital Audio System)。
一、时钟同步的目的要成功地连接两个数字音频设备,首先要求两个数字音频信号具有完全相同的帧频率(即:两个信号在限定的时间周期上具有相同数量的帧),同时还需要保证两个信号每个样点的时差(相位)在允许范围内(处于锁相状态)。
当时差超过了允许值,即使频率是完全相同的,其中一个信号也应该重新调整同步。
根据数字音频系统同步标准GY/T 193 -2003,相位差应小于±90°,即四分之一周期。
<T/4二、在什么情况下需要同步在多台数字音频设备之间,要进行数字信号的传输,由于各设备的采样频率可能不一样,即使一样,都是48Khz,也会有偏差。
如一台为47.998Khz,另一台为48.003Khz,随着时间的推移,频率偏差会在时间方向产生误差积累。
因此,原则上两台数字音频设备之间必须要进行同步。
通常,同步系统会选用一台外部的标准时钟源,它发出一个标准的时钟如48Khz,所有的设备统一采用它的时钟,这样就可以保持各个设备的输入输出数字音频信号统一在一个时钟上。
但是,目前有很多音频设备,为了提高适应性,在数字输入口增加了采样频率转换器(SRC)功能,当不同采样频率标准的信号,如44.1或48kHz,需同时处理时,先经SRC处理,转换成相同采样频率的信号,再进行其它处理。
目前大多数数字调音台的数字输入模块输入端口内置有SRC,范围从26kHz到52(?108)kHz。
无线数字音频传输系统的软件设计摘要本文主要实现了一个无线数字音频传输系统的软件过程。
提到无线便是对传输所占用的频带提出要求,在设计中选用的是在 2.4GHZ频率范围的无线收发芯片MC13191,该芯片运用了Zigbee技术,Freescale的简单媒体接入控制软件可以支持它完成无线收发过程。
进行数字传输,则要求系统中必须有AD转换器和DA转换器,本设计中选用的是DA8531和TCL4541,其中DAC8531是16位DA转换器,而TLC4541用于AD转换,同样也是16位的,其采样率可以高达200KSPS ,由于系统是用于音频传输,据耐奎斯特采样定理,选择采样率为44.1KHZ。
要想所选择的无线收发芯片和DA、AD转换器正常运作,必须要有一个微处理器来控制,设计中选择的是ATMEL公司的8位高速单片机AT89C5/RC2,拥有32K字节的FLASH可选择容量的扩展RAM,4个8位I/O口,3个定时/计数器。
由于所选择的四个芯片都支持SPI,本论文主要完成的是有AT89C5/RC2控制三个芯片通过SPI进行数据传输过程。
关键字:微处理器无线传输音频串行可编程接口Wireless digital audio transmission system software designabstractThis article has mainly implemented a wireless digital transmission system software part. Mentioned wireless transmission, It sets the requirement to the frequency band which transmits takes. in the design I select wireless receiving and transmitting chip MC13191 which can be used in a widerange of 2.4GHZ .this chip utilized the Zigbee technology, Freescale’s example Simple Media Access Controller software supports it, so it can easily complete the wireless transeivers. Because of the digital transmission, then system in the requirement must have the AD and the DA , in this design I select DA8531 and TLC4541, DAC8531 is 16 bit of DAC, but TLC4541 is used for AD converting, similarly also is 16 bits, its sampling rate may reach as high as 200KSPS, because the system is usesd in the audio frequency transmission, according to Naquist sampling theorem, the selection sampling rate is 44.1KHZ. To make the selected MC13191and DA, the AD operate normally, must have to have a MCU to control, in the design I selects ATMEL Corporation's 8 bit of high speed MCU AT89C5/RC2, has 32K byte FLASH, expand RAM, 4 8-bit of I/O, 3 Timer/Counter. Because the selected four chips all support SPI, the present paper mainly complete have AT89C5/RC2 checks three chips to execute the data transmission through SPI.。