日本根本高性能可燃气体传感器NAP-57A技术资料
- 格式:pdf
- 大小:1.26 MB
- 文档页数:9
19970929NAP—55A(触媒接触燃烧式城市燃气传感器)使用说明书根本特殊化学株式会社东京都杉並区上荻1—15—1目 录1.NAP—55A传感器的特征及用途 (2)2.额定值 (2)3.可测燃气的浓度范围 (2)4.燃气灵敏度特性 (3)5.应答特性 (4)6.电源电压波动特性 (5)7.温度特性 (7)8.湿度特性 (7)9.传感器的检测方法 (8)10.传感器图纸 (11)1.NAP—55A传感器的特征及用途NAP—55A和从前本公司生产的接触燃烧式燃气传感器(NAP—2A、NAP—7A)相比,体积小、节能,消耗电力只有NAP—2A的50%,具有卓越的感应灵敏度,应答速度超出2A约30%以上。
(1) 特征·具有良好的稳定性·突出的再现性和灵敏度·对于城市燃气浓度的输出信号显示为良好直线性·应答速度极快·由于超小型,故报警器形状可随意调整(2) 用途·城市燃气用报警器·各种燃气的浓度计2.额定值·电桥外加电压 A.C.2.5V±0.25V(频率50—60Hz)D.C.2.5V±0.25V·电桥外加电流 A.C. 160~180mA(频率50—60Hz)(2.5V外加时) D.C. 160~180mA·使用时周围的温湿度 温度 –10~+50℃湿度95%RH以下·保管时周围的温湿度 温度 –20~+60℃湿度95%RH以下3.可测燃气的浓度范围针对任何一种燃气都能感应从0~LEL但是对于燃气的浓度输出信号,直线保证在以下的浓度范围内。
天然气 :0~1%异丁烷 :0~0.5%丙 烷 :0~0.5%氢 气 :0~0.5%4.燃气灵敏度特性图 1 NAP—55A 的灵敏度特性10203000.10.20.30.40.5Gas Concentration (vol%)iso-C 4H 10H 2C 2H 5OH CH 45.应答特性(测定例:和NAP—2A的比较)图中的时间是90%应答的情况图 2 NAP—55A的应答特性6.电源电压波动特性图 3 NAP—55A 的燃气感应灵敏度的电源电压变动特性图 4 空气中输出值的电源电压波动特性2.252.50 2.75Supply Voltage (V)1020∆V o u t i n C H (m V )42.25 2.50 2.752-2V o u t i n A i r (m V )Supply Voltage (V)图 5 理论报警浓度的电源电压波动特性2.752.502.25Supply Voltage (V)20002500300035004000T h e o r i t i c a l A l a r m G a s C o n c e n t r a t i o n o f C H (p p m )47.温度特性图 6 NAP—55A 的温度特性8. 湿度特性图 7 NAP—55A 的湿度特性3030404050502020101000-10-10-22Temperature (C)oTemperature (C)o V o u t i n A i r (m V )303060609090Relative Humidity (%)Relative Humidity (%)-22V o u t i n A i r (m V )9. 传感器的检测方法(1) 试验装置试验装置的简图如下(注意事项) ① 试验槽·试验槽材质必须是不产生燃气和不附着燃气,比如金属或者玻璃为好。
ul 2075a标准UL 2075A是由国际认可的标准化组织Underwriters Laboratories (UL)制定的一项针对可燃性气体传感器的标准。
该标准旨在确保气体传感器的安全性和性能符合国际标准,以保护人员和环境免受可燃性气体的危害。
本文将详细介绍UL 2075A标准的内容、应用范围以及其在工程领域中的重要性。
1. 标准内容UL 2075A标准主要关注可燃性气体传感器的性能和安全性需求。
标准规定了气体传感器的设计、制造和测试要求,以确保其可靠性和稳定性。
具体来说,标准包括以下几个方面的内容:1.1 产品分类和定义:标准根据不同的可燃性气体类型将传感器分为不同的类别,并对其定义和特性进行了详细描述。
1.2 产品设计要求:标准要求传感器设计符合安全性、可靠性和环境适应性的基本原则。
包括外观、结构、材料、电气性能和电磁兼容性等方面的要求。
1.3 产品制造和工艺要求:标准规定了传感器的制造流程、工艺和质量控制要求,确保产品能够达到设计要求,并且在生产过程中保持一致性和可追溯性。
1.4 性能测试和验证:标准定义了一系列测试方法和指标,用于评估传感器的性能。
例如,传感器的灵敏度、稳定性、响应时间、抗干扰能力等。
1.5 安全性要求:标准要求传感器在正常使用和异常情况下均能保持安全。
如耐久性、电气隔离、防爆性能等方面要求。
2. 应用范围UL 2075A标准适用于各种可燃性气体传感器,包括但不限于甲烷、乙烷、丙烷、氢气、一氧化碳等。
这些传感器广泛应用于石油、化工、煤矿、冶金、城市燃气、环境监测等领域,用于检测和监控可燃性气体的存在和浓度。
由于可燃性气体具有易燃易爆的特性,其泄漏会导致安全事故的发生。
通过使用符合UL 2075A标准的气体传感器,可以及时发现可燃性气体的存在,从而采取措施防止事故的发生,保护人员的生命财产安全。
3. 工程领域中的重要性在工程领域,安全性是至关重要的。
工厂、交通管制、石油化工等行业必须对可燃性气体进行监测,以确保工作环境的安全。
可燃气体传感器NAP-100AD用于家居燃气报警器自2007年以来,由燃气泄漏引起的爆炸事故在全国各地不断发生。
为了加强管理,国务院于2010年11月发布了《城镇燃气管理条例》,取代了2007年5月建设部发布的《城市燃气管理办法》。
主要目的是预防和减少燃气安全事故。
然而,许多城市接连发生的燃气安全事故表明,我国已经进入了城市燃气安全事故高发时期。
20世纪80年代以后修建的许多燃气管道已经达到设计寿命,这些管道需要更换。
但是,由于资金不足,燃气企业又无力全部更换,老住宅区的管道长期投入使用,一直“带病”使用,积累了大量的安全投资债务,燃气泄漏事故时有发生。
另外,燃气市场近年来扩张过快,技术、设备、管理等方面跟不上,事故的发生可以说是不可避免的。
为了避免安全事故,许多家庭会选择安装燃气报警器,它的安装可以更好地保证燃气的安全使用。
例如,天然气是许多家庭使用的非常易燃的气体,它比煤气更安全,比煤更环保!虽然天然气是一种无色、无嗅、无毒的气体,但它确实是一种非常易燃的气体!如果天然气泄漏,将会发生安全事故!在有限的空间内,天然气与空气混合时易燃易爆。
工采网了解到当空气中的天然气浓度达到5%-15%时,暴露在明火下会爆炸,因此有必要防止天然气泄漏,可以选择使用燃气报警器,它可以检测天然气的泄漏并发出警报!燃气报警器中核心检测元件就是可燃气体传感器,可燃气体传感器检测到泄漏气体后会转化成声音信号从燃气报警器中发出来,以达到提醒作用。
工采网代理了日本NEMOTO 可燃气体传感器NAP-100AD,催化燃烧原理,适用于工业,属于高温可燃型,可耐250度,广泛用于高温炉、烤漆房等高温场所。
精度高检测可能的浓度范围1 ~ 50%LEL 3 ~ 100%LEL 1 ~ 50%LEL 1 ~ 50%LEL。
NIS-05A SPECIFICATIONS(Revised: November 11, 1999)1. Scope :This specification sheet is for Ionization Smoke Chamber Model NIS-05A (Radiation source = 0.5 µCi of Am-241) manufactured by Nemoto & Co., Ltd., Tokyo, Japan for applications to smoke detectors.2. Method of detection :Ionization type, 2 chambers with a source3. Radiation source :Nuclide ; Americium 241Radioactivity ; 16.6KBq. - 20.4KBq. Ave. 18.5 KBq. (0.5 µCi)4. Operational conditions :Power supply ; DC 6.0 - 12.0 VOperational ambient conditions ;Temperature 0 - 50o CHumidity Less than 95% (No dew condensation)5. Maximum ratings :Supply voltage ; DC 24 Vconditions;Ambientin operation ; Temperature 0 - 50o CHumidity Less than 95%in storage ; Temperature -25 - 80o CHumidity Less than 95%6. Shape, dimensions, weight ;Shape & Dimensions ; As per attached drawingWeight ; 13.7 g.深圳市深国安电子科技有限公司7. Measuring circuitPower supply Power supplyNormal polarity Reverse polarity8. Ratings :Test conditions; at 25o C, 60% RHSpecificationsItemsNormal polarity Reverse polaritySupply voltage DC 9V DC 9V Current consumption 15 +/- 2 pA 12 +/- 2 pA Output voltage5.5 +/- 0.5 V in clean air4.3 +/- 0.5V Sensitivity1.2 +/- 0.3 V0.8 +/- 0.3 V(Under 2%/foot of smoke, Tested according to UL 217)9. Characteristics :9-1. Sensitivity characteristics Table 1Test conditions; at 25o C, 60% RHOutput Variation (∆V)Smoke Concentration (%/foot)Normal polarity Reverse polarity 0 0 0 1 0.6 +/- 0.2 0.4 +/- 0.3 2 1.2 +/- 0.3 0.8 +/- 0.3 3 1.7 +/- 0.3 1.2 +/- 0.3 42.1 +/- 0.41.5 +/- 0.4Gray smoke test according to UL 217 Air velocity; 0.16m/sec.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 9-2. Supply voltage dependencyTable 2 Test conditions; at 25o C, 60% RHOutput voltage (V)Supply voltage (V)Normal polarity Reverse polarity6 3.2 +/- 0.4 3.4 +/- 0.49 5.5 +/- 0.5 4.3 +/- 0.512 7.8 +/- 0.6 5.0 +/- 0.69-3. Temperature & Humidity dependencyTable 3 Temperature dependency (Humidity; 60% RH)Temperature (o C) Output(V)0 5.2+/-0.525 5.5+/-0.550 5.8+/-0.5Table 4 Humidity dependency (Temperature; 25o C)Humidity (%C) Output (V)30 5.6 +/- 0.560 5.5 +/- 0.590 5.4 +/- 0.510. Durability tests :10-1. Heat resistance testTest method CriteriaAt +80o C +/- 5o C for 72 hrs. without electrified To maintain the characteristics shown in Heading No. 8 after test. To show neither deforming, nor discoloring, nor cracks.