“截长补短法”在解题中的巧用方法
- 格式:pptx
- 大小:348.87 KB
- 文档页数:12
截长法和补短法的例题和解析说到截长法和补短法,很多人一听就觉得这又是个数学难题,哎呀,我可不想脑袋里塞满公式。
不过,今天咱们就轻松聊聊这两种方法,保准让你豁然开朗,甚至能在朋友面前抖个机灵,炫耀一下你的数学“绝技”。
先来聊聊截长法。
想象一下你在剪头发,朋友想要个“帅气”的短发,可是发量又不够,怎么办?这时候就得用截长法了!简单说,就是把长的部分“截”掉,然后用剩下的长度来拼凑出一个好的造型。
哎,你看,就像我之前跟我朋友一起去理发,剪了个“爆炸头”,结果出来的时候,我朋友的发型竟然比我还好!这就是截长法的魅力所在,把多余的剪掉,剩下的部分更显得精致。
再来说补短法。
这法子就像是给缺口的地方加点东西。
想象你在做一件手工活,刚好少了一块布,没关系,拿出一块颜色相近的布,补上去,不就成了吗?有一次我和朋友做DIY,差点没把东西做成四不像,结果我灵机一动,拿出一张彩纸,补了一下,嘿,瞬间变得生动有趣,朋友们都夸我有创意!补短法就是用好东西把不足的地方填上,让整体看起来更完美。
这两种方法其实在生活中无处不在。
比如你在做一道数学题,题目给了个长长的公式,哦,真是头疼。
可是如果你能截掉一些冗余的部分,简化一下,不就简单多了吗?或者遇到短缺的条件,你就得用补短法,想办法把缺的部分找回来,搞定问题。
数学就像生活,时不时需要用点创意。
那说到例题,咱们来试试吧!假设你有一根长度为10米的绳子,你想要做一个正方形的花坛。
你会发现,这绳子不够用,咋整?这就是截长法的好时机。
把花坛的边长从2米调整成1.5米,嘿,这一下绳子就够用了,花坛不但可以做出来,视觉效果也不错,真是一举两得。
再说补短法。
假设你在搞一个团体活动,每个人都要出一份稿子,结果发现有一个人写得特别少,怎么办?用补短法,大家一起帮他补充点内容,齐心协力,让整份稿子看起来完整,真是众人拾柴火焰高嘛。
这种方法特别适合团队合作,大家各展所长,凑成一份完美的作品。
哦,对了,还得提到一个小技巧。
线段和差处理技巧截长补短法线段的和差处理技巧是数学中非常重要的一个概念。
在数学中,线段和差处理可以通过截长补短法来实现。
所谓截长补短,就是在两个线段之间找到一个公共的部分,然后通过截取和补足的方式实现线段的和差处理。
以下是线段和差处理技巧截长补短法的详细介绍。
在讨论线段和差处理之前,我们先来了解一下什么是线段。
线段是数学中的一个基本概念,是一个有两个端点的连续部分。
线段一般用两个点表示,比如用A和B表示一个线段AB。
线段的长度等于两个端点之间的距离。
线段的和差处理是指在给定的线段AB和线段CD的情况下,通过截长补短的方法计算出线段AB和线段CD的和或差。
具体来说,截长补短法可以分为两种情况:一种是线段AB和线段CD的起点和终点相同,另一种是线段AB和线段CD的起点和终点不同。
第一种情况下,如果线段AB和线段CD的起点和终点相同,那么它们可以看作是同一个线段。
在这种情况下,线段AB和线段CD的和差就是线段AB(或CD)的两倍。
更具体地说,如果我们要计算线段AB和线段CD的和,那么和的长度等于线段AB的长度加上线段CD的长度;如果我们要计算线段AB和线段CD的差,那么差的长度等于线段AB的长度减去线段CD的长度。
第二种情况下,如果线段AB和线段CD的起点和终点不同,那么它们不可以看作是同一个线段。
在这种情况下,我们需要找到线段AB和线段CD的一个公共部分,并将其截取下来。
具体来说,我们可以通过以下步骤实现线段和差的处理:1.先找到线段AB和线段CD的一个公共的端点。
这个公共端点可以是线段AB的起点或终点,也可以是线段CD的起点或终点。
2.从线段AB的起点开始,沿着线段AB的方向,截取和线段CD长度相等的一段线段。
这段线段的长度等于线段CD的长度。
3.将截取下来的线段与线段CD的起点相连。
这样我们就得到了一条新的线段EF,其中E是线段AB的起点,F是线段CD的起点。
4.线段EF就是线段AB和线段CD的和。
“截长补短法”在一类几何证明题中的运用探究线段的和、差、倍、分是平面几何中常见的问题,“截长补短法”是解决这一类问题的一种常用的特殊方法,“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(补上某线段),然后,证明它与题中某条线段相等。
例1 已知:△ABC是⊙O的内接等边三角形,点P为弧BC上一动点,求证:PA=PB+PC。
分析:直接证明PA=PB+PC,困难较大。
可用截长法:在PA上截取PD=PB,再证明PC=DA即可(或用补短法:在BP或CP上各补上与CP或BP相等的线段,再证明PA与这条线段相等)。
证明(截长法):在PA上截取PD=PB,连接BD,∵△ABC是圆O的内接等边三角形,∴ BA=BC,∠ABC=∠ACB=60°。
∵∠BPA=∠BCA,∴∠BPA=60°。
∴△BPD是等边三角形。
∴ BD=BP,∠DBP=60°。
∴∠ABD=∠CBP。
∴△ABD≌△CBP。
∴ PC=DA。
又∵ PA=PD+DA,∴ PA=PB+PC。
证明(补短法):延长BP到D使PD=PC,连接CD,∵△ABC是圆内接等边三角形,∴ AC=BC,∠ABC=∠ACB=60°。
∵∠BPA=∠BCA,∠ABC=∠APC,∴∠BPA=60°=∠APC。
∴∠CPD=60°。
∴△CPD是等边三角形。
∴ CD=CP ∠DCP=60°。
∴∠ACP=∠BCD。
∴△ACP≌△BCD。
∴ PA=BA。
又∵ BD=PD+BP,∴ PA=PB+PC。
例2 已知:四边形ABCD是☉O的内接正方形,点P为弧BC上一动点,求证:PA=PC+■PB。
分析一:要证明PA=PC+■PB,我们可以在PA上取AD=PC,连接BD,再想办法证明PD=■PB,问题可以解决。
证明:在AP上截取AE=PC,连接BE。
∵四边形ABCD是圆内接正方形,∴ AB=CB,∠BPA=45°。
