材料力学在生活中的应用 2
- 格式:doc
- 大小:984.00 KB
- 文档页数:4
材料力学在工程实际中的应用材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。
而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。
材料力学在生活中的应用十分广泛。
大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。
各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。
生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。
说到材料力学,我们首先应该了解它的属性。
材料力学在工程中常用的属性主要有:1.密度ρ:密度与结构自重和地震荷载有关。
2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。
3.强度f:材料的承受能力。
4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。
5.剪切模量G:指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。
材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是钢体。
变形固体中的变形就成为它的主要基本性质之一,必须予以重视。
例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。
因此,在材料力学中我们必须把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。
材料力学典型案例材料力学典型案例:1. 悬臂梁的弯曲问题悬臂梁是一种常见的结构,经常用于桥梁、楼梯和支撑物等。
在悬臂梁的弯曲问题中,常常需要计算梁的挠度和应力分布。
通过应用材料力学的理论和公式,可以准确计算出悬臂梁在外力作用下的弯曲情况,并确定梁的安全性。
2. 拉伸试验中的应力应变关系拉伸试验是材料力学中常用的实验方法之一,用于确定材料的力学性质。
在拉伸试验中,通过施加不断增加的拉伸力,测量材料的应变和应力,得到应力应变关系曲线。
该曲线可以描述材料在拉伸过程中的变形和破坏行为。
3. 管道的弯曲问题管道的弯曲问题是材料力学中的一个重要问题。
在工程实践中,经常需要对管道进行弯曲设计和分析。
通过应用材料力学的理论和方法,可以计算出管道在外力作用下的应力和变形情况,从而确定管道的强度和稳定性。
4. 钢筋混凝土梁的受弯问题钢筋混凝土梁是建筑结构中常用的承载构件之一。
在设计和施工过程中,需要对钢筋混凝土梁的受弯性能进行分析和计算。
通过应用材料力学的理论和公式,可以确定钢筋混凝土梁在受弯作用下的应力和变形情况,并评估梁的承载能力和安全性。
5. 地基沉降引起的结构变形问题地基沉降是建筑结构中常见的问题之一,它会导致结构的变形和破坏。
通过应用材料力学的理论和方法,可以计算出地基沉降引起的结构变形和应力分布,从而评估结构的稳定性和安全性,并提出相应的加固措施。
6. 薄壁容器的承载问题薄壁容器是化工和食品等行业常用的储存和运输设备。
在设计和使用过程中,需要对薄壁容器的承载能力进行评估。
通过应用材料力学的理论和公式,可以计算出薄壁容器在内外压力作用下的应力和变形情况,从而确定容器的安全性和可靠性。
7. 斜拉桥的稳定性问题斜拉桥是一种特殊的桥梁结构,具有较大的跨度和较轻的自重。
在斜拉桥的设计和施工过程中,需要对桥梁的稳定性进行分析和计算。
通过应用材料力学的理论和方法,可以确定斜拉桥在外力作用下的应力和变形情况,从而评估桥梁的稳定性和安全性。
材料力学在生活中的应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
b5E2RGbCAP关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
p1EanqFDPw 1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
机械式千斤顶(如图一(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为,承载力大小为F ,规定稳定安全因数为。
生活中的材料力学罗晖淼 051310712摘要:在我们身边的每一个角落都运用到了材料力学的原理。
学完材料力学之后,用另一个角度去剖析生活中的材料力学现象,别有一番风味。
关键字:应力集中,动载荷,稳定性一:应力集中大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观,可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。