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 10-2. Low temperature resistance Test method CriteriaAt -30o C +/- 5o C for 72 hrs. without electrified To maintain the characteristics shown in Heading No. 8 after test. To show neither deforming, nor discoloring, nor cracks.10-3. High humidity resistanceTest method CriteriaAt +40o C +/- 5o C, 85 +/- 5% for 72 hrs. without electrified To maintain the characteristics shown in Heading No. 8 after test. To show neither deforming, nor discoloring, nor cracks.10-4. Vibration testTest method Criteria Vibrated with amplitude of 0.25mmat every 5Hz from 10 – 35 Hz for 15 min. with sympathetic vibration.If no sympathetic vibration occurs, to be vibrated at 35Hz for 4 hours. To maintain the characteristics shown in Heading No. 8 after test.To show neither deforming, nor discoloring, nor cracks.10-5. Impact testTest method CriteriaDropped from a height of 1m on to a wooden plate with three different directions. To maintain the characteristics shown in Heading No. 8 after test.To show neither deforming, nor discoloring, nor cracks.深圳市深国安电子科技有限公司11. Remarks:1. Measurement of output voltages ;Output voltages are to be measured with an electrometer having an impedance of 1014 or greater, or with an exclusively designed measuring circuit using an IC for smoke detectors.Usual testers with an impedance of around 100M may not be adequate for accuratemeasurements.2. Contamination with a flux ;Upon assembling of NIS-05A onto your smoke detectors, please pay attention that a soldering flux would not get inside the chamber. Washing or cleaning up should be required if the inside of the chamber is contaminated with a flux.3. Connection of output lead wire ;The lead wire of NIS-05A should be connected in air with the input terminal of your circuit, or the connected point should be supported with a teflon post so that the connected point would not touch to your PCB. Accurate output voltages can not be measured if the current leaks onto the PCB.4. Moisture protection ;The connection point of the output wire of NIS-05A and an input terminal of an IC or an FET should be protected with a silicone resin or the like. Current leakage under highly humid conditions would be minimized.;shielding5. ElectricalBecause of a sensor of a tiny current, NIS-05A is easily affected by electrical noises from the outside. It is therefore recommended to shield the sensor, especially the connection point must be electrically shielded.Packing1,000 pieces packed in an export carton.Dimensions ; 435(D) x 490(W) x 275(H) mmGross weight ; 14.5 Kgs.深圳市深国安电子科技有限公司12 Drawings。
USER'S MANUALHOT-WIRE TYPE GAS SENSOR NAP-55A & 50A(For All Combustible Gases, Low Power Consumption) CONTENTS1. Features & applications2. Specifications3. Gas sensitivity characteristics4. Response characteristics5. Voltage dependency characteristics6. Temperature characteristics7. Humidity characteristics8. Evaluation on sensor9. Drawings深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-852589001. GeneralNemoto's NAP-55A & 50A are miniature-sized hot-wire type gas sensors for every combustiblegases. These new sensors are smaller than our NAP-2A sensor and consume much less power.(Approx. half a wattage of NAP-2A). These sensors respond 30% quicker than NAP-2A.NAP-55A is sensitive to all combustible gases, while NAP-50A has lower sensitivity only toalcohol. NAP-55A would be suitable for general applications, and NAP-50A would be the bestfor residential gas detectors which should not be affected by noise gases other than fuel gases.1) Features* Excellent stability.* Remarkable reproducibility and accuracy.* Linear output signal for natural (city) gas concentration.* Superior response characteristics.* Miniature size for flexibility in the design of detectors.2) Applications* Gas densitometers* City gas leakage detectors2. Specifications1) Voltage supplied to sensor bridge ; D.C. ; 2.50 +/- 0.25 VA.C. ; 2.50 +/- 0.25 V(r.m.s. 50 ~ 60 Hz)2) Current (when 2.50 V is supplied) ; D.C. ; 160 ~ 180 mAA.C. ; 160 ~ 180 mA(r.m.s. 50 ~ 60 Hz)3) Ambient temperature &humidity during operation ; Temperature : -10o C ~ +50o CHumidity : Less than 95% RH4) Ambient temperature &humidity during storage ; Temperature : -20o C ~ +60o CHumidity : Less than 95% RH5) Output voltage in air ; Va : -35 ~ +35 mV6) Gas sensitivity ; ∆S : 11 ~ 16 mV (Methane 3,000 ppm)7) Reproduceability in a day ; Va : Within +/- 0.5 mV∆S : Within +/- 0.5 mV深圳市深国安电子科技有限公司3. Gas sensitivity_of N AP-55A3-1 Gas concentration characteristics3-2 Standard deviation of gas sensitivity to CH 4 (Individual difference)10203000.10.20.30.40.5Gas Concentration (vol%)iso-C 4H 10H 2C 2H 5OH CH 401020304000.20.40.60.8CH 4 Gas Concentration (ppm)+σ-σaverage深圳市深国安电子科技有限公司4. Response characteristics(Measurement example ; Comparison to NAP-2A)The times are ones to be required for 90% response. 深圳市深国安电子科技有限公司5. Voltage dependency characteristicsVoltage dependency on NAP-55A gas sensitivityVoltage dependency on output in air2.25 2.50 2.752-2V o u t i n A i r (m V )Supply Voltage (V)2.252.50 2.75Supply Voltage (V)1020∆V o u t i n C H (m V )4深圳市深国安电子科技有限公司Voltage dependency on theoretical alarm concentration2.752.502.25Supply Voltage (V)20002500300035004000T h e o r i t i c a l A l a r m G a s C o n c e n t r a t i o n o f C H (p p m )4深圳市深国安电子科技有限公司6. Temperature characteristics7. Humidity characteristics3030404050502020101000-10-10-22Temperature (C)oTemperature (C)oV o u t i n A i r (m V)∆V o u t i n C H 3000p p m (m V )42015105303060609090Relative Humidity (%)Relative Humidity (%)-22V o u t i n A i r (m V )∆V o u t i n C H 3000p p m (m V )42015105深圳市深国安电子科技有限公司8. Evaluation of sensors(1) Testing equipmentThe following is and outline of a test system.Remarks:1) Test chamber ;* Metal or glass which does not generate or absorb gases is desirable as test chamber material.