2019年高考数学第一轮复习:极坐标与参数方程
- 格式:doc
- 大小:2.25 MB
- 文档页数:28
2019年高考数学(文)一轮复习精品资料1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.3.了解圆的平摆线、渐开线的形成过程,并能推导出它们的参数方程.一、参数方程和普通方程的互化 1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.将参数方程化为普通方程需消去参数.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么y =g(t x =f(t ,就是曲线的参数方程.【特别提醒】在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.几种常见的参数方程 (1)圆的参数方程若圆心在点M 0(x 0,y 0),半径为r ,则圆的参数方程为y =y0+rsin θx =x0+rcos θ,(θ为参数). (2)椭圆a2x2+b2y2=1(a >b >0)的参数方程为y =bsin θx =acos θ,(θ为参数). (3)双曲线a2x2-b2y2=1(a >0,b >0)的参数方程为y =btan θ,(θ为参数). (4)抛物线y 2=2px (p >0)的参数方程为y =2pt x =2pt2,(t 为参数). 二、直线的参数方程利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为y =y0+tsin αx =x0+tcos α,(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=2t1+t2;(2)|PM |=|t 0|=2t1+t2; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|.【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.三、极坐标与参数方程的综合应用规律1.化归思想的应用,即对于含有极坐标方程和参数的题目,全部转化为直角坐标方程后再求解.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.高频考点一 参数方程与普通方程的互化【例1】 已知直线l 的参数方程为y =-4t x =a -2t ,(t 为参数),圆C 的参数方程为y =4sin θx =4cos θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【方法规律】 (1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.【变式探究】 在平面直角坐标系xOy 中,若直线l :y =t -a x =t ,(t 为参数)过椭圆C :y =2sin φx =3cos φ,(φ为参数)的右顶点,求常数a 的值.解 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为9x2+4y2=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3.高频考点二 参数方程及应用【例2】已知曲线C :4x2+9y2=1,直线l :y =2-2t x =2+t ,(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【方法规律】(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如y =y0+bt x =x0+at ,(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【变式探究】 平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为6π.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解 (1)由曲线C :(x -1)2+y 2=1. 得参数方程为y =sin θx =1+cos θ,(θ为参数). 直线l 的参数方程为t 1(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(m -)t +m 2-2m =0,所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,得m =1,m =1+或m =1-.高频考点三 参数方程与极坐标方程的综合应用【例3】 (2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为y =sin α3cos α,(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin 4π=2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.的距离d (α)的最小值.d (α)=23cos α+sin α-4|=-2π,当且仅当α=2k π+6π(k ∈Z)时,d (α)取得最小值,最小值为,此时P 的直角坐标为21.【方法规律】(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【变式探究】 在直角坐标系xOy 中,圆C 的参数方程y =sin φx =1+cos φ,(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+cos θ)=3,射线OM :θ=3π与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.1. (2018年全国I 卷)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】(1).