相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。
这是为什么呢?这其实运用到了圣维南原理。
当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。
此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这个凹槽将包装袋撕开。
这种应用应力集中的现象生活中还有很多。
比如掰黄瓜,有时候我们想把黄瓜掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。
同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。
再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的。
既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。
像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。
所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。
工程上的这些问题可比生活中的小问题严重得多,一个小问题都有可能导致重大的事故。
曾经有一起飞行事故:飞机起落架里的一个小零件由于应力集中而发生断裂,卡在那里,导致起落架无法放下。
材料力学应用材料力学是研究材料内部应力、应变与变形关系的一门学科,广泛应用于工程设计、材料选择、结构分析等领域。
本文将介绍材料力学在不同领域的应用,以及其在现代科技和工程中的重要地位。
一、材料力学在机械工程中的应用机械工程是材料力学的主要应用领域之一。
在机械设计中,材料力学可用于计算和预测材料在受力下的应变和变形情况,从而为工程师选择合适的材料提供理论依据。
例如,在设计一个机械结构时,材料力学可以帮助确定结构材料的最大承载能力,以及需要采取的加固措施,以确保结构在正常工作条件下不会发生破坏或变形。
此外,材料力学还可以用于优化机械结构的设计,以提高其刚度、强度和耐久性。
二、材料力学在土木工程中的应用土木工程是另一个重要的领域,其中材料力学也发挥着重要作用。
在土木结构设计中,材料力学可以帮助工程师计算和预测结构在受力下的应变和变形,进而确保结构的安全性和稳定性。
例如,在设计一座大桥时,工程师需要考虑桥梁材料的强度、刚度和耐久性,以便在受到风、水流和运载荷等荷载时,确保桥梁不发生破坏或变形。
此外,材料力学还可以用于分析土壤、混凝土和钢材等常见的土木工程材料的性能和特性,以指导实际工程建设。
三、材料力学在航空航天工程中的应用航空航天工程是需要高强度、高刚度和耐高温性能的领域,材料力学的应用也非常重要。
例如,在设计和制造飞机和火箭的结构部件时,工程师需要根据材料力学原理来选择合适的材料,并确定材料的最大承载能力和疲劳寿命。
此外,材料力学还可用于分析和评估航空材料的耐腐蚀性能、热膨胀系数和断裂韧性等特性,以保证航空器在极端环境下的安全性和可靠性。
四、材料力学在电子工程中的应用随着电子设备的不断发展和进步,材料力学也开始在电子工程中得到应用。
例如,在半导体器件的设计和制造过程中,材料力学可以帮助工程师分析和优化薄膜材料的应力和变形特性,以确保半导体器件的性能和可靠性。
此外,材料力学还可用于评估电子封装材料的热膨胀系数、机械强度和导热性能,以提高电子设备的工作效率和稳定性。
材料力学在工程中的实际应用目录一、关于拉伸或压缩的强度设计 (2)二、圆轴扭转时轴截面尺寸的设计 (5)1、圆轴扭转时,横截面上的内力偶矩——扭矩 (6)2、圆轴扭转的时候,横截面上的应力、强度条件 (7)3、圆轴扭转时的变形,刚度条件 (8)三、矩形横截面弯曲梁的bxh设计 (9)1、梁的正应力、正应力强度条件 (9)2、梁的切应力、切应力强度条件 (11)四、扭转和弯曲的组合变形轴的设计 (12)五、压杆稳定性校核方面问题 (13)1、弹性平衡稳定性的概念 (13)2、细长压杆临界载荷的欧拉公式 (14)3、三类压杆的临界载荷 (14)4、压杆稳定校核. (15)5、如何提高压杆的稳定性 (16)材料力学在工程中的实际应用材料力学是一门研究构件承载能力的学科。
作为土木建筑类的三大基础学科之一,材料力学是设计工业设施必须掌握的知识。
而在本学期的课程中,我不仅在老师的带领下学到了本学科的内容,更深刻了解到了本学科的严谨和重要性。
材料力学在生活中的应用非常广泛,大到机械中的各种机器建筑中的各个结构,小到生活中的日用产品。
各种物件都要符合它的强度和刚度以及稳定性要求才能够正常工作、保证使用者的安全。