* The volume of the chamber should be larger than 1 liter / sensor.2) Gas densitometer ;* An infrared gas densitometer is recommended for measuring gas concentration.3) Air agitation ;*The air inside the chamber should be agitated, but not so as to directly blow on the sensor.Air flow should be less than 0.5m/sec.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 4) Power supply ;*Sensors can be operated using either D.C. or A.C., but for optimal measurement accuracy, use of a D.C. voltage stabilizer is recommended.5) Voltmeter ;* A voltmeter with greater than 100K ohm impedance is sufficient for measuring sensor bridge out put voltage.6) Ventilation ;*Before proceeding with a subsequent test, the air inside the test chamber should be ventilated using a ventilator which has a capacity of more than 10 times the volume of the chamber perminute.7) Placement of sensors in a test chamber ;*Sensors should be placed in a chamber in a same attitude. (Normally horizontal).Changing the attitude creates different thermal convection, and may causeinaccuratemeasurement results.(2)Adjustment of gas concentrationGas concentration in a test chamber is usually adjusted by a volumetric method injecting iso-butane gas using a syringe, or by monitoring with an infra-red gas densitometer.Gas concentration adjustment by a volume method can be calculated according to thefollowing formula.V;Volume of gas to be injectedV1 ;Inside volume of a chamber (ml)C ;Gas concentration to be adjustedTR;Room temperature (o C)T; Temperature inside a chamber (o C)深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 (3) Measurement1) Preparatory aging;* Before measurement, sensors should be supplied with the specified voltage at least for more than 1 hour.2) Measurement;* After confirming that the output voltage level has stabilized, the output value in air (Va) is measured.* A test gas is injected into the test chamber and wait for an even dispersion of the gas inside the chamber. (Usually 1 min. or more)* Output voltage in gas (Vg) is measured.* Thoroughly ventilate the test chamber with a fresh air from outside.(4) Other remarks* Sensors should not be dropped or subjected to strong shocks.* Refrain from use in an atmosphere that may contain poisonous or corrosive gases.* Do not soak sensors in water.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900网址:www.singoan.com www.singoan.com.cn www.shenguoan.com9. Drawings深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 SUPPLEMENT TO USER'S MANUAL FOR NAP-55A CONTENTS10. Resistance to silicone contamination11. Drop (Impact) resistance12. Wind effects13. Life expectance14. Long term stability深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 10. Silicone contamination resistance test resultsSilicone material Hexamethyldisilixane (HMDS) (CH3)3SiOSi(CH3)3 10ppm : Silicone oilTime of exposure 1 hourTest equipment 14 liter desiccator, Room temperature and humidityTest gas CH4 3,000 ppmBefore contamination (mV) After contamination (mV) Test samplesOutput in air in 3,000ppm of CH4Output in air in 3,000ppm of CH41 Contamination- 14.3 12.5 - 14.2 9.9 without power supply2 " - 13.3 13.0 - 13.3 11.03 " - 0.8 12.9 - 1.0 11.14 " + 0.2 12.4 + 0.3 10.55 " + 10.4 12.5 + 10.2 9.56 Contamination with- 12.2 12.2 - 12.1 9.2 power supply7 " - 19.9 13.1 - 19.8 8.98 " - 15.2 12.8 - 15.0 8.49 " + 12.2 12.7 + 12.1 8.610 " + 23.7 12.8 + 23.8 8.8深圳市深国安电子科技有限公司11. Drop (Impact) test resultsTest conditions Dropped three times (Direction unspecified) on to a wooden plate (30mmthick) from a height of 50cm.Test samples Residential gas leakage detectors on the market (300g with a power code)Test method Fixed resistors for bridge circuit were put outside (Inside circuit was notused), and power was supplied, then fluctuations in output voltage wereobserved using a pen-recorder.Sample No. Trial 1 Trial 2 Trial 3A + 1.0 + 1.3 + 1.0B - 1.5 - 0.8 + 0.5C - 1.1 - 0.5 - 1.2D + 1.4 + 0.5 - 0.1E - 0.3 - 0.4 - 0.8F + 1.0 + 0.5 + 1.1G - 1.6 - 1.4 - 1.2H + 1.5 + 1.0 + 0.8I + 0.5 + 0.1 - 0.4J - 1.3 - 1.0 - 0.7* Fluctuation compared to initial output (mV)深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 12. Wind effects test resultsBecause of its housing structure, NAP-55A's output voltage is little affected by wind. Below are the test results due to wind effects for NAP-55A and NAP-2A.No. Wind direction Description1 From sensor side Wind hits the sensing element2 From compensator side Wind hits the compensating element3 Parallel to sensor and compensator Wind hits both elements from the side4 From top Wind hits both elements through the mesh netFluctuation of output in air (mV) Wind direction and velocityNAP-55A NAP-2A From sensor side, 1.5m/sec. Approx. - 1 Approx. - 4From sensor side, 3.0m/sec. Approx. - 1 Approx. - 24From compensator side, 3.0m/sec. Approx. + 1 Approx. + 21Parallel to sensor and compensator, 3.0m/sec. Approx. +/-1 Approx. +/-2From top, 3.0m/sec. Approx. +/-1 Approx. +/-1 * Remarks: Output voltages fluctuate during measurement.