(2).【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.2. (2018年全国卷Ⅱ)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】见解析【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国III卷)[选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,4. (2018年江苏卷)[选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.1.【2017课标1,文22】在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.【答案】(1),;(2)或.【解析】(1)曲线的普通方程为.当时,直线的普通方程为.由解得或.从而与的交点坐标为,.(2)直线的普通方程为,故上的点到的距离为.当时,的最大值为.由题设得,所以;当时,的最大值为.由题设得,所以.综上,或.2.【2017课标II,文22】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。
教学内容【知识结构】知识点一:极坐标1.极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。
3. 极坐标与直角坐标的互化当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间的互化关系.知识点三:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
知识点四:常见曲线的参数方程1.直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为:(为参数);其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。
(当在上方时,,在下方时,)。
(2)过定点,且其斜率为的直线的参数方程为:(为参数,为为常数,);其中的几何意义为:若是直线上一点,则。
2.圆的参数方程(1)已知圆心为,半径为的圆的参数方程为:(是参数,);特别地当圆心在原点时,其参数方程为(是参数)。
(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。
(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。
3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。
(2)参数的几何意义是椭圆上某一点的离心角。
如图中,点对应的角为(过作轴,交大圆即以为直径的圆于),切不可认为是。
2019年高考数学试题分项版—极坐标参数方程(解析版)1、(2019年高考XX 卷理)下列极坐标方程中,对应的曲线为右图的是()(A )θρcos 56+=(B )θρin s 56+= (C )θρcos 56-=(D )θρin s 56-= 【答案】D考点:极坐标系【名师点睛】本题是极坐标系问题中的基本问题,从解法上看,一是可通过记忆比对,作出判断,二是利用特殊值代入检验的方法.本题突出体现了高考试题的基础性,能较好的考查考生基本运算能力、数形结合思想等.2、(2019年高考卷理)在极坐标系中,直线与圆交于A ,B 两点,则______. 【答案】2考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =以与,,同时要掌握必要的技巧.cos sin 10ρθθ-=2cos ρθ=||AB =θρθρsin ,cos ==y x θρθρsin ,cos ==y x 22y x +=ρ)0(tan ≠=x xyθ3、(2019年高考XX 卷)在平面直角坐标系xOy 中,已知直线l的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. 【答案】167考点:直线与椭圆参数方程【名师点睛】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 与y 的取值范围的影响.4、(2019年高考新课标Ⅰ卷理)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化与应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式与应用.5、(2019年高考新课标Ⅰ卷文)在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1试题解析:⑴cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程 ⑵24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化与应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式与应用.6、(2019年高考新课标Ⅱ卷理)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||10AB =求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)153±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.7、(2019年高考新课标Ⅱ卷文)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.8、(2019年高考新课标Ⅲ卷理)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值与此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. ……5分(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.