而生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形均属于剪切变形,在设计时应主要考虑其剪切应力;汽车的传动轴、转向轴的变形则属于扭转变形;火车轴和起重机大梁的变形属于弯曲变形。
但是,往往在我们设计的时候需要同时考虑几个方面的变形,比如说在车床工作的时候,同时发生了扭转、弯曲和压缩三种基本变形。
材料力学在工程中常常会遇到的问题有:一、关于拉伸或压缩的强度设计拉伸和压缩是杆件基本受力与变形形式中最简单的一种,所涉及的一些基本原理和方法也都相对简单,但是在材料力学中有一定的普遍意义。
举例:(1)一些机器和结构中所用到的各种紧固螺栓,在紧固的时候,要对螺栓市价预紧力,螺栓承受轴向拉力就会发生伸长变形(2)斜拉桥承受拉力的钢缆以上这些举例均为轴向拉伸和压缩的日常实例,而我们在解决问题时,通常会将实物简化为如下形式:这样不仅让问题看起来更简单、更直观,也便于将应力的计算最简化,免于误算漏算多算等情况。
材料力学及其应用材料力学是研究材料在外力作用下发生变形、破坏和失效的学科。
它是一门涉及多个学科的交叉学科,涉及到物理学、数学、力学、化学、材料学等各个方面的知识,是材料科学中不可或缺的一环。
材料力学分为宏观力学和微观力学两个方向。
宏观力学主要研究材料在宏观层面上的力学行为,即材料的整体性能,比如承载力、刚度、韧性等。
而微观力学则研究材料的微观结构与力学行为的关系,即材料的内部构成和行为特性,如晶体结构、缺陷行为、能量状态等。
在工程领域中,材料力学是一门极其重要的学科,因为材料是构成所有工程系统和结构的基本组成部分。
无论是桥梁、飞机、汽车、电子产品、建筑、船舶等,它们都需要使用材料。
而材料的物理力学性质会对整个工程系统产生影响,甚至决定了工程结构的可行性和寿命。
举例来说,在桥梁设计中,承载力是一个非常关键的参数。
设计者需要根据桥梁的载荷、跨度、地形等因素来选择材料,并计算出最大承载力。
如果选择的材料刚度不够,那么在实际使用过程中就会出现过度变形、破坏、甚至倒塌的情况。
材料的力学行为也会影响到船舶的设计,特别是它的稳定性。
因此,在船舶设计中,也需要选择符合力学特性的材料。
在汽车工业中,材料力学的应用也起着决定性的作用。
汽车轮胎的制造需要考虑材料的韧性、硬度、抗磨性等多项因素。
汽车制造需要选择多种材料,例如钢材、铝合金、高强度聚合物等,根据不同部位要求设计材料,在提高汽车性能方面发挥着非常重要的作用。
材料力学的应用不止存在于工程领域,也在日常生活中有着广泛的应用。
例如,我们用到的家电、电子产品中,需要选择适合的材料,不仅需要考虑力学特性,还需要考虑电性、热性、磁性等方面的特性。
材料力学的进步,也促进了绿色环保、降低能耗、提高效率等发展。
此外,材料力学的应用还涉及到生物医学、光电子学、航空航天、核能等领域。
例如,生物医学领域需要研究材料的组织成分、力学行为等,以便开发出更好的人工骨骼、人工关节等产品,提高医疗水平和患者痊愈率。
材料力学及其在工程中的应用材料力学是研究材料变形、断裂和损伤等方面的科学。
它包括两个方面,一是力学的基础知识,如弹性力学、塑性力学和断裂力学等;二是材料学的基础知识,如金属、陶瓷、高分子和复合材料等。
材料力学在工程中的应用广泛,下面将分别介绍其应用于机械、航天、汽车和建筑等领域。
一、机械领域在机械工程中,材料力学广泛应用于机械设计、制造和测试中。
例如,在机械设计中,材料的力学性质决定了机械的承载能力和耐用性。
通过强度计算和疲劳寿命测试等手段,设计师可以确定机械零件的材料和尺寸,以保证机械的可靠性和安全性。
在机械制造过程中,材料的塑性和变形特性是影响加工质量和效率的关键因素。
通过材料力学的分析和模拟,制造商可以确定适合的加工工艺,减少材料的浪费和损失。
二、航天领域在航天工程中,材料力学的应用十分广泛。
例如,航空发动机和航天飞行器的材料需要具有极高的强度和刚度,并具有良好的耐腐蚀性能。
通过材料力学的研究,工程师可以选择最适合的材料,并优化其设计和制造过程,以实现航空工程的最佳性能和效益。
三、汽车领域在汽车工程中,材料力学也有着重要的应用。
例如,在汽车设计中,材料力学可以帮助设计师选择合适的材料和设计形式,以满足汽车在各种道路和气候条件下的使用要求。
同时,汽车的制造过程中也需要对材料进行力学测试和模拟,以保证汽车的性能和质量。
四、建筑领域在建筑工程中,材料力学的研究和应用也是不可或缺的。
例如,在建筑设计中,材料力学可以帮助设计师选择合适的材料和结构形式,以满足建筑的承重和抗震要求。
同时,在建筑施工过程中,也需要对材料进行力学测试和模拟,以确保建筑的安全性和稳定性。
总之,材料力学在工程中的应用广泛,为提高工程的实用性和经济效益做出了重要贡献。
未来随着科技的不断进步和工业的不断发展,材料力学将不断拓展其应用领域,为人们创造更加美好的生活和工作环境。