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 13. Life expectanceTest methods and results(1) Overloaded voltage testSensors were continuously energized with 120%, 130%, and 140% of the rated supplyvoltage and stored under room temperature and humidity, then periodically outputvoltages in air were measured, giving the rated voltage. Figure 8 indicates that thelife expectancy of NAP-55A would be 8.4 years. (x axis is the time required until theoutput in air deviates by 5 mV, right y axis is supply voltage, and left y axis isreciprocal numbers of the filament temperature). It is assumed that a sensor is deadwhen its output deviates by 5 mV.(2) Accelerating test under high temperature and humiditySensors were energized with the rated voltage. C3H7OH solution was constantlysupplied to maintain a sensor output at 150 mV with at least 95% relative humidity,and temperature of 74, 87, and 97 degrees Celsius.Figure 9 indicates that the life expectancy of NAP-55A would be 7.3 years. (x axis is thetime required until the sensitivity to CH4 at room temperature and humidity decreasesby 50% of the initial value, and the right y axis is the storage temperature). It isassumed that a sensor is dead when its gas sensitivity to methane decreases by 50% ofthe initial gas sensitivity.(3) Accelerating test using hydrogen gasSensors were energized with 110% of the rated voltage and stored in 1,000~200ppm ofH2 gas at 50o C and 30~40%RH. Output voltages were then examined. No effectsdue to the hydrogen gas were observed. According to a Japanese gas detectormanufacturer who proposed this test, the test conditions would be 42.4 times harsherthan normal atmospheric conditions.深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900Fig. 8 Life expectancy test on NAP-55A with oversupplied voltage(Life = Deviation of 5 mV form zero point)Test conditions ;* At room temperature and humidity* Supplied with 140%, 130%, and 120% of rated voltageFig. 9 Life expectancy test for NAP-55A under high temperature and humidity(Life = 50% of initial gas sensitivity is lost) Test conditions : Temperature ; 97o C, 87o C, and 74o C, Humidity ; _ 95% RH Sensor output was maintained at 150 mV by adjusting CH 4 gas concentration, and 1% C3H7OH solution was supplied to maintain constant test conditions.2.83.03.23.4100100010000Time (hrs.)20304050607080901001.101.201.301.401.50101001000Time (days)2.502.753.003.253.50深圳市深国安电子科技有限公司Fig. 10 Long term energizing test in H 2 gas-2246050100Time (days)00.51.0050100Time (days)00.20.450100Time (days)深圳市深国安电子科技有限公司地址:广东省深圳市龙华新区牛栏前大厦C507 14. Long term stabilitym a x .a v e r a g e o f 25 s a m p l e sm i n .F i g . 11 L o n g t e r m s t a v i l i t y t e s t s o n N A P -55AT i m e (M o n t h e s )T h e o r e r i c a l a l a r m g a s c o n c e n t r a t i o n (p p m )Z e r o p o i n t d r i f t i n A i r (m V )G a s s e n s i t i v i t y t o 3% o f C H 4深圳市深国安电子科技有限公司。
可燃白电油石脑油NAP气体检测仪可燃白电油石脑油NAP气体检测仪特点:★是款内置微型气体泵的安全便携装置★整机体积小,重量轻,防水,防爆,防震设计.★高精度,高分辨率,响应迅速快.★采用大容量可充电锂电池,可长时间连续工作.★数字LCD背光显示,声光、振动报警功能.★上、下限报警值可任意设定,自带零点和目标点校准功能,内置温度补偿,维护方便.★宽量程,最大数值可显示到50000ppm、100.00%Vol、100%LEL.★数据恢复功能,免去误操作引起的后顾之忧.★显示值放大倍数可以设置,重启恢复正常.★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新.可燃白电油石脑油NAP气体检测仪产品特性:★是款内置微型气体泵的高精度的手式安全便携装备;★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年;★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好;★检测现场具有现场声光报警功能,气体浓度超标即时报警,是危险现场作业的安全保障;★现场带背光大屏幕LCD显示,直观显示气体浓度/类型/单位/工作状态等;★全量程范围温度数字自动跟踪补偿,保证测量准确性;★半导体纳米工艺超低功耗32位微处量器;★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;★全中文/英文操作菜单,简单实用,带温度补偿功能;★防高浓度气体冲击的自动保护功能;可燃白电油石脑油NAP气体检测仪技术参数:检测气体:空气中的可燃白电油石脑油NAP气体检测范围:0-100ppm、500ppm、1000ppm、5000ppm、0-100%LEL分辨率:0.1ppm、0.1%LEL显示方式:液晶显示温湿度:选配件,温度检测范围:-40~120℃,湿度检测范围:0-100%RH检测方式:扩散式、流通式、泵吸式可选安装方式:壁挂式、管道式检测精度:≤±3%线性误差:≤±1%响应时间:≤20秒(T90)零点漂移:≤±1%(F.S/年)恢复时间:≤20秒重复性:≤±1%信号输出:①4-20mA信号:标准的16位精度4-20mA输出芯片,传输距离1Km②RS485信号:采用标准MODBUS RTU协议,传输距离2Km③电压信号:0-5V、0-10V输出,可自行设置④脉冲信号:又称频率信号,频率范围可调(选配)⑤开关量信号:标配2组继电器,可选第三组继电器,继电器无源触点,容量220VAC3A/24VDC3A传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里)②GPRS传输:可内置GPRS模块,实时远程传输数据,不受距离限制(选配)接收设备:用户电脑、控制报警器、PLC、DCS、等报警方式:现场声光报警、外置报警器、远程控制器报警、电脑数据采集软件报警等报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警、区间控制报警电器接口:3/4″NPT内螺纹、1/2″NPT内螺纹,同时支持2种电器连接方式防爆标志:ExdII CT6(隔爆型)壳体材料:压铸铝+喷砂氧化/氟碳漆,防爆防腐蚀防护等级:IP66工作温度:-30~60℃工作电源:24VDC(12~30VDC)工作湿度:≤95%RH,无冷凝尺寸重量:183×143×107mm(L×W×H)1.5Kg(仪器净重)工作压力:0~100Kpa标准配件:说明书、合格证质保期:一年可燃白电油石脑油NAP气体检测仪简单介绍:丙酮气体检测仪报警器高精度、高分辨率,响应快速,超大容量锂电充电电池,采样距离远,LCD背光显示,声光报警功能,上、下限报警值可任意设定,可进行零点和任意目标点校准,操作简单,具有误操作数据恢复功能.可燃白电油石脑油NAP气体检测仪应用场所:医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、航空航天、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、军用设备检测等。
Technical Information(C a t a l y t i c T y p e G a s S e n s o r)Model NC-170(Matched Pair Type)For Industrial Application〒168-0072 4-10-9, Takaido-higashi, Suginami-ku, Tokyo Nemoto & Co., Ltd. Sensor Div.TEL. 81-3-3333-7341FAX. 81-3-3333-7344E-mail sensor2@nemoto.co.jpURL http://www.nemoto.co.jp/1.GeneralCatalytic type gas sensor NC series were developed for industrial applications, and NC-170 is a matched pair type gas sensor for general combustible gases. Shape, supply voltage and current are compatible with other sensor, however reliability, repeatability, stability and responsibility are quite superior to others, additionally the durability in strict circumstance are quite excellent. Features and typical application are as follows.2.Features and applications1)Features・Good stability・Excellent repeatability and detection accuracy・Good linearity against gas concentration・Quick response・Down sizing for design flexibility