………………8分当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22. ………………10分考点:1、椭圆的参数方程;2、直线的极坐标方程.【技巧点拨】一般地,涉与椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.9、(2019年高考新课标Ⅲ卷文)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=.(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值与此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. ……5分(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.………………8分当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,最小值为,此时P 的直角坐标为31(,)22. ………………10分考点:1、椭圆的参数方程;2、直线的极坐标方程.【技巧点拨】一般地,涉与椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.。
高考数学第一轮复习:极坐标与参数方程第一部分:极坐标知识点讲解一、极坐标系与极坐标:1、极坐标系:如下图所示:一条射线就是一个极坐标系。
其中射线的端点叫做极点,这条射线叫做极轴。
2、极坐标的表示:如下图所示:点到极点的距离叫做极径,其中极径用字母ρ表示;极径与极轴之间的夹角叫做极角,极角用θ表示。
点P的极坐标为),(θρ。
二、极坐标与直角坐标的转换:1、极坐标与直角坐标的对应关系:如下图所示:2、极坐标转换为直角坐标:θρcos=x;θρsin=y;例一:把下列的极坐标转换为直角坐标。
(1)、)3,2(π (2)、)32,3(π (3)、)2,4(π (4)、)23,3(π(5)、),4(π【解析】:(1)、12123cos2=⨯=⋅=πx ;32323sin 2=⨯=⋅=πy ; 所以:极坐标)3,2(π转换为直角坐标)3,1(。
(2)、23)21(332cos3-=-⨯=⋅=πx ;23323332sin 3=⨯=⋅=πy ; 所以:极坐标)32,3(π转换为直角坐标)233,23(-。
(3)、因为:极角2πθ=;所以:点)2,4(π在y 轴正半轴上,对应的直角坐标为)4,0(; (4)、因为:极角23πθ=;所以:点)23,3(π在y 轴负半轴上,对应的直角坐标为)3,0(-;(5)、因为:极角),4(π;所以:点),4(π在x 轴的负半轴上,对应的直角坐标为)0,4(-; 3、直角坐标转换为极坐标坐标: 22y x +=ρ;22sin y x y +=θ;22cos yx x +=θ;xy=θtan 例二:把下列的直角坐标转换为极坐标。
(1)、)3,3( (2)、)3,1(- (3)、)2,2(- (4)、)2,6(- (5)、)0,2(- (6)、)6,0( (7)、)3,0(- (8)、)0,2(【解析】:(1)、32)3(322=+=ρ,33tan =θ,点)3,3(为第一象限角,6πθ=。
所以:直角坐标)3,3(对应的极坐标为)6,32(π。
(2)、2)3()1(22=+-=ρ,tan =θ)3,1(-为第二象限角,32πθ=。
所以:直角坐标)3,1(-(3)、222)2(22=+-=ρ,122tan -=-=θ,点)2,2(-为第二象限角,43πθ=。
所以:直角坐标)2,2(-对应的极坐标为)43,22(π。
(4)、22)2()6(22=-+=ρ,3362tan -=-=θ,点)2,6(-为第四象限角,6πθ-=。
所以:直角坐标)2,6(-对应的极坐标为)6,22(π-。
(5)、20)2(22=+-=ρ,点)0,2(-在x 轴的负半轴上,πθ=。
所以:直角坐标)0,2(-对应的极坐标为),2(π。
(6)、66022=+=ρ,点)6,0(在y 轴的正半轴上,2πθ=。
所以:直角坐标)6,0(对应的极坐标为)2,6(π。
(7)、3)3(022=-+=ρ,点)3,0(-在y 轴的负半轴上,2πθ-=。
所以:直角坐标)3,0(-对应的极坐标为)2,3(π- 。
(8)、20222=+=ρ,点)0,2(在x 轴的正半轴上,0=θ。
所以:直角坐标)0,2(对应的极坐标为)0,2(。
三、常见的极坐标方程。
1、直线的极坐标方程。
第一类:直线的极坐标方程。
αρ=(α为一个具体的角度)。
例一:把下列的极坐标方程转换为直角坐标方程。
(1)、3πθ=(2)、65πθ=(3)、4πθ-= (4)、67πθ= 【解析】:(1)、如下图所示:33tantan ===πθk ;所以:直线的方程为x y 3=(0≥x )(2)、如下图所示:3365tan-==πk ;所以:直线的方程为)0(33≤-=x x y (3)、如下图所示:1)4tan(-=-=πk ;所以:直线的方程为x y -=(0≥x ) (4)、如下图所示:3367tan==πk ;所以:直线的方程为x y 33=(0≤x ) 第二类:直线的极坐标方程。
b a =+)cos(ϕθρ或者b a =+)sin(ϕθρ(其中b a ,是常数,ϕ是一个具体的角度)例二:把下列的极坐标方程转换为直角坐标方程。
(1)、5)3cos(2=-πθρ (2)、2)6sin(3=--πθρ(3)、2)4cos(-=+πθρ (4)、2)4sin(=+-πθρ 【解析】:(1)、5)sin 23cos 21(25)3sin sin 3cos (cos 25)3cos(2=+⇒=+⇒=-θθρπθπθρπθρ 535sin 3cos =+⇒=+⇒y x θρθρ。