中考数学压轴题作辅助线的技巧之一:截长补短【方法说明】遇到求证线段和差及倍半关系时,可以尝试截长补短的方法.截长指在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短指将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.题目中常见的条件有等腰三角形(即两条边相等),或角平分线(即两个角相等),通过截长补短后,并连接一些点,构造全等得出最终结论.【方法归纳】1.如图,若要求证AB+BD=AC,可以在线段AC上截取线段AB′=AB,并连接DB,证明B′C=BD即可;或延长AB至点C′使得AC′=AC,并连接BC′,证明BC′=BD即可.2.如图,若要求证AB+CD=BC,可以在BC上截取线段BF=AB,再证明CD=CF即可;或延长BA至点F,使得BF=BC,再证明AF=CD即可.图(1)图(2)3.在一个对角互补的四边形中,有一组邻边(AB=AD)相等,可以使用补短的方法延长另外两边的一条,构建全等三角形.【典型例题】(2009广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.【思路点拨】(1)证明AF=AH,因此先连接AH、AF.证明线段相等可考虑三角形全等的方法,观察发现只要证明Rt△ADH≌Rt△ABF(或Rt△AGH≌Rt△AEF)即可;(2)证明AG+AE=FH这种线段和的问题,可以考虑截长补短,发现在FH上截取的方法不好证明,可以考虑补短的方法.本题可以考虑把AG+AE转化为DH+BF,延长延长CB至点M,使得BM=DH,然后证明MF=FH即可;(3)由于矩形EPHD的边长并不知道,可以采用设未知数的方式,本题可以设ED=x,DH=y,则S矩形EPHD=xy,根据Rt△GBF的周长为1,即可找到x与y的关系并求出面积.【解题过程】解:(1)连接AH、AF.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∵ADHG与ABFE都是矩形,∴DH=AG,AE=BF,又∵AG=AE,∴DH=BF.在Rt△ADH与Rt△ABF中,∵AD=AB,∠D=∠B=90°,DH=BF,∴Rt△ADH≌Rt△ABF,∴AF=AH.(2)【方法一】延长CB至点M,使得BM=DH,并连接AM,FH.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∴∠D=∠ABM=90°,∴△ABM≌△ADH,∴AM=AH,∠MAB=∠DAH.∵∠FAH=45°,∴∠MAF =∠BAF+∠MAB=∠BAF+∠DAH=90°-45°=45°=∠FAH又∵AF=AF,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.【方法二】将△ADH绕点A顺时针旋转90°到△ABM的位置.在△AMF与△AHF中,∵AM=AH,AF=AF,∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.(3)设ED=x,DH=y,则GB=AB-AG=1-y,BF=BC-BF =1-x,∴在Rt△GBF中,GF2=GB2+BF2=(1-y)2+(1-x)2,∵Rt△GBF的周长为1,∴GF=1-GB-BF=1-(1-x)-(1-y)=x+y-1,∴(x+y-1)2=(1-y)2+(1-x)2得xy=1/2,∴矩形EPHD的面积S=ED·DH= xy=1/2.。
几何证明的好方法——截长补短几何证明是数学中一种非常重要的方法,常用于证明几何定理和推导几何性质。
在证明过程中,使用截长补短的方法可以帮助我们更加简化和明确证明的步骤。
截长补短是一种证明方法,即通过添加或截取一些辅助线或辅助点,从而改变原有图形的形状和性质,并且使得证明更加直观和明了。
下面以几何证明中常见的一些问题为例,介绍截长补短的应用方法。
一、证明两线段相等当我们需要证明两条线段相等时,可以考虑添加一条辅助线段,从而将问题转化为两个三角形的相等性质。
具体步骤如下:1.观察题目中给出的线段,设需要证明的线段为AB和CD。
2.根据题目的条件,找到一个与我们需要证明的线段相关的线段,设为EF。
3.添加辅助线段,连接AE和CF,构建出两个三角形,如△AEB和△CFD。
4.利用已知的几何定理或条件,证明两个三角形的相等性质,如SSS (边-边-边)相等性质或SAS(边-角-边)相等性质。
5.根据三角形的相等性质,得出AB=CD的结论。
通过添加辅助线段,将原来需要证明的问题转化为证明两个三角形的相等性质,更加直观和易于操作。
二、证明两角相等当我们需要证明两个角相等时,可以考虑添加一条辅助线段或辅助点,从而改变原有角的性质,并且使得证明更加明确和简洁。
具体步骤如下:1.观察题目中给出的角度,设需要证明的两个角为∠ABC和∠DEF。
2.根据题目的条件,找到一个与我们需要证明的两个角相关的角,设为∠GHI。
3.添加辅助线段或辅助点,改变原有角的性质。
如我们可以添加辅助线段IJ,使得∠GHI=∠ABC。
4.利用已知的几何定理或条件,证明新构建的几何形状的一些性质。
如垂直角、平行线、共线等。
5.根据已知的性质和构建的几何形状,得出∠ABC=∠DEF的结论。
通过添加辅助线段或辅助点,改变原有角的性质,并利用已知的几何定理和条件,可以更加明确和简洁地证明两个角的相等性质。
三、证明两图形全等当我们需要证明两个图形相等时,可以考虑添加一些辅助线段或辅助点,从而改变原有图形的形状和性质,并且将问题转化为相似三角形或平行四边形的性质。
专题08倍长中线法和截长补短法综合应用倍长中线类型一:直接倍长中线△ABC 中AD 是BC 边中线方法:延长AD 到E ,使DE=AD ,连接BE类型二:间接倍长中线作CF ⊥AD 于F ,作BE⊥AD 的延长线于E 连接BE 。
延长MD 到N ,使DN=MD ,连接CN截长补短常见类型及常规解题思路:①a b c ±=可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
②a b kc±=可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30 的直角三角形等。