of gas alarm or detector2)Applications・Fixed type gas alarm or detector for general combustible gases・Gas densitometer3.Ratings1)Supply voltage to sensor AC 2.0 +/- 0.1V(50-60Hz)DC 2.0 +/- 0.1V2)Current (when 2.0V is supplied) AC 175 +/- 15mA(50-60Hz)DC 175 +/- 15mA3)Ambient temperature and humidity in operationTemperature -20 - +60 degree CHumidity Less than 95%RH(without dew condensation)4)Ambient temperature and humidity in storageTemperature -30 - +70 degree CHumidity Less than 99%RH(without dew condensation)5)Detection range 0 – 100%LEL(Except acetylene)4.Specification1)Zero offset value in air 0 +/- 25mV(without trimming resistor)2)Minimum sensitivity 18mV/1% of methane3)Response time Less than 8 sec. at T90Less than 3 sec. at T504)Linearity Effectively linear to 60%LEL5)Detection accuracy +/- 1%LEL6)Span drift Less than 1%LEL/month7) Zero offset drift Less than 0.5%LEL/month8) Warranty period 24 months5.Fig. 1 : Appearance and dimensionsRemarks)O-rings are attached on both as shown in the above.6. Measuring circuit diagramInput(+)Input(GND)Fig. 2 : Recommended circuit diagram(R1, 2 : 200ohm, VR1 : 3Kohm)7.Gas sensitivity characteristicsFig. 3 : Gas sensitivity characteristics 8.Temperature dependence at 60%RHFig. 4 : Temperature dependence of zero offset9.Humidity dependence(at 25 degree C)Fig.7 : Humidity dependence of relative sensitivity to methane 10.Long term stabilityFig. 8 : Long term stability of relative sensitivity to methane 11.Sensitivity distributionFig. 9 : Sensitivity distribution12.Relative sensitivity(In case that sensitivity to methane is 100.)Gas/Vapor Chemical formula LEL (%) Relative sensitivity Std. Methane CH4 5.0 1001 Acetic acid CH3COOH 5.4 402 Acetone (CH3)2CO 2.6 603 Butyl acetate C4H9COOH 1.4 404 Cyclo-hexane C6H12 1.3 505 Cyclo-pentane C5H10 1.4 556 Dioxane (CH2)4O2 2.0 557 Ethane C2H6 3.0 908 Ethanol C2H5OH 3.3 759 Ethyl acetate C2H5COOH 2.2 5510 Ethylene C2H4 2.7 8011 Hydrogen H2 4.0 10012 Iso-butane C4H10 1.8 8013 Iso-butyl alcohol CH3-C3H6COOH 1.7 4514 Iso-octane C8H18 0.95 6015 Iso-pentane C5H12 1.4 7516 Iso-propanol CH3-C2H4COOH 2.2 7017 Methanol CH3OH 6.7 11018 Methyl ethyl ketone CH3-CO-C2H5 1.9 6019 N-butane C4H10 1.8 8020 N-heptane C7H16 1.05 6521 N-hexane C6H14 1.2 7022 N-pentane C5H12 1.4 7523 N-propanol C3H7OH 2.2 7024 Propane C3H8 2.1 8525 Stylene C6H5CH CH2 1.1 4026 Toluene C6H5CH3 1.2 5527 Ammonia NH3 15.0 12028 Propylene CH3-CH CH2 2.4 8029 Carbon monoxide CO 12.5 10030 Xylene C6H4(CH3)2 1.1 50 Remarks)If other data are required, please contact us since sensitivity of many combustible gases except bad smell, dangerous, poisonous and high boiling temperature materials over 120 degree C are available for investigations.13. Durability1)Exposure in hydrogen sulfideTest conditionsSensors were exposed in 50%LEL of methane and 25ppm of hydrogen sulfide for 1hr. at normal temperature and humidity.Before test (mV) After test (mV)No.Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity toCH41 -11.6 100 -11.1 982 17.3 100 18.0 983 3.6 100 4.2 1014 0.8 100 1.1 1005 -7.6 100 -6.8 972)Exposure in HMDSTest conditionsSensors were exposed in 50%LEL of methane and 10ppm of HMDS for 1hr. at normal temperature and humidity.No.Before test (mV) After test (mV) Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 15.3 100 14.8 852 11.9 100 12.2 773 -14.1 100 -14.4 834 3.7 100 3.8 845 5.5 100 5.5 793)Exposure in high concentration of methaneTest conditionsSensors were exposed in 8% (160%LEL) of methane at normal temperature and humidity for 1hr.No.Before test (mV) After test (mV) Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 -20.2 100 -19.6 992 -6.4 100 -5.6 943 12.7 100 13.7 964 11.6 100 13.1 1025 9.6 100 10.8 954)Drop testTest conditionsSensors were dropped from the height of 30cm onto the wood board of 3cm thickness with free fall by 3 times.Before test (mV) After test (mV)No.Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 22.4 100 24.1 1012 18.7 100 18.8 1013 17.9 100 18.8 984 -4.3 100 -5.1 1025 14.7 100 16.2 1005)Vibration testTest conditionsVibration which is 10Hz with the 4mm of amplitude for 20min. to 3 directions of X, Y and Z was added to sensors at normal temperature and humidity.No.Before test (mV) After test (mV) Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 -4.3 100 -4.4 1022 17.1 100 16.3 1023 11.9 100 11.9 1004 13.5 100 13.2 1025 -21.7 100 -20.8 986)Storage in high temperature and humidityTest conditionsSensors were stored in 60 degree C, 90%RH for 1000hrs. without being energized. No.Before test (mV) After test (mV) Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 14.9 100 16.4 992 23.4 100 25.2 973 11.1 100 13.0 994 9.6 100 9.4 975 -1.3 100 0.2 987)Operation in high temperature and humidityTest conditionsSensors were energized in 60 degree C, 90%RH for 1000hrs.No.Before test (mV) After test (mV) Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 21.6 100 23.2 982 5.7 100 7.8 953 -9.5 100 -8.8 934 11.4 100 12.5 925 14.8 100 15.4 928) Storage in low temperatureTest conditions Sensors were stored in -20 degree C for 1000hrs.Before test (mV) After test (mV)No. Zero offset Relative sensitivity to CH4Zero offset Relative sensitivity to CH41 5.7 100 5.8 972 2.2 100 1.8 973 20.8 100 21.2 974 -13.4 100 -12.6 1005 5.9 100 6.3 9514. Evaluation method1. Test equipmentOutline of test equipment is as follows.Remarks on equipments)A) Test chamber・ Material of test chamber is to be inactive like metal, glass or acrylic resin which does not exhale and adsorb gases.