材料力学在生活中的应用工程力学是研究有关物质宏观运动规律,及其应用的科学。
工程力学提出问题,力学的研究成果改进工程设计思想。
从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。
人类对力学的一些基本原理的认识,一直可以追溯到史前时代。
在中国古代及古希腊的著作中,已有关于力学的叙述。
但在中世纪以前的建筑物是靠经验建造的。
1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。
纳维于1819年提出了关于梁的强度及挠度的完整解法。
1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。
其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。
早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。
欧拉提出了理想流体的运动方程式。
物体流变学是研究较广义的力学运动的一个新学科。
1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。
它分实验研究和理论分析与计算两个方面。
但两者往往是综合运用,互相促进。
工程力学:包括实验力学,结构检验,结构试验分析。
模型试验分部分模型和整体模型试验。
结构的现场测试包括结构构件的试验及整体结构的试验。
实验研究是验证和发展理论分析和计算方法的主要手段。
结构的现场测试还有其他的目的:1.验证结构的机能与安全性是否符合结构的计划、设计与施工的要求;2.对结构在使用阶段中的健全性的鉴定,并得到维修及加固的资料。
结构理论分析的步骤是首先确定计算模型,然后选择计算方法。
固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。
尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。
材料力学在工程和生活中的应用当我们学习了材料力学,我们就会发现身边的每一个角落都运用到了材料力学的原理。
事实上,除了生活中用到了材料力学,工程上,材料力学也发挥了很大的作用。
大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观,可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。
相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。
这是为什么呢?这其实运用到了圣维南原理。
当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。
此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这里把它撕开。
这种应用应力集中的现象生活中还有很多。
比如掰黄瓜,有时候我们想把黄瓜掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。
同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。
再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。
像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。
所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。
当我们讨论完这两几个实例后,回头再想想材料力学课程的几大知识点,发现它们之间的联系是那么的密切,实际生活中我们遇到的承载材料一般都不是绝对的拉压杆,轴或者梁,它们往往是几种基本变形的组合,在分析时几乎要用到我们材料力学课程里所有的知识点。
材料力学在生活中的应用.doc材料力学是研究材料特性、应力应变关系及其变形和断裂等规律,以及受力或受热条件下材料的性能、结构和效应的工程科学与技术的总称。
它是掌握材料的基础,也是研究混凝土、木材、钢材、玻璃、橡胶等通常在工业和日常生活中应用最多的材料的基本理论和综合的方法。
在生活中,材料力学有广泛的应用,以满足人们的需求。
首先来讲讲材料力学在汽车领域的应用,不少汽车制造厂都是根据材料力学原理来进行设计和制造的。
只有充分考虑到不同部件在不同真实使用条件下变形和分析强度和稳定性,才能安全地保证汽车的安全性能。
此外,材料力学在结构机械和生产机械的设计和制造中得到了广泛的应用。
这类机械及其部件不仅需要具有超强的承载能力,而且要考虑到各种断裂模式、疲劳损伤及其非线性行为等,这要求结构机械和生产机械的设计和制造,都要考虑到材料力学这一学科原理。
材料力学在航空产品及其制造中应用更加广泛。