截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短法常规辅助线:(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起类型一:倍长中线法【典例1】如图,在△ABC中,AB=a,AC=b,a,b均大于0,中线AD=c,求c的取值范围.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS),∴BE=AC=b,在△AEB中,AB﹣BE<AE<AB+BE,即a﹣b<2AD<a+b,∴<c<.【典例2】已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【解答】证明:如图,延长AD到点G,使得AD=DG,连接BG.∵AD是BC边上的中线(已知),∴DC=DB,在△ADC和△GDB中,∴△ADC≌△GDB(SAS),∴∠CAD=∠G,BG=AC又∵BE=AC,∴BE=BG,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠FAE,∴AF=EF.【典例3】如图,△ABC中,点D是BC的中点,点E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF >EF.【解答】证明:如图,延长ED使得DM=DE,连接FM,CM.∵BD=DC,∠BDE=∠CDM,DE=DM,∴△BDE≌△CDM(SAS),∴BE=CM,∵DE=DM,DF⊥EM,∴FE=FM,∵CM+CF>FM,∴BE+CF>EF.【变式1】如图,在△ABC中,AC=3,AB=5,点D为BC的中点,且AD⊥AC,则△ABC的周长为 .【解答】解:延长AD到E,使AD=DE,连接BE,∵D为BC的中点,∴BD=CD,∵∠ADC=∠BDE,∴△ADC≌△EDB(SAS),∴AC=BE=3,∠DAC=∠E,∵AD⊥AC,∴∠DAC=90°,∴∠E=90°,∴AE===4,∴AD=DE=2,∴BD===,∴BC=2BD=2,∴△ABC的周长为AB+AC+BC=5+3+2=8+2.故答案为:8+2.【变式2】如图,在△ABC中,点E是AB边的中点,D是BC延长线上一点,连接DE交AC于点F,且AF=BD,若BD=3,AC=5,则CD的长为 .【解答】解:延长DE至H,使EH=DE,连接AH,∵AF=BD,BD=3,AC=5,∴CF=AC﹣AF=5﹣3=2,在△BED和△AEH中,,∴△BED≌△AEH(SAS),∴AH=BD,∠D=∠H,∵AF=BD,∴AH=AF,∴∠AFH=∠H,∴∠CFD=∠D,∴CD=CF=2,故答案为:2.【变式3】如图,在Rt△ABC中,∠BAC=90°,点D是BC的中点,E是AB边上一点,DF⊥DE交AC于点F,连接EF,若BE=2,CF=,则EF的长为 .【解答】解:如图,延长FD到G使GD=DF,连接GE,BG,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=,∠GBD=∠C,∴BG∥CA,∴∠EBG=∠A=90°,∵BE=2,∴EG===,∵DF⊥DE,DF=DG,∴EF=EG=,故答案为:.【变式4】如图,在矩形ABCD中,AB=8,BC=9,点E为AB的中点,点F在BC上,且BF=2FC,AF 与DE,DB分别交于点G,H,求GH的长.【解答】解:如图,过点F作FM⊥AD于M,交ED于O,则FM=AB=8,∵BF=2FC,BC=9,∴BF=AM=6,FC=MD=3,∴AF===10,∵OM∥AE,∴,∵点E为AB的中点,∴OM =,∴OF =FM ﹣OM =8﹣=,∵AE ∥FO ,∴△AGE ∽△FGO ,∴=,∴AG ==,∴GH=10-4-415=49【变式5】如图,四边形ABCD 为平行四边形,点E ,F 分别为BC ,AB 上的点,且点F 为AB 的中点,连接DF ,DE .(1)如图①,若DF 平分∠ADE ,求证:AD +BE =DE ;(2)如图②,若四边形ABCD 是边长为4的正方形,当ED 平分∠FDC 时,求EC 的长.【解答】(1)证明:延长DF ,CB 交于G ,如图:∵四边形ABCD 为平行四边形,∴AD ∥CB ,∴∠ADG =∠G ,∵DF 平分∠ADE ,∴∠ADG=∠EDG,∴∠G=∠EDG,∴DE=GE=GB+BE,∵F是AB中点,∴AF=BF,在△ADF和△BGF中,,∴△ADF≌△BGF(AAS),∴AD=GB,∴DE=AD+BE;(2)解:延长AB,DE交于H,如图:∵四边形ABCD是边长为4的正方形,点F为AB的中点,∴DF===2,AB∥CD,∴∠CDE=∠H,∵ED平分∠FDC,∴∠CDE=∠FDE,∴∠FDE=∠H,∴FH=DF=2,∴BH=FH﹣BF=2﹣2,∵∠C=90°=∠HBE,∠DEC=∠HEB,∴△DCE∽△HBE,∴=,即=,解得CE=2﹣2.∴EC的长为2﹣2.【变式6】阅读下面材料,并按要求完成相应的任务.如图①,圆内接四边形的对角线AC⊥BD,垂足为G,过点G作AD的垂线,垂足为E,延长EG交BC于点F,则点F为BC的中点.下而是部分证明过程:∵AC⊥BD,EF⊥AD,∴∠EGD+∠FGC=90°,∠EGD+∠EDG=90°,∴∠EDG=∠FGC.∵∠ADB=∠ACB,…任务一:请将上述过程补充完整;任务二:如图②,在△ABC中,把边AC绕点C顺时针旋转90°得到DC,把边BC绕点C逆时针旋转90°得到EC.连接DE,取AB的中点M,连接MC并延长交DE于点N.(1)求证:MN⊥DE;(2)若AC=4,AB=6,∠CAB=30°,求DE的长.【解答】解:任务一:∵AC⊥BD,EF⊥AD,∴∠EGD+∠FGC=90°,∠EGD+∠EDG=∴∠EDG=∠FGC.∵∠ADB=∠ACB,∴∠ACB=∠CGF,∴CF=FD,同理BF=FG,∴BF=CF,∴点F为BC的中点;任务二:(1)证明:延长CM到F使MF=CM,∵AM=MB,∴ACBF是平行四边形,∴AF=BC=CE,AF∥BC,∴∠CAF+∠ACB=180°,∠DCE+∠ACB=180°,∴∠CAF=∠DCE,∵DC=AC,∴△DCE≌△CAF(SAS),∴∠D=∠ACF,∵∠ACF+∠DCN=90°,∴∠D+∠DCN=90°,∴∠DNC=90°,∴MN⊥DE;(2)解:作CG⊥AB于G,∵∠CAB=30,AC=4,∴CG=2,AG=2,∵AM=AB=3,∴GM=,∵CM2=CG2+GM2,∴CM2=22+()2,∴CM=,∵△DCE≌△CAF,∴DE=CF=2.类型二:截长补短【典例4】模型分析当题目中出现线段的和差关系时,考虑用截长补短法,该类题日中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合右边的证明结论.