・ Volume of test chamber is to be more than 1 litter per 1pc. of sensor.B) Circumstance・ Clean circumstance is recommended as evaluation area. Dirty circumstance which contains combustible gases like organic solvent vapor is to be avoided.C) Gas densitometer・ Laser gas densitometer is recommended, but volume method is available simply.D) Agitation in test chamber・ Air agitation in test chamber is to be conducted carefully in order not to flow air to sensor directly. Air velocity to sensor is to be less than 0.5m/sec.E)Power supply・ Both of AC power and DC power are available for sensor, however DC power supply is recommended for accurate evaluation.F)Digital volt meter・ Since the impedance of sensor is fairly low, general digital volt meter having over 100kohm as input impedance is sufficiently available.G)Ventilation・ Ventilator with ventilation capacity of over 10 times/min. of the volume of test chamber is recommended for the convenient evaluation.H)Installation position of sensor in test chamber・ When the sensor is installed in test chamber, it should be careful that each sensor is to be in constant position because output signal changes in case that position of sensor changes. If the rough evaluation is carried out, such careful treatment is not necessary.2.Adjustment of gas concentrationAdjustment of gas concentration is to be conducted by volume method or by using laser gas densitometer. In case of volume method, gas volume to be injected into a chamber is obtained from the calculation formula below described.V m Vi C Tr Tc()l=++−・・102732736V: Gas volume to be injectedVi: Volume of test chamber(m l)Tc: Temperature in test chamber(℃)Tr: Room temperature(℃)C: Target gas concentration (ppm)3.Evaluation methodA.Preliminary aging・ Before evaluation of sensor, preliminary aging at rated voltage for over 1 hr. is recommended for accurate evaluation.B.Measurement・ At first, output voltage in clean air is measured. It should be confirmed that output voltage has to be stable without fluctuation.・ Output voltage is measured around 1min. later after the designated volume of gas is injected into a test chamber.・ Inside of test chamber should be substituted of clean air by ventilator.4.Notice on handling・ Sensor is to be gently handled without adding shock or dropping.・ Handling in a location which corrosive gases or poisonous gases exist is to beavoided.・ Sensor does not have to be dipped in water.・ Sensor does not have to be disassembled.・ Since sensor does not have an explosion proof structure, it should be assembled in an approved body.NEMOTO & CO., LTD.4-10-9 Takaido-higashi, Suginami-ku, Tokyo 168-0072, JapanTel. 81-3-3333-7341, Fax. 81-3-3333-7344Tech. Inf. No.NC-170-080601。
Technical Information for Hydrogen Gas SensorsThe Figaro TGS6812 catalytic type gas sensor can detect levels of hydrogen up to 100%LEL. This sensor features high accuracy, good d urability and stability, quick response, and linear output. This sensor can detect hydrogen as well as methane and LP gas, making it an excellent solution for monitoring gas leakage from stationary fuel cell systems which transform combustible gases into hydrogen.P a g e Basic Information and SpecificationsFeatures..........................................................................2 Applications...................................................................2 Structure..........................................................................2 Basic Measuring Circuit....................................................2 Circuit & Operating Conditions.........................................3 Specifications..............................................................................3 Dimensions...............................................................................3Typical Sensitivity Characteristics Sensitivity to Various Gases................................................4 Temperature Dependency...........................................................4 Humidity Dependency...........................................................4 Heater Voltage Dependency.............................................5 Gas Response....................................................................................5 Initial Action........................................................................5Reliability Long Term Characteristics.............................................................6 Durability to Hydrogen.......................................................................6 Durability to Sulphur Dioxide...........................................................6 Durability to Nitrogen Dioxide.........................................................7 Durability to HMDS....................................................................7 Effects of Air Flow.............................................................................7Cautions (8)a n I S O 9001 c o m p a n yIMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WH EN CUSTOMER’S TARGET GASES ARE NOT LISTED H EREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH A SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.1. Basic Information and Specifications 1-1 Features* Linear output * Compact size* Small sensitivity to alcohol* Sensitive to hydrogen, methane, and LP gas * Meets RoHS requirements 1-2 Applications* Hydrogen and combustible gas leak detectors for fuel cell applications1-3 StructureFigure 1 shows the structure of TGS6812. The sensor is