大学物理总复习习题集
- 格式:ppt
- 大小:1.28 MB
- 文档页数:80
[1]. 如果在一固定容器内,理想气体分子方均根速率提高为原来的二倍,那么( ) A 、温度和压强都提高为原来的二倍B 、温度提高为原来的四倍,压强提高为原来的二倍C 、温度提高为原来的二倍,压强提高为原来的四倍D 、 温度与压强都提高为原来的四倍E 、 由于体积固定,所以温度和压强都不变化[2]. 有两个载有相同电流的通电导线,彼此之间的斥力为F ,如果它们的电流均加倍,相互之间的距离也加倍,则彼此之间的斥力将为( )A 、 4FB 、 2FC 、 FD 、2FE 、 4F[3]. 两块电荷面密度均为σ+的 “无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x变化的关系曲线为:(设场强方向向右为正、向左为负)( )[4]. 一瓶氦气和一瓶氧气,它们的压强和温度都相同,但体积不同。
下列哪些结论正确( )(1) 单位体积的分子数相同 (2) 单位体积的质量相同 (3) 分子的平均平动动能相同 (4) 分子的方均根速率相同[5]. 一密封的理想气体的温度从C 27起缓慢地上升,直至其分子速率的均方根值是C 27时的均方根值的两倍,试问气体最终的温度为多高()(B)(C)(D)(A)σ-0[6]. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( )[7]. 一根长为l ,质量为m 的均质链条放在光滑水平桌面上,而将其长度的5/l 悬挂于桌边下。
若将悬挂部分拉回桌面,需做功为( )[8]. 两无限长平行直导线a 、b 分别载有电流1I 和2I ,电流方向相反,如图所示。
L 为绕导线b 的闭合回路,c B为环路上c 点的磁感应强度。
当导线a 向左平行于导线b 远离时 ( )A 、 cB 减小,⎰⋅Ll B d 减小 B 、 c B 不变,⎰⋅Ll Bd 不变C 、 c B 增加,⎰⋅Ll B d 不变 D 、 c B 减小,⎰⋅Ll Bd 不变[9]. 设某种气体的分子速率分布函数为)(v f ,则速率在21~v v 区间内的分子的平均速率为( ) [10].一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的2H 和2O .开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:( )5/l[11].竖直上抛一小球,设空气阻力大小恒定。
⼤学物理习题集⼤学物理(1)习题集(适⽤对象:14级⼟⽊⼯程专业)【说明】题号前标有(〇)的,表⽰该题考查点为1-2个,较易;题号后标有(*)的,表⽰该题考查点3个或3个以上,较难,其余考查点为2-3个,难度⼀般。
练习⼀质点运动的描述 (2)练习⼆圆周运动 (3)练习三⽜顿运动定律 (4)练习四冲量和动量 (6)练习五功和能 (7)练习六刚体定轴转动 (9)练习七绕定轴转动的刚体的转动定律 (11)练习⼋⾓动量和⾓动量守恒定律 (13)练习九分⼦运动论 (15)练习⼗热⼒学基础 (16)练习⼀质点运动的描述⼀.选择题1、(〇)质点是⼀个:【】(A )质量很⼩的物体.(B )根据其运动情况,被看作具有质量⽽没有⼤⼩和形状的理想物体.(C )只能作平动的物体.(D )体积很⼩的物体.2、(〇)某质点的运动⽅程为x=3t-5t 3+6(SI),则该质点作【】(A )匀加速直线运动,加速度沿X 轴正⽅向; (B) 匀加速直线运动,加速度沿X 轴负⽅向; (C) 变加速直线运动,加速度沿X 轴正⽅向; (D)变加速直线运动,加速度沿X 轴负⽅向3、⼀质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则⼀秒钟后质点的速度:【】(A) 等于零(B) 等于-2m/s (C) 等于2m/s(D) 不能确定。
4、如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向边运动。
设该⼈以匀速度V 0收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是【】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
5、(*)某物体的运动规律为t kv dtdv2-=,式中的k 为⼤于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是【】(A) 02v kt 21v += (B) 02v kt 21v +-= (C) 02v 1kt 21v 1+= (D)2v 1kt 21v 1+-=⼆.填空题6、⼀质点沿x 轴作直线运动,其运动⽅程为x=3+5t+6t 2-t 3(SI),则质点在t=0时刻的速度;加速度为零时,该质点的速度。
大学物理复习题和答案# 大学物理复习题和答案一、选择题1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
如果一个物体的质量是另一个物体的两倍,而作用力是另一个物体的一半,那么两个物体的加速度是相等的。
这种说法正确吗?- A. 正确- B. 错误2. 电磁波的传播速度在真空中是恒定的,其值是多少?- A. 299792458 m/s- B. 3×10^8 m/s- C. 1.6×10^-19 m/s- D. 9.11×10^-31 kg二、填空题1. 根据能量守恒定律,一个物体的总能量等于其_________能和_________能之和。
2. 欧姆定律表达式为V = I × R,其中 V 代表电压,I 代表电流,R 代表_________。