求证:AB+BD=AC.请结合右边的【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】【解答】证明:【截长法】在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.证明:【补短法】延长AB到F,使BF=BD,连接DF,∵BF=BD,∴∠F=∠BDF,∴∠ABC=∠F+∠BDF=2∠F,且∠ABC=2∠C,∴∠C=∠F,且∠CAD=∠BAD,AD=AD,∴△ADF≌△ADC(AAS)∴AC=AF,∴AC=AF=AB+BF=AB+BD.【变式1】如图,△ABC为等边三角形,D为△ABC外一点,连接AD,BD,CD,∠ADB=∠ADC=60°,求证:AD=BD+CD.【解答】证明:在DA上截取DE=DB,连接BE,如下图所示,∵∠ADB=60°,DE=DB,∴△ABD为等边三角形,∴∠EBD=60°,BE=BD,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴∠EBD﹣∠EBC=∠ABC﹣∠EBC,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∴AD=AE+ED=CD+BD.【变式2】如图,Rt△ABC中,AC=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于F点,交AB于点E.求证:AD=2DF+CE.【解答】证明:在AF上截取FG=DF,连接CG,则DG=2DF,∵∠ACB=90°,∴∠DCF+∠ACF=90°,又∵CF⊥AD,∴∠ACF+∠CAF=90°,∴∠DCF=∠CAF,∵AD平分∠CAE,∴∠CAF=∠EAF,∵DF=FG,CF⊥DG,∴CD=CG,∴∠CDG=∠CGD,∵∠DGC=∠GAC+∠ACG,∠ADC=∠B+∠BAD,∴∠B=∠ACG,又∵AC=BC,∴△ACG≌△CBE(ASA),∴AG=CE,∴AD=AG+DG=CE+2DF.【变式3】如图,△ABC内接于⊙O,AC=BC,CD是⊙O的一条弦,且=,过点A作AP⊥CD,分别交CD,⊙O于点E,P,连接BP,若CD=6,△ABP的周长为13,求AE的长.【解答】解:在AE上截取AF=BP,连接CF,PC,∵AC=BC,∠CAF=∠CBP,∴△CAF≌△CBP,CF=CP,∵CD⊥PA,∴EF=PE,∴AE=AF+FE=PB+PE,∵AC=BC,∴=,∵=,∴=,∴AB=CD=6,∵△ABP的周长是13,∴AP+PB=7,∵AE=PE+PB,∴2AE=AP+PB,∴AE=.【变式4】如图,在△ABC中,AB=AC,在AB左侧作∠BDC=∠BAC=α,过点A作AE⊥DC于点E.(1)当α=90°时,①求证:AE=DE;②若BD=AE=2,请求出△ABC的面积;(2)当α≠90°时,求证:BD+DE=EC.【解答】(1)①证明:过点B作BF⊥AE,交AE的延长线于点F,∵AE⊥CD,∴∠DEF=90°,又∵∠BDE=90°,∴四边形BDEF为矩形,∴DE=BF,∵∠BAC=90°,∴∠BAF+∠EAC=90°,又∵∠EAC+∠ACE=90°,∴∠BAF=∠ACE,又∵∠AEC=∠BFA=90°,AB=AC,∴△ABF≌△CAE(AAS),∴BF=AE,∴DE=AE;②解:∵四边形BDEF为矩形,BD=AE=2,∴BD=EF=2,DE=BF=AE=,∴AF=AE+EF=+2,∴BA2=BF2+AF2==8+4,∴S==;△ABC(2)证明:过点A作AF⊥BD,交BD的延长线于F,连接AD,设CD与AB交于点O,∵∠BDC=∠BAC,∠BOD=∠AOC,∴∠ACO=∠DOB,即∠ABF=∠ACE,又∵∠AEC=∠AFB=90°,AC=AB,∴△ACE≌△ABF(AAS),∴AE=AF,BF=CE,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∴CE=BF=BD+DF=BD+DE.【变式5】【问题背景】如图①,在边长为1的正方形ABCD中,点E为射线BC上的一个动点(与点B,C不重合),连接AE,过点E作EF⊥AE,与正方形ABCD的外角∠DCG的平分线交于点F.李老师指出,当点E为线段BC 的中点时,AE=EF.【初步探索】(1)如图②,当点E在线段BC的延长线上时,其他条件不变,那么结论“AE=EF”是否仍然成立;【问题解决】(2)当点E在线段BC上时,设BE=x,△ECF的面积为y,求y与x之间的函数关系式;【拓展延伸】(3)如图③,将正方形ABCD放在平面直角坐标系xOy中,点O与点B重合,点C在x轴正半轴上,当点E运动到某一点时,点F恰好落在直线y=﹣2x+3上,求此时点E的坐标.【解答】解:【问题背景】如图1,取AB的中点H,连接EH,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵E是BC的中点,∴BH=BE=AH=CE,∴∠BHE=∠BEH=45°,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;【初步探索】(1)仍然成立,理由如下:如图2,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA),∴AE=EF;【问题解决】(2)如图3,在BA上截取BH=BE,连接HE,同理得:△AHE≌△ECF,∴y=S=AH•BE=x(1﹣x)=﹣x2+x(0≤x≤1);△AHE【拓展延伸】(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM=a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).【典例5】如图1,在Rt△ABC中,AB=BC,点D,E,F分别在AB,BC,AC边上,且DE=EF,∠DEF =∠B,∠A=45°.(1)试猜想CF与BE之间的数量关系,并证明;(2)自主探究:如图2,若将已知条件中含45°的直角三角形换成含30°的直角三角形,其余条件不变,试探究BE和CF的关系.