comprised of two elements: element (D) which is sensitive to combustible gases, and a reference element (C) which does not have sensitivity to combustible gases. The sensing element (D) is made of alumina doped with catalysts, while the reference element (C) is made of alumina. Both coils are made of Pt wire, and the wires of both elements (D) and (C) are connected to nickel pins No. 2 & 3 and No. 1 & 4 respectively. The sensor base and cap are made of reinforced Polybutylene Terephthalate (PBT). The upper opening in the cap is covered with a double layer of 100 mesh stainless steel gauze (SUS316). The TGS6812 utilizes a zeolite filter inside the cap for reducing the influence of interference gases.1-4 Basic measuring circuitThe T GS6812 i s c omprised o f t wo e lements: 1) e lement (D) which is sensitive to combustible gases and 2) a reference element (C) which is not sensitive to combustible gases. These elements are installed into a “Wheatstone Bridge”. A variable resistor should be adjusted so that the bridge will produce a stable baseline signal when in an environment free of combustible gases. When combustible gases are present, they will be combusted on the detecting element, causing its temperature to rise. Accordingly the resistance of this element will increase. This results in an “out-of-balance” signal across the bridge and a corresponding change in output voltage which can be measured.Fig. 1 - Sensor structureFig. 2 - Basic measuring circuitTop viewSide viewu/m = mmCapBottom viewBaseDetector sideCompensator side<Pin connection>1-4 : Compensator 2-3 : Detector1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electricalspecifications after the following performance tests: Vibration - Drop test -frequency:10~150H z, accel-eration: 2G, duration:10 times, direction: three dimensions drop onto a cement floor from a height of 250mm, repeated 5 timesNOTE 1:Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:V H = 3.0±0.05V AC/DC Preheating period: 30 seconds or more under standard circuit conditions 1-7 DimensionsFig. 3 - Sensor dimensionsAll sensor characteristics shown in this brochurerepresent typical characteristics. Actualcharacteristics vary from sensor to sensor andfrom production lot to production lot. The onlycharacteristics warranted are those shown inthe Specification table above.-101020304050020*********Relative humidity (%RH)2-2 Temperature dependencyFigure 5 shows the temperature dependency ofTGS6812 at 65%RH in 10%LEL of methane, LP gas,and hydrogen. Since the temperature dependencyof element (D) is compensated by element (C), thetemperature dependency of sensor output in therange from -10˚C to +70˚C is very small.2-3 Humidity dependencyFigure 6 shows the relative humidity dependencyof TGS6812 under constant temperature of 20˚C in10%LEL of methane, LP gas, and hydrogen. Thisdata demonstrates that the humidity dependency ofTGS6812 is negligible as humidity varies.Fig. 4 - TGS6812 sensitivity to various gasesFig. 6 - TGS6812 humidity dependency-10010203040502.902.953.003.05 3.10Operating voltage (V)2-4 Heater voltage dependencyFigure 7 shows the change in the sensor output according to variations in the heater voltage (V H ).Note that 3.0±0.1V as a heater voltage must be maintained because variance in applied heater voltage will cause the sensor’s characteristics to be changed from the typical characteristics shown in this brochure.2-5 Gas responseFigure 8 shows the change pattern of sensor output (Vout) for TGS6812 when the sensor is inserted 4000ppm of hydrogen.As these charts display, the sensor’s response speed to the presence of gas is extremely quick.2-6 Initial actionnormal air and later energized in clean air.warm-up process is called “Initial Action”.powering on, it is recommended that an initial delay circuit be incorporated into the detector’s design. This is especially recommended for intermittent-operating devices such as portable gas detectors.Fig. 7 - Heater voltage dependencyFig. 8 - Gas responseFig. 9- Initial action-1010201020-101020period.3-2 Durability to hydrogenconcentration exposure to hydrogen gas. The measurement was taken, the sensor was exposed to 1% of H 2 for over 2000 hours. At each measurement point, the sensor was removed from H 2measuring sensor output.characteristics after exposure to high concentrations of hydrogen.3-3 Durability to sulphur dioxideFigure 12 shows the effect on TGS6812 of exposure to SO 2. The initial point of the graph shows the value of sensor output prior to SO 2 exposure. After the initial measurement was taken, the sensor was exposed to 25ppm of SO 2 for over 2400 hours in total. At each measurement point, the sensor was removed from SO 2 and energized in normal air for 10 hours prior to measuring the sensor output.The data demonstrates that TGS6812 shows stable characteristics after exposure to SO 2.Fig. 11 - Durability to hydrogenFig. 12 - Durability to SO 2-101020-101020characteristics after exposure to NO 2. 3-5 Durability to HMDSFigure 14 shows the effect on TGS6812 of exposure to HMDS. The initial point of the graph shows the value of sensor output prior to HMDS exposure. After the initial measurement was taken, the sensor was exposed to 10ppm of HMDS for one hour in total. At each measurement point, the sensor was removed from HMDS and energized in normal air for 1 hour prior to measuring the sensor output.This data demonstrates that TGS6812 shows stable characteristics after exposure to HMDS.3-6 Effects of Air FlowTable 1 shows how the sensor is affected by airflows (refer to Fig. 15 for illustration of airflows in Table 1). This data demonstrates that there is no significant influence on the sensor by an air flow of 3.1 meters/sec.Fig. 14 - Durability to HMDSFig. 