概率统计的MATLAB求解
- 格式:ppt
- 大小:669.00 KB
- 文档页数:26
要在MATLAB中计算正态分布概率,您可以使用内置的统计函数如normpdf, normcdf, 和norminv。
以下是一些常见示例:
1. 使用normpdf计算正态分布的概率密度函数(probability density function, PDF):
mu = 0; % 均值
sigma = 1; % 标准差
x = 0; % 要计算概率密度的点
pdf_value = normpdf(x, mu, sigma); % 返回概率密度
2. 使用normcdf计算正态分布的累积分布函数(cumulative distribution function, CDF):
mu = 0; % 均值
sigma = 1; % 标准差
x = 0; % 要计算累积分布的点
cdf_value = normcdf(x, mu, sigma); % 返回累积分布
3. 使用norminv计算正态分布的逆累积分布函数(inverse cumulative distribution function, inverse CDF):
mu = 0; % 均值
sigma = 1; % 标准差
p = 0.5; % 概率
x_value = norminv(p, mu, sigma); % 返回对应概率的值
上述示例中的mu 和sigma 分别表示正态分布的均值和标准差,x表示要计算其概率密度或累积分布的点,p表示要计算其值的概率。
不同的函数可以用于不同的计算需求。
实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
正态分布是概率论和统计学中非常重要的分布之一。
在实际的科学研究和工程应用中,经常需要对正态分布进行概率计算。
Matlab作为一种功能强大的科学计算软件,提供了丰富的工具和函数用于正态分布的概率计算。
本文将介绍在Matlab中进行正态分布概率计算的方法和步骤。
一、正态分布概率密度函数正态分布的概率密度函数是$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^2}}$$其中,$\mu$是均值,$\sigma$是标准差。
二、Matlab中生成正态分布随机数在Matlab中,可以使用`randn`函数生成符合标准正态分布(均值为0,标准差为1)的随机数,也可以使用`normrnd`函数生成符合指定均值和标准差的正态分布随机数。
生成均值为2,标准差为3的100个正态分布随机数的代码如下:```matlabdata = normrnd(2, 3, 100, 1);```三、Matlab中计算正态分布的累积概率在Matlab中,可以使用`normcdf`函数计算正态分布的累积概率。
计算正态分布随机变量小于2的概率的代码如下:```matlabp = normcdf(2, 0, 1);```这将得到随机变量小于2的概率,即标准正态分布的累积概率。
四、Matlab中计算正态分布的百分位点在Matlab中,可以使用`norminv`函数计算正态分布的百分位点。
计算标准正态分布上侧5分位点的代码如下:```matlabx = norminv(0.95, 0, 1);```这将得到标准正态分布上侧5分位点的值。
五、Matlab中绘制正态分布概率密度函数图和累积概率图在Matlab中,可以使用`normpdf`函数绘制正态分布的概率密度函数图,使用`normcdf`函数绘制正态分布的累积概率图。
绘制均值为1,标准差为2的正态分布的概率密度函数图和累积概率图的代码如下:```matlabx = -5:0.1:7;y_pdf = normpdf(x, 1, 2);y_cdf = normcdf(x, 1, 2);figure;subplot(2,1,1);plot(x, y_pdf);title('Normal Distribution Probability Density Function'); xlabel('x');ylabel('Probability Density');subplot(2,1,2);plot(x, y_cdf);title('Normal Distribution Cumulative Probability Function'); xlabel('x');ylabel('Cumulative Probability');```六、总结本文介绍了在Matlab中进行正态分布概率计算的方法和步骤,包括生成正态分布随机数、计算正态分布的累积概率、计算正态分布的百分位点、绘制正态分布概率密度函数图和累积概率图等内容。
一、实验名称已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a<x<b ,c<y<d},用四种方法计算概率)),((D Y X P ∈。
二、实验目的(1) 培养编程与上机调试能力;(2) 熟悉matlab6.5.1软件环境;(3) 了解概率计算的方法。
三、实验要求(1) 用input ()语句输入常数a,b,c,d;(2) 用菜单选择计算方法:.第一种是用matlab 的二重积分计算语句计算;第二种是用等距网格法,把区域分成n 2个小区域,在每个小区域中随机地取一个点),(j i ηξ,计算二重积分的近似值ij j i f σηξ∆∑),(,其中f 是密度函数;第三种是用正态分布的分布函数计算;第四种是蒙特卡罗方法计算。
(3) 把四种不同方法计算出的结果打印在屏幕上。
(4) 用三维图像表示在平面区域D 上的f(x,y)。
(5) 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数.五、程序及其运行结果程序Function gailvsyms a b c d e n;a=input('输入值a=');b=input('\n 输入值b=');c=input('\n 输入值c=');d=input('\n 输入值d=');e=input('\n 请选择:\n1用二重积分计算语句计算概率:\n2等距网格法计算概率;\n3用分布函数计算概率;\n4蒙特卡罗法计算概率.\n5三维图像在D 上表示f(x,y)\n');while e>0&&e<6if e==1p=erchong(a,b,c,d)endif e==2p=wangge(a,b,c,d);endif e==3p=fenbu(a,b,c,d);endif e==4p=mente(a,b,c,d);endif e==5[X,Y]=meshgrid(-3:0.2:3);Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2));meshz(X,Y,Z);ende=input('请选择: \n');end% ===============================用二重积分计算function p=erchong(a,b,c,d)syms x y;f0=1/(2*pi)*exp(-1/2*(x^2+y^2));f1=int(f0,x,a,b); %对x积分f1=int(f1,y,c,d); %对y积分p=vpa(f1,9);% ================================等距网格法function p=wangge(a,b,c,d)syms x y ;n=100;r1=(b-a)/n; %求步长r2=(d-c)/n;za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;endfor i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点for i=1:n y(i)=unifrnd(zc(i),zc(i+1));ends=0;for i=1:nfor j=1:ns=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和endendp=s*r1*r2;p=vpa(p,9)% ============================用正态分布的分布函数计算function p=fenbu(a,b,c,d)syms x y;f0=1/(2*pi)*exp(-1/2*(x.^2+y.^2));%联合密度函数F=int(f0,x);F=int(F,y); %分布函数F=simple(F);F1=subs(F,{x,y},{b,d}); %F(b,d)F2=subs(F,{x,y},{a,d}); %F(a,d)F3=subs(F,{x,y},{b,c}); %F(b,c)F4=subs(F,{x,y},{a,c}); %F(a,c)p=F1-F2-F3+F4 %P=F(b,d)-F(a,d)-(b,c)+(a,c)% ===========================蒙特卡罗法function p=mente(a,b,c,d)syms x y;N=10000000;%取点数h=0.5;%¸高度x=a+(b-a)*rand(N,1); %随机生成点y=c+(d-c)*rand(N,1);z=h*rand(N,1);F=1/(2*pi)*exp(-1/2*(x.^2+y.^2));%联合密度函数i=z<F;k=sum(i); %求和p=k*(b-a)*(d-c)*h/N。
Matlab 第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA 的正态分布的随机数据,R可以是向量或矩阵。
R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。
R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。