由于航空产品外形优美,体积小,结构复杂,需要考虑多种材料性能。
这些材料的强度、韧性、硬度等,需要经过严格的材料力学的理论研究和实验测试,才能确定。
在军用航空器的设计制造中,需要考虑材料力学各种因素,以确保其最大限度地提高效能、改善性能和保证安全。
最后,材料力学在土木工程、桥梁工程建设中也发挥了重要作用。
桥梁的设计需要考虑延展性、韧性、抗振性等性能的变化,以保证桥梁的安全稳定性以及延长使用寿命。
总之,材料力学在汽车、结构机械、生产机械、航空产品、土木工程和桥梁工程等方面有广泛的应用,充分展示了它在生活应用中的重要作用。
只有正确理解材料力学知识并运用得当,我们才能更好地使用所使用的材料,从而实现安全、经济而有效的生活。
材料力学的基本知识及应用领域材料力学是研究材料在外力作用下的力学行为和性能的学科。
它是工程学和物理学的重要基础学科,广泛应用于材料科学、机械工程、土木工程、航空航天等领域。
本文将介绍材料力学的基本知识和一些典型的应用领域。
一、弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的弹性变形和应力分布规律。
弹性力学的基本原理是胡克定律,即应力与应变之间的线性关系。
根据胡克定律,可以计算材料的应力、应变、弹性模量等参数,进而预测材料的弹性行为和性能。
弹性力学在工程中的应用非常广泛。
例如,在设计建筑结构时,需要计算材料在外力作用下的变形和应力分布,以保证结构的安全性和稳定性。
此外,弹性力学还可以应用于材料的弹性模量测量、弹性形变的分析和材料的弹性失效分析等方面。
二、塑性力学塑性力学研究材料在外力作用下的塑性变形和应力分布规律。
与弹性力学不同,塑性力学考虑了材料的塑性变形,即材料在超过弹性限度后会出现不可逆的形变。
塑性力学的基本原理是屈服准则,根据不同的屈服准则可以计算材料的屈服强度、塑性应变等参数,进而预测材料的塑性行为和性能。
塑性力学在工程中的应用也非常广泛。
例如,在金属加工中,需要考虑材料的塑性变形,以实现材料的塑性成形。
此外,塑性力学还可以应用于材料的塑性失效分析、塑性变形的模拟和预测等方面。
三、断裂力学断裂力学研究材料在外力作用下的断裂行为和断裂韧性。
材料的断裂是指在外力作用下,材料出现裂纹并扩展至破裂的过程。
断裂力学的基本原理是线弹性断裂力学理论,根据该理论可以计算材料的断裂韧性、断裂强度等参数,进而预测材料的断裂行为和性能。
断裂力学在工程中的应用也非常重要。
例如,在设计结构时,需要考虑材料的断裂韧性,以确保结构的抗断裂能力。
此外,断裂力学还可以应用于材料的断裂失效分析、裂纹扩展的预测和控制等方面。
四、疲劳力学疲劳力学研究材料在交变应力作用下的疲劳寿命和疲劳失效机制。
材料的疲劳是指在交变应力作用下,材料由于应力集中、裂纹扩展等原因导致失效的过程。
材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
机械式千斤顶(如图一(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为,承载力大小为F ,规定稳定安全因数为。
材料力学在生活中的应用摘要:在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。
尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。
以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。
b5E2RGbCAP 关键词:材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶在实际生活中,有许多地方都要用到材料力学。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
p1EanqFDPw1.千斤顶的承载重量是否可以任意大小下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。
机械式千斤顶(如图一 (a) 示),设其丝杠长度为l , 有效直径为 d,弹性模量 E,材料抗压强度为,承载力大小为 F,规定稳定安全因数为。
材料力学在生活中的应用Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】材料力学理论在生活中的应用这篇论文选取了三个生活实例,运用材料力学所学的知识,通过受力分析,应力分析,强度校核回答了三个基本问题:铝合金封的廊子窗格是否可以无限高;千斤顶的承载重量是否可以任意大小和桥梁。