【解答】解:(1)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,AB=BC,∠A=45°,∴∠C=45°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=45°,∴△FHC为等腰直角三角形,∴FC=FH,∴FC=BE;(2)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,∠A=30°,∴∠C=60°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=60°,∴sin60°=,∴FC=FH,∴FC=BE.【变式1】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点F是AC上一点,连接BF交AD于点E,且DE=CD,连接DF,若AF=4,DF=2,则BF的长为 .【解答】解:如图,在BF上截取HF=AF,连接AH,∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠EBD=∠CAD,∵∠BED=∠AEF,∴∠AFE=∠BDE=90°,∴∠AHF=∠HAF=45°,∴AH=AF,∴∠BAH=∠DAF,∠AHB=135°,∠AEF=∠BED,∠AFE=∠BDE=90°,∴△AFE∽△BDE,∴=,∵∠AEB=∠FED,∴△AEB∽△FED,∴∠EAB=∠EFD=45°,∴∠AFD=∠AFH+∠EFD=90°+45°=135°,∴∠AHB=∠AFD,∴△AHB∽△AFD,∴==,∴BH=DF,∴BF=BH+HF=DF+AF=2+4.故答案为:2+4.【变式2】如图,四边形ABCD内接于⊙O,BC是⊙O的直径,连接AC,BD,若AB=AC,请探究AD,BD,DC之间的数量关系.【解答】解:作AE⊥AD交BD于E,∵BC是直径,∴∠BAC=90°,∵∠BAE+∠EAC=∠DAC+∠EAC=90°,∴∠BAE=∠CAD,∵∠ABD=∠ACD,AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∵△AED是等腰直角三角形,∴DE=AD,∵BD=DE+BE,∴BD=AD+CD.【变式3】如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为点H.求证:DE+AD=2CH.【解答】证明:如图,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠ACB=120°,∠ACB+∠ADE=180°,∴∠EDB=120°,∠EDA=60°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,在△AFC和△EDC中,,∴△AFC≌△EDC(ASA),∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,∴AD+DE=2CH.【变式4】如图,在△ABC中,AB=AC,∠BAC=90°,点D是平面内一点,且AD⊥CD.点O是BC的中点,连接OA,OD.(1)如图①,若点D是BC下方一点,过点O作OE⊥OD分别交AC,AD于点E,F.①求证:∠OAF=∠OCD;②若CD=1,DF=2,求BC的长;(2)如图②,若点D是AC右侧一点,试判断AD,CD,OD之间的数量关系,并说明理由.【解答】(1)①证明:∵AB=AC,O为BC的中点,∴OA=OB=OC,OA⊥OC,∵OE⊥OD,∴∠AOC=∠EOD=90°,∴∠AOF=∠COD,∵∠AOM=∠MDC=90°,∠AMO=∠CMD,∴∠OAM=∠MCD,∴△OAF≌△OCD(ASA),∴∠OAF=∠OCD;②解:∵△OAF≌△OCD,∴AF=CD=1,∵DF=2,∴AD=AF+DF=1+2=3,∵AD⊥DC,∴∠ADC=90°,∴AC===,∵AC=AB,∴BC=AC==2;(2)解:AD+CD=OD.理由:过点O作OE⊥OD,交DA的延长线于点E,∵∠DOE=∠AOC=90°,∴∠AOE=∠COD,∵∠ODC+∠+ODA=90°,∠ODA+∠OEA=90°,∴∠ODC=∠OEA,又∵OA=OC,∴△OCD≌△OAE(AAS),∴CD=AE,OD=OE,∴DE=OD,∴AD+AE=AD+CD=OD.【变式5】【问题探究】如图,△ABC是等腰三角形,AB=AC,点D是平面内一点,连接AD,BD,CD,且∠CAB=∠CDB.(1)如图①,当∠CAB=60°时,试探究BD,CD,AD之间的数量关系;(2)如图②,当∠CAB=120°时,探究是否为定值,并说明理由;【问题解决】(3)如图③,在四边形ADBC中,AB=AC,∠CAB=∠CDB=120°,若AD=2,BD=3,求CD的长.【解答】解:(1)BD,CD,AD之间的数量关系为:BD=CD+AD,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,如图①所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=60°,∴△ADE是等边三角形,∴DE=AD,∴BD=BE+DE=CD+AD;(2)是定值,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,过点A作AF⊥BD于F,如图②所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∵DE=BD﹣BE=BD﹣CD,∴BD﹣CD=AD,∴=,∴是定值;(3)在CD上取一点E,使CE=BD,连接AE,设AB交CD于H,过点A作AF⊥CD于F,如图③所示:∵∠CAB=∠CDB,∠AHC=∠BHD,∴∠ACE=∠ABD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴AE=AD,∠EAC=∠DAB,∴∠EAC+∠BAE=∠DAB+∠BAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∴CD=CE+DE=BD+AD=3+×2=3+2.。