(2)、2)cos 21sin 23(32)cos 6sin 6cos (sin 32)6sin(3=--⇒=--⇒=--θθρθππθρπθρ2232332cos 23sin 233=+-⇒=+-⇒x y θρθρ。
(3)、2)sin 22cos 22(2)4sin sin 4cos (cos 2)4cos(-=-⇒-=-⇒-=+θθρπθπθρπθρ 222222sin 22cos 22-=-⇒-=-⇒y x θρθρ。
(4)、2)cos 22sin 22(2)cos 4sin 4cos (sin 2)4sin(=+-⇒=+-⇒=+-θθρθππθρπθρ 222222cos 22sin 22=--⇒=--⇒x y θρθρ2、圆的极坐标方程。
第一类:圆的极坐标方程。
a =ρ(其中a 为常数)例三:把下列极坐标方程转换为直角方程。
(1)、2=ρ (2)、3=ρ (3)、1=ρ【解析】:(1)、442222=+⇒=⇒=y x ρρ;圆心在原点)0,0(,半径2=r 。
(2)、993222=+⇒=⇒=y x ρρ;圆心在原点)0,0(,半径3=r 。
(3)、111222=+⇒=⇒=y x ρρ;圆心在原点)0,0(,半径1=r 。
第二类:圆的极坐标方程。
θρθρsin ,cos a a ==(其中a 为常数)例四:把下列极坐标方程转换为直角方程。
(1)、θρcos 2= (2)、θρsin 4-= (3)、θρsin 3= (4)、θρcos -=【解析】:(1)、1)1(022cos 2cos 22222222=+-⇒=-+⇒=+⇒=⇒=y x x y x x y x θρρθρ 圆心:)0,1(;半径1=r 。
(2)、4)2(044sin 4sin 42222222=++⇒=++⇒-=+⇒-=⇒-=y x y y x y y x θρρθρ 圆心:)2,0(-;半径2=r 。
(3)、49)23(033sin 3sin 32222222=-+⇒=-+⇒=+⇒=⇒=y x y y x y y x θρρθρ圆心:)23,0(;半径23=r 。
(4)、41)21(0cos cos 2222222=++⇒=++⇒-=+⇒-=⇒-=y x x y x x y x θρρθρ圆心:)0,21(-;半径21=r 。
第三类:圆的极坐标方程。
)cos(),sin(ϕθρϕθρ+=+=a a (其中ϕ,a 都是常数)例五:把下列极坐标方程转换为直角方程。
(1)、)3sin(2πθρ+= (2)、)6cos(4πθρ-=(3)、)4cos(2πθρ+-= (4)、)3sin(πθρ+-= 【解析】:(1)、)cos 3sin 3cos (sin 2)3sin(2)3sin(222θππθρρπθρρπθρ+=⇒+=⇒+=x y y x 3cos 3sin )cos 23sin 21(22222+=+⇒+=⇒+=⇒θρθρρθθρρ1)21()23(4143)21()23(03222222=-+-⇒+=-+-⇒=--+⇒y x y x x y y x 圆心:)21,23(;半径1=r ; (2)、)6sin sin 6cos (cos 4)6cos(4)6cos(422πθπθρρπθρρπθρ+=⇒-=⇒-= y x y x 232sin 2cos 32)sin 21cos 23(42222+=+⇒+=⇒+=⇒θρθρρθθρρ 4)1()3(13)1()3(023*******=-+-⇒+=-+-⇒=--+⇒y x y x y x y x圆心:)1,3(;半径:2=r ;(3)、)4sin sin 4cos (cos 2)4cos(2)4cos(222πθπθρρπθρρπθρ--=⇒+-=⇒+-=y x y x 22sin 2cos 2)sin 22cos 22(22222+-=+⇒+-=⇒--=⇒θρθρρθθρρ 1)22()22(2121)22()22(022222222=-++⇒+=-++⇒=-++⇒y x y x y x y x 圆心:)22,22(-;半径:1=r ; (4)、)cos 3sin 3cos (sin )3sin()3sin(22θππθρρπθρρπθρ+-=⇒+-=⇒+-=x y y x 2321cos 23sin 21)cos 23sin 21(2222--=+⇒--=⇒+-=⇒θρθρρθθρρ41)41()43(161163)41()43(023********=+++⇒+=+++⇒=+++⇒y x y x x y y x 圆心:)41,43(--;半径:21=r ; 第二部分:五年高考极坐标真题讲解例一:【2014年高考数学上海卷】已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθρ,则C 与极轴的交点到极点的距离是 。
【解析】:解法一:把极坐标方程转换为直角方程进行计算。
1431sin 4cos 31)sin 4cos 3(=-⇒=-⇒=-y x θρθρθθρ;因为:极坐标系中的极轴为x 轴的非负半轴;所以:直线143=-y x 与极轴的交点为)0,31(;利用两点之间距离公式得到:点)0,31(到极点)0,0(的距离为31)00()031(22=-+-=d 。
解法二:利用极坐标系之间计算。
因为:极坐标系中的点到极点的距离为极径ρ; 该点为极坐标方程与极轴的交点,该点的极角为0=θ; 所以:131)0sin 40cos 3(⇒=⇒=-ρρρ例二:【2014年高考数学广东卷】1C 和2C 的方程分别为θθρcos sin 2=和1sin =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 。
【解析】:解法一:把极坐标方程转换成直角坐标方程进行计算。
曲线1tan sin 1cos sin sin cos sin sin cos sin :21=⇒=⇒=⇒=θθρθθθρθθθρθθρC x y xy x y y =⇒=⇒=⋅⇒2211;曲线11sin :2=⇒=y C θρ; 联立曲线1C 和2C 的方程: x y =21=y解得:交点的坐标为)1,1(。