三、简答题1. 简述牛顿第三定律的内容,并给出一个日常生活中的例子。
2. 描述麦克斯韦方程组的四个基本方程,并简述它们各自的含义。
四、计算题1. 一个质量为 5 kg 的物体在水平面上受到一个 20 N 的恒定力作用。
如果摩擦力忽略不计,求物体的加速度。
2. 一个电子在电场中受到3×10^-16 N 的电场力作用。
如果电子的初始速度为零,求电子在电场中加速 1 米所需的时间。
五、论述题1. 论述相对论中时间膨胀和长度收缩的概念,并解释它们在高速运动中的物理意义。
2. 讨论量子力学中的不确定性原理,并举例说明它在现代科技中的应用。
参考答案一、选择题1. 答案:A. 正确2. 答案:B. 3×10^8 m/s二、填空题1. 答案:动;势2. 答案:电阻三、简答题1. 牛顿第三定律的内容是:对于任何两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
例如,当你推墙时,墙也会以相等的力推你。
2. 麦克斯韦方程组包括:高斯定律、高斯磁定律、法拉第电磁感应定律和安培定律。
它们分别描述了电荷产生电场、电流和变化的磁场产生磁场、变化的磁场产生电场以及电流和变化的电场产生磁场。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
大学物理复习题及答案期末复习一、力学(一)填空题:1、质点沿x 轴运动,运动方程23262x t t =+-,则其最初4s 内位移是 -32m i v,最初4s 内路程是 48m 。
2、质点的加速度(0),0a mx m t =->=时,00,x v v ==,则质点停下来的位置是x =0m。
3、半径为30cm 的飞轮,从静止开始以0.5rad/s 2匀角加速度转动。
当飞轮边缘上一点转过o240时,切向加速度大小 0.15 m/s 2,法向加速度大小 1.26 m/s 2。
4、一小车沿Ox 轴运动,其运动函数为233x t t =-,则2s t =时的速度为 -9m/s ,加速度为 -6m/s 2 ,2s t =内的位移为-6m 。
5、质点在1t 到2t 时间内,受到变力2At B F x +=的作用(A 、B 为常量),则其所受冲量为3321211()()3B t t A t t -+-。
6、用N 10=F 的拉力,将g k 1=m 的物体沿ο30=α的粗糙斜面向上拉1m ,已知1.0=μ,则合外力所做的功A 为 4.13J 。
7、银河系中有一天体,由于引力凝聚,体积不断收缩。
设它经一万年后,体积收缩了1%,而质量保持不变,那时它绕自转轴的转动动能将增大; (填:增大、减小、不变)。
;8、 A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。
开始时B 轮静止,A 轮以角速度A ω转动,设啮合过程中两飞轮不再受其他力矩的作用,当两轮连结在一起后,其相同的角速度为ω。
若A 轮的转动惯量为A I ,则B 轮的转动惯量B I 为A AA I I ωω- 。
9、斜面固定于卡车上,在卡车沿水平方向向左匀速行驶的过程中,斜面上物体m 与斜面无相对滑动。
则斜面对物体m 的静摩擦力的方向为。
沿斜面向上;10、牛顿第二定律在自然坐标系中的分量表达式为n n F ma =;F ma ττ=11、质点的运动方程为22r ti t j =-v v v ,则在1s t =时的速度为 22v i j =-v v v ,加速度为2a j =-v v;12、一质点沿半径为0.1m 的圆周运动,其角位移342t +=θ,则2s t =时的法向加速度为 230.4m/s 2 ,切向加速度为 4.8m/s 2 。
大学物理复习题库### 大学物理复习题库#### 一、力学基础1. 牛顿运动定律- 描述物体运动的基本规律是什么?- 牛顿第二定律的数学表达式是什么?2. 功与能- 什么是功?如何计算恒力的功?- 势能、动能和机械能守恒的条件是什么?3. 动量守恒- 动量守恒定律适用于哪些情况?- 描述一次完全非弹性碰撞的过程。
4. 刚体的转动- 什么是转动惯量?如何计算一个物体的转动惯量? - 角动量守恒的条件是什么?#### 二、热学1. 热力学第一定律- 热力学第一定律的表达式是什么?- 如何理解热量和功的转换?2. 理想气体定律- 描述理想气体状态方程。
- 理想气体经历等压、等容、等温过程时,体积和温度如何变化?3. 热机效率- 什么是热机的效率?- 卡诺热机的效率如何计算?#### 三、电磁学1. 电场与电势- 电场强度的定义是什么?- 电势差与电场强度的关系如何?2. 电流与电阻- 欧姆定律的表达式是什么?- 电阻率与导体的几何形状和材料性质有什么关系?3. 磁场与磁力- 磁场对运动电荷的作用是什么?- 描述安培环路定理。
4. 电磁感应- 法拉第电磁感应定律的表达式是什么?- 感应电动势的大小与什么因素有关?#### 四、波动与光学1. 波的基本性质- 描述波的周期、频率、波长和波速的关系。
- 什么是波的干涉和衍射?2. 光的折射与反射- 折射定律是什么?- 描述镜面反射和漫反射的区别。
3. 光的偏振- 什么是光的偏振现象?- 偏振片对光的作用是什么?#### 五、量子物理1. 波函数与薛定谔方程- 波函数的物理意义是什么?- 薛定谔方程的一般形式是什么?2. 量子力学的基本原理- 描述海森堡不确定性原理。
- 什么是量子态的叠加原理?3. 原子模型- 波尔模型对氢原子的描述是什么?- 量子力学中的电子云模型与波尔模型有何不同?#### 六、相对论1. 狭义相对论- 时间膨胀和长度收缩的表达式是什么?- 质能等价原理的表达式是什么?2. 广义相对论简介- 描述广义相对论中引力的本质。