截长补短法的应用在证明几条线段间的数量关系时,截长补短法是一种常用的添加辅助线的方法,也是化难为易的基本方法.一、截长法1、要证明一段长线段等于两个小线段的和,用截长法在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等.例1 如图1所示,AC∥BD,EA、EB分别平分∠CAB,∠DBA,CD过点E,求证:AB=AC+BD.分析根据题意,可在AB上截取AF=AC,再证FB=DB,就有AB=AF+FB:AC +BD.证明如图1,在AB上截取AF=AC,连结EF.在△ACE和△AEF中,∵AC=AF,∠CAE=∠FAE,AE=AE,∴△ACE △AEF,∠C=∠EFA.又∵AC∥BD,∴∠C+∠D=180°,而∠EFA+∠EFB=1800,∴∠EFB=∠D(等角的补角相等).在△FBE和△DBE中,∵∠DBE=∠FBE,BE=BE,∠D=∠EFB,∴△FBE≌△DBF.∴FB=DB,∴AB=AC+BD.2、要证明边长和或差的数量关系,有时直接证明会很难,甚至无从着手,只要我们认真分析,通过截长法,把相关的线段转移到一个三角形中,思维会豁然开朗,问题会迎刃而解.例2 如图2所示,△ABC中,D是∠A平分线上的点,AB>AC,求证:AB-AC>BD -CD.分析本题直接证明有些难,因为AB-AC和BD-CD之间没有直接的线段可利用,这就需要找个中间线段作过渡,不妨在AB边上截取AE=AC,那么AB-AC=BE.若ED=CD,那么BD-CD<BE.通过已知条件和所作辅助线可知△AED≌△ACD.证明如图2,在AB边上截取AE=AC,∵AD是∠BAC的平分线,∴∠EAD=∠CAD.在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD.ED=CD.在△BED中,∵BD-ED<BE.∴AB-AC=AB-AE=BE> BD-ED=BD-CD,∴AB-AC>BD-CD.二、补短法就是将一个已知的较短线段,延长至与另一个已知的较短线段的长度相等,然后求出延长后的线段与最长的已知线段的关系.对于具体问题,有时通过截长补短法,可构成某种特定的三角形来求解.1、中线倍长,构造全等三角形中线倍长就是把三角形的中线延长,使延长的线段等于原中线的长,想法构造全等三角形,使原来不在一个三角形的线段集中到一个三角形中,再根据题目已知条件进行求解.例3 如图3,在△ABC中,AB=12,AC=8,AD是BC边上的中线,求AD的取值范围.分析欲求AD的取值范围,联想到三角形三边的关系,必须设法把AB、AC、AD 转移到同一个三角形中,故可以延长AD到E,使DE=AD,连结BE,若能证△BDE≌△CDA,则有BE=AC.而AE=2AD,在△ABE中不难求出AE的取值范围.解延长AD到E,使DE=AD,连结BE.∵AD是BC边上的中线,∴BD=CD.在△BDE和△CDA中,∵BD=CD,∠BDE=∠CDA,DE=DA,∴△BDE≌△CDA,∴BE=AC=8.在△ABE中,AB-BE<AE<AB+BE,12-8<2AD<12+8,∴2<AD<10.评注本题中,把三角形一边的中线延长,构造全等三角形,把分散的条件集中到一个三角形中,这是解决中线问题的常用方法.2、利用补短法构造等腰三角形这是几何证明常用的方法,它是把较短的线段延长,再根据角的关系,找出等腰三角形,通过腰相等进行转换,把两条线段转移到一条线段上来,最后利用三角形全等,使问题的结论水落石出.例4如图4,已知AD是△ABC的角平分线,∠B=2∠C,求证:AB+BD=AC.分析欲证AB+BD=AC,可以延长AB到E,使BE=BD,然后再证△AED≌△ACD.得出AE=AC.证明如图4,延长AB到E,使BE=BD,连结DE,∴∠E=∠BDE.∵∠ABC=2∠C,∠ABC=∠E+∠BDE,∴2∠E=2∠C.∠E=∠C.又∵AD是△ABC的角平分线,∴∠BAD=∠CAD.在△AED和△ACD中,∵∠BAD=∠CAD,∠E=∠C,AD=AD,∴△AED≌△ACD,∴AE=AC,∴AB+BE=AC.即AB+BD=AC.另证本题还可以在AC边上截取AF(如图5),使AF=AB,这样△ABD≌△AFD,再证△DFC为等腰三角形,从而有BD=DF=FC,则AB+BD=AF+FC=AC.。
截长补短模型专题解读【专题说明】“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“a+b =c”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
【方法技巧】常见类型及常规解题思路:① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30o 的直角三角形等。
截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短法常规辅助线:(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起【典例分析】【典例1】模型分析当题目中出现线段的和差关系时,考虑用截长补短法,该类题日中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,且∠B =2∠C ,求证:AB +BD =AC . 截长法:在AC 上截取AE =AB ,连接DE ,证明CE =BD 即可.补短法:延长AB 至点F ,使AF =AC ,连接DF ,证明BF =BD 即可.请结合右边的证明结论.求证:AB +BD =AC .请结合右边的【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】【解答】证明:【截长法】在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.证明:【补短法】延长AB到F,使BF=BD,连接DF,∵BF=BD,∴∠F=∠BDF,∴∠ABC=∠F+∠BDF=2∠F,且∠ABC=2∠C,∴∠C=∠F,且∠CAD=∠BAD,AD=AD,∴△ADF≌△ADC(AAS)∴AC=AF,∴AC=AF=AB+BF=AB+BD.【变式1】如图,Rt△ABC中,AC=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于F点,交AB于点E.求证:AD=2DF+CE.