关键词材料力学拉压强度挠度剪切压杆稳定组合变形受力单元体铝合金千斤顶1.铝合金封的廊子窗格是否可以无限高图一铝合金门窗、廊子走在大街上,我们可以看到各式各样的廊子样式,可以看到大小不一的窗格布置,学了材料力学这门课程,我们不禁要提问了,窗格尺寸的极限是多么大才能保证支撑它的铝合金材料安全,不会变形现在就将这个模型抽象出来,假设铝合金材料是空心铝管,厚度可以任意选择,屈服强度取σ,只受玻璃给的压力(设玻璃居中,由于给定一段铝合金,主要承载件是玻璃,而且玻璃的相对总质量远远大于承载的铝合金的质量),外力是均匀分布力,设普⁄(忽略玻璃的宽度),玻璃高度为H,取长度a mm的铝合金通玻璃的密度是ρkg mm材料,宽度为b mm,高为h mm,如图二所示:图二玻璃安装示意图该结构危险点在铝合金与玻璃接触处,并且中间部位有一定的挠度(只要有承载,就一定有挠度),当承载到一定极限时,挠度太大不满足装配要求了,或者承载到一定极限就会使铝合金破坏。
情形(一):挠度w不满足装配要求——将图二简化为图三(a)所示的力学简图,装配要求挠度值为[w],只要w≤[w]即可。
首先,做外力矩M F,单位力力矩图M̅,如图三(b)所示。
图三 (a) 简化模型图三 (b) 弯矩图运用图乘法可以求的w=12×b2×ρH4×23×14×2=bρH48,进而,bρH48≤[w],可以满足装配要求。
如果给定了最大允许装配误差[w],知道铝合金管的宽b,还知道所使用的玻璃的密度ρ,那么H≤48[w]bρ,也就是玻璃不可能无限高,是有一个极限值的。
材料力学在生活中的应用
当今社会材料力学在生活中的应用十分广泛。
大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品。
各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。
生活中液压传动机构中的活塞杆在油压和工作阻力作用下受拉;内燃机的连杆在燃气爆发冲程中受压;起重机钢索在吊重物时,拉床的拉刀在拉削工件时,都承受拉伸;千斤顶的螺杆在顶起重物时,则承受压缩;桁架中的杆件不是受拉便是受压。
机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。
汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。
火车轴、起重机大梁的变形均属于弯曲变形。
利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链
条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。
在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。
但是工程设计中要特别注意减少构件的应力集中。
在工程中,静不定结构得到广泛应用,如桁架结构。
静不定问题的另一重要特征是,温度的变化以及制造误差也会在静不定结构中产生应力,这些应力称为热应力与预应力。
为了避免出现过高的热应力,蒸汽管道中有时设置伸缩节,钢轨在两段接头之间预留一定量的缝隙等等,以削弱热膨胀所受的限制,降低温度应力。
在工程中实际中,常利用预应力进行某些构件的装配,例如将轮圈套装在轮毂上,或提高某些构件承载能力,例如预应力混凝土构件。
螺旋弹簧是工程中常用的机械零件,多用于缓冲装置、控制机构及仪表中,如车辆上的缓冲弹簧,发动机进排气阀与高压容器安全阀中的控制弹簧,弹称中的测力弹簧等。
生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。
一类是要求构件的位移不得超过一定的数值。
例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。
另一类是要求构件能产生足够大的变形。
例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。
例如:
上海的东方明珠塔高468
米,主体结构高350米,夜
景塔最有特色的是把11个
大小不一、高低错落的球体
串联在一起。
两个大的球体
直径分别为下球体50米和
上球体45米。
连接它们的是
三根直径为9米的擎天立
柱。
高处球体直径是14米。
现建立力学模型如右图:
整体看来,地面三根大立柱共同承受这个建筑物的自重,考虑到风对电视塔的影响,故三根立柱受力绝不会相等。
现在只取塔基平台经行简要分析:
平台总重530kN,按作用半边载荷之危险情况考虑。
对A点取距
∑MA﹢=1113KN·m
∑MA﹣=665.76KN·m
Kq=∑MA﹢/∑MA﹣=1.67>1.5
所以满足抗倾覆要求。
生活中处处都是材料力学的应用,它与我们的生活密切相关,而我们需要一双发现的眼睛,处处留心皆学问,我们需要熟练掌握材料力学的知识才能明白其中的奥秘。
材料力学让我们明白了很多以前生活不能明白的问题。
我们受益匪浅,而它也是学习机械方面的基础,是最关键的一门学科,以后学习工作的一种工具,发现世界另一面的眼睛。