15 - Air flow testing direction (ref. Table 1)Table 1 - Effects of air flow on output voltage4 Cautions on Usage of Figaro Gas Sensors4-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such as H2S, SOx, Cl2, HCl, etc. for extended periods may cause corrosion or breakage of the lead wires or heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contaminated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor, the lead wires and/or sensor elements may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs.7) Operation in zero/low oxygen environment TGS6812 requires the presence of a certain amount of oxygen in its operating environment in order to generate a combustion reaction of gas on the sensor’s surface. It cannot properly operate in a zero or low oxygen content atmosphere.8) Excessive exposure to alcoholIf TGS6812 is exposed to high concentrations of alcohol (such as 10,000ppm or more) for a long period, the filter may become saturated. In this case, the sensor would show a lower resistance in alcohol than indicated in Figure 4.9) VibrationExcessive vibration may result in zero drift or cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so tests should be conducted to verify that there will be no influence on sensor characteristics.10) ShockZero drift and breakage of lead wires may occur if the sensor is subjected to a strong shock. To avoid shock, please keep the sensor in the original packing foam during storage.4-2 Situations to be avoided whenever possible1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.H owever, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time, regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored. The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage. 4) Long term exposure in adverse environment Regardless of powering condition, if the sensor is exposed in extreme conditions such as very high humidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) SolderingIdeally, sensors should be soldered manually.H owever, wave soldering can be done under the following conditions:a) Suggested flux: rosin flux with minimal chlorineb) Speed: 1-2 meters/min.c) Preheating temperature: 100±20˚Cd) Solder temperature: 250±10˚Ce) Up to two passes through wave soldering machine allowed Results of wave soldering cannot be guaranteed if conducted outside the above guidelines since someFigaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro) reserve the right to make changes without notice to any products herein to improve reliability , functioning or design. Information contained in this document is believed to be reliable. H owever, Figaro does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.Figaro’s products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.flux vapors may cause drift in sensor performance similar to the effects of silicone vapors.。
19970929NAP—55A(触媒接触燃烧式城市燃气传感器)使用说明书根本特殊化学株式会社东京都杉並区上荻1—15—1目 录1.NAP—55A传感器的特征及用途 (2)2.额定值 (2)3.可测燃气的浓度范围 (2)4.燃气灵敏度特性 (3)5.应答特性 (4)6.电源电压波动特性 (5)7.温度特性 (7)8.湿度特性 (7)9.传感器的检测方法 (8)10.传感器图纸 (11)1.NAP—55A传感器的特征及用途NAP—55A和从前本公司生产的接触燃烧式燃气传感器(NAP—2A、NAP—7A)相比,体积小、节能,消耗电力只有NAP—2A的50%,具有卓越的感应灵敏度,应答速度超出2A约30%以上。
(1) 特征·具有良好的稳定性·突出的再现性和灵敏度·对于城市燃气浓度的输出信号显示为良好直线性·应答速度极快·由于超小型,故报警器形状可随意调整(2) 用途·城市燃气用报警器·各种燃气的浓度计2.额定值·电桥外加电压 A.C.2.5V±0.25V(频率50—60Hz)D.C.2.5V±0.25V·电桥外加电流 A.C. 160~180mA(频率50—60Hz)(2.5V外加时) D.C. 160~180mA·使用时周围的温湿度 温度 –10~+50℃湿度95%RH以下·保管时周围的温湿度 温度 –20~+60℃湿度95%RH以下3.可测燃气的浓度范围针对任何一种燃气都能感应从0~LEL但是对于燃气的浓度输出信号,直线保证在以下的浓度范围内。
天然气 :0~1%异丁烷 :0~0.5%丙 烷 :0~0.5%氢 气 :0~0.5%4.燃气灵敏度特性图 1 NAP—55A 的灵敏度特性10203000.10.20.30.40.5Gas Concentration (vol%)iso-C 4H 10H 2C 2H 5OH CH 45.应答特性(测定例:和NAP—2A的比较)图中的时间是90%应答的情况图 2 NAP—55A的应答特性6.电源电压波动特性图 3 NAP—55A 的燃气感应灵敏度的电源电压变动特性图 4 空气中输出值的电源电压波动特性2.252.50 2.75Supply Voltage (V)1020∆V o u t i n C H (m V )42.25 2.50 2.752-2V o u t i n A i r (m V )Supply Voltage (V)图 5 理论报警浓度的电源电压波动特性2.752.502.25Supply Voltage (V)20002500300035004000T h e o r i t i c a l A l a r m G a s C o n c e n t r a t i o n o f C H (p p m )47.温度特性图 6 NAP—55A 的温度特性8. 湿度特性图 7 NAP—55A 的湿度特性3030404050502020101000-10-10-22Temperature (C)oTemperature (C)o V o u t i n A i r (m V )303060609090Relative Humidity (%)Relative Humidity (%)-22V o u t i n A i r (m V )9. 传感器的检测方法(1) 试验装置试验装置的简图如下(注意事项) ① 试验槽·试验槽材质必须是不产生燃气和不附着燃气,比如金属或者玻璃为好。
谈谈日本的两项管道燃气安全技术集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-谈谈日本的两项管道燃气安全技术十年以前去日本考察,看到过日本已经广泛应用的两项燃气安全技术。
由于当时这两项安全技术国内还没有应用,也没有看到国内文献和资料上的介绍,并且其作用原理非常巧妙,实用性很好,所以给我留下很深印象。
不过让我感到疑惑的是,至今也没有看到这种技术或产品在国内有多少应用,没有看到有仿制的产品,更没有看到国内文献上的介绍,不知是什么原因(当然也可能是有,而我孤陋寡闻,不知道)。
我并没有用过这种技术或产品!也没有实际的经验,在这里只是把当年考察留下的记忆和后来看到的日本的一些产品介绍结合起来,做一分析和探讨,希望能给同行有所启示和借鉴。
这里不是做产品介绍,而是分析它的结构和工作原理。
所说的技术,一项是调压器的一种超压自动切断技术;另一项是燃气管道泄漏的一种侦测技术,都是专利技术。
这两种技术,是在日本赛山公司考察时,看到其应用情况的。
一、防超压的燃气调压器目前,我们的城市燃气管网上,稍大一些调压设备,一般都装有超压切断装置,并且这些切断装置的结构和原理是相似的。
形式上,这些切断装置有独立设置的,切断设备串联在主调压器前端;也有复合式的切断装置,与调压器构成一个整体设备。
结构和原理是这样的:一个压力感应部件、一个机械传动和锁定机构和一个切断管道的阀门;当压力感应部件感应到调压器输出端的压力超过上限,便会引发机械传动装置和锁定装置的动作,动作传递给阀门导致管道上的阀门关闭。
这种切断装的一个基本特性是:一旦切断动作发生,就不会自动恢复,必须人工到现场进行操作,才能复位,使切断阀恢复到开启状态,才能恢复供气。
(我们现行的规范提倡使用这种方式的切断装置)这里要介绍的防超压调压器,其切断装置的结构和原理与上述的完全不同。
结构上的不同,是切断装置与调压装置合为一体,切断装置与调压器公用同一个压力感应装置,只是增加了用于关闭气路的动作部件,结构更简单;原理上的不同,是它只是在调压器输出超压时切断气路,限制输出压力持续升高,而当超压的条件消失以后,它会自动恢复正常供气,不需要人员到现场进行复位操作,超压保护过程中不会中断对客户的燃气供应。