【解答】证明:在AF上截取FG=DF,连接CG,则DG=2DF,∵∠ACB=90°,∴∠DCF+∠ACF=90°,又∵CF⊥AD,∴∠ACF+∠CAF=90°,∴∠DCF=∠CAF,∵AD平分∠CAE,∴∠CAF=∠EAF,∵DF=FG,CF⊥DG,∴CD=CG,∴∠CDG=∠CGD,∵∠DGC=∠GAC+∠ACG,∠ADC=∠B+∠BAD,∴∠B=∠ACG,又∵AC=BC,∴△ACG≌△CBE(ASA),∴AG=CE,∴AD=AG+DG=CE+2DF.【变式2】如图,△ABC为等边三角形,D为△ABC外一点,连接AD,BD,CD,∠ADB =∠ADC=60°,求证:AD=BD+CD.【解答】证明:在DA上截取DE=DB,连接BE,如下图所示,∵∠ADB=60°,DE=DB,∴△ABD为等边三角形,∴∠EBD=60°,BE=BD,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴∠EBD﹣∠EBC=∠ABC﹣∠EBC,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∴AD=AE+ED=CD+BD.【变式3】如图,△ABC内接于⊙O,AC=BC,CD是⊙O的一条弦,且=,过点A 作AP⊥CD,分别交CD,⊙O于点E,P,连接BP,若CD=6,△ABP的周长为13,求AE的长.【解答】解:在AE上截取AF=BP,连接CF,PC,∵AC=BC,∠CAF=∠CBP,∴△CAF≌△CBP,CF=CP,∵CD⊥P A,∴EF=PE,∴AE=AF+FE=PB+PE,∵AC=BC,∴=,∵=,∴=,∴AB=CD=6,∵△ABP的周长是13,∴AP+PB=7,∵AE=PE+PB,∴2AE=AP+PB,∴AE=.【变式4】如图,在△ABC中,AB=AC,在AB左侧作∠BDC=∠BAC=α,过点A作AE ⊥DC于点E.(1)当α=90°时,①求证:AE=DE;②若BD=AE=2,请求出△ABC的面积;(2)当α≠90°时,求证:BD+DE=EC.【解答】(1)①证明:过点B作BF⊥AE,交AE的延长线于点F,∵AE⊥CD,∴∠DEF=90°,又∵∠BDE=90°,∴四边形BDEF为矩形,∴DE=BF,∵∠BAC=90°,∴∠BAF+∠EAC=90°,又∵∠EAC+∠ACE=90°,∴∠BAF=∠ACE,又∵∠AEC=∠BF A=90°,AB=AC,∴△ABF≌△CAE(AAS),∴BF=AE,∴DE=AE;②解:∵四边形BDEF为矩形,BD=AE=2,∴BD=EF=2,DE=BF=AE=,∴AF=AE+EF=+2,∴BA2=BF2+AF2==8+4,∴S△ABC==;(2)证明:过点A作AF⊥BD,交BD的延长线于F,连接AD,设CD与AB交于点O,∵∠BDC=∠BAC,∠BOD=∠AOC,∴∠ACO=∠DOB,即∠ABF=∠ACE,又∵∠AEC=∠AFB=90°,AC=AB,∴△ACE≌△ABF(AAS),∴AE=AF,BF=CE,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∴CE=BF=BD+DF=BD+DE.【变式5】【问题背景】如图①,在边长为1的正方形ABCD中,点E为射线BC上的一个动点(与点B,C不重合),连接AE,过点E作EF⊥AE,与正方形ABCD的外角∠DCG的平分线交于点F.李老师指出,当点E为线段BC的中点时,AE=EF.【初步探索】(1)如图②,当点E在线段BC的延长线上时,其他条件不变,那么结论“AE=EF”是否仍然成立;【问题解决】(2)当点E在线段BC上时,设BE=x,△ECF的面积为y,求y与x之间的函数关系式;【拓展延伸】(3)如图③,将正方形ABCD放在平面直角坐标系xOy中,点O与点B重合,点C在x轴正半轴上,当点E运动到某一点时,点F恰好落在直线y=﹣2x+3上,求此时点E 的坐标.【解答】解:【问题背景】如图1,取AB的中点H,连接EH,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵E是BC的中点,∴BH=BE=AH=CE,∴∠BHE=∠BEH=45°,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;【初步探索】(1)仍然成立,理由如下:如图2,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA),∴AE=EF;【问题解决】(2)如图3,在BA上截取BH=BE,连接HE,同理得:△AHE≌△ECF,∴y=S△AHE=AH•BE=x(1﹣x)=﹣x2+x(0≤x≤1);【拓展延伸】(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM=a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).【典例2】如图1,在Rt△ABC中,AB=BC,点D,E,F分别在AB,BC,AC边上,且DE=EF,∠DEF=∠B,∠A=45°.(1)试猜想CF与BE之间的数量关系,并证明;(2)自主探究:如图2,若将已知条件中含45°的直角三角形换成含30°的直角三角形,其余条件不变,试探究BE和CF的关系.【解答】解:(1)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,AB=BC,∠A=45°,∴∠C=45°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=45°,∴△FHC为等腰直角三角形,∴FC=FH,∴FC=BE;(2)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,∠A=30°,∴∠C=60°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=60°,∴sin60°=,∴FC=FH,∴FC=BE.【变式1】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点F是AC上一点,连接BF交AD于点E,且DE=CD,连接DF,若AF=4,DF=2,则BF的长为.【解答】解:如图,在BF上截取HF=AF,连接AH,∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠EBD=∠CAD,∵∠BED=∠AEF,∴∠AFE=∠BDE=90°,∴∠AHF=∠HAF=45°,∴AH=AF,∴∠BAH=∠DAF,∠AHB=135°,∠AEF=∠BED,∠AFE=∠BDE=90°,∴△AFE∽△BDE,∴=,∵∠AEB=∠FED,∴△AEB∽△FED,∴∠EAB=∠EFD=45°,∴∠AFD=∠AFH+∠EFD=90°+45°=135°,∴∠AHB=∠AFD,∴△AHB∽△AFD,∴==,∴BH=DF,∴BF=BH+HF=DF+AF=2+4.故答案为:2+4.【变式2】如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为点H.求证:DE+AD=2CH.【解答】证明:如图,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠ACB=120°,∠ACB+∠ADE=180°,∴∠EDB=120°,∠EDA=60°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,在△AFC和△EDC中,,∴△AFC≌△EDC(ASA),∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,∴AD+DE=2CH.【变式3】如图,四边形ABCD内接于⊙O,BC是⊙O的直径,连接AC,BD,若AB=AC,请探究AD,BD,DC之间的数量关系.【解答】解:作AE⊥AD交BD于E,∵BC是直径,∴∠BAC=90°,∵∠BAE+∠EAC=∠DAC+∠EAC=90°,∴∠BAE=∠CAD,∵∠ABD=∠ACD,AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∵△AED是等腰直角三角形,∴DE=AD,∵BD=DE+BE,∴BD=AD+CD.【变式4】如图,在矩形ABCD中,AB=AD,点E为CD延长线上一点,连接AE,过点C作CF⊥AE于点F,CF交AD于点H,过点D作DN⊥AE于点N,连接DF.(1)在不添加辅助线的情况下,找出一个与△CDH相似的三角形,并证明;(2)求证:FD=2DN;(3)求证:CF=AF+2FD.【解答】(1)解:选择△AFH,证明:∵四边形ABCD是矩形,∴∠ADC=90°,∵CF⊥AE,∴∠AFC=90°,∴∠AFH=∠CDH,∵∠AHF=∠CHD,∴△AFH∽△CDH;(2)证明:连接AC,∵△AFH∽△CDH,∴,∴,∵∠FHD=∠AHC,∴△FHD∽△AHC,∴∠DFC=∠DAC,∵AB=CD=AD,∴∠DAC=60°,∴∠DFC=∠DAC=60°,∴∠DFN=30°,∵DN⊥AE,∴∠DNF=90°,∴FD=2DN;(3)证明:在线段FC上截取FO,使FO=AF,连接AO,∵∠AFO=90°,∴F AO=60°,∵∠DAC=60°,∴∠F AD=∠OAC,∵,∴△F AD∽△OAC,∴,∴OC=2FD,∴CF=FO+OC=AF+2FD,∴CF=AF+2FD.【变式5】如图,在△ABC中,AB=AC,∠BAC=90°,点D是平面内一点,且AD⊥CD.点O是BC的中点,连接OA,OD.(1)如图①,若点D是BC下方一点,过点O作OE⊥OD分别交AC,AD于点E,F.①求证:∠OAF=∠OCD;②若CD=1,DF=2,求BC的长;(2)如图②,若点D是AC右侧一点,试判断AD,CD,OD之间的数量关系,并说明理由.【解答】(1)①证明:∵AB=AC,O为BC的中点,∴OA=OB=OC,OA⊥OC,∵OE⊥OD,∴∠AOC=∠EOD=90°,∴∠AOF=∠COD,∵∠AOM=∠MDC=90°,∠AMO=∠CMD,∴∠OAM=∠MCD,∴△OAF≌△OCD(ASA),∴∠OAF=∠OCD;②解:∵△OAF≌△OCD,∴AF=CD=1,∵DF=2,∴AD=AF+DF=1+2=3,∵AD⊥DC,∴∠ADC=90°,∴AC===,∵AC=AB,∴BC=AC==2;(2)解:AD+CD=OD.理由:过点O作OE⊥OD,交DA的延长线于点E,∵∠DOE=∠AOC=90°,∴∠AOE=∠COD,∵∠ODC+∠+ODA=90°,∠ODA+∠OEA=90°,∴∠ODC=∠OEA,又∵OA=OC,∴△OCD≌△OAE(AAS),∴CD=AE,OD=OE,∴DE=OD,∴AD+AE=AD+CD=OD.【变式6】【问题探究】如图,△ABC是等腰三角形,AB=AC,点D是平面内一点,连接AD,BD,CD,且∠CAB=∠CDB.(1)如图①,当∠CAB=60°时,试探究BD,CD,AD之间的数量关系;(2)如图②,当∠CAB=120°时,探究是否为定值,并说明理由;【问题解决】(3)如图③,在四边形ADBC中,AB=AC,∠CAB=∠CDB=120°,若AD=2,BD =3,求CD的长.【解答】解:(1)BD,CD,AD之间的数量关系为:BD=CD+AD,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,如图①所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=60°,∴△ADE是等边三角形,∴DE=AD,∴BD=BE+DE=CD+AD;(2)是定值,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,过点A作AF⊥BD于F,如图②所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∵DE=BD﹣BE=BD﹣CD,∴BD﹣CD=AD,∴=,∴是定值;(3)在CD上取一点E,使CE=BD,连接AE,设AB交CD于H,过点A作AF⊥CD 于F,如图③所示:∵∠CAB=∠CDB,∠AHC=∠BHD,∴∠ACE=∠ABD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴AE=AD,∠EAC=∠DAB,∴∠EAC+∠BAE=∠DAB+∠BAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∴CD=CE+DE=BD+AD=3+×2=3+2.。