(完整版)《自动控制原理》全书总结
- 格式:ppt
- 大小:990.77 KB
- 文档页数:56
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
完整版)自动控制原理知识点汇总自动控制原理总结第一章绪论在自动控制中,被控对象是要求实现自动控制的机器、设备或生产过程,而被控量则是表征被控对象工作状态的物理参量或状态参量,如转速、压力、温度、电压、位移等。
控制器是由控制元件组成的调节器或控制装置,它接受指令信号,并输出控制作用信号于被控对象。
给定值或指令信号r(t)是要求控制系统按一定规律变化的信号,是系统的输入信号。
干扰信号n(t)又称扰动值,是一种对系统的被控量起破坏作用的信号。
反馈信号b(t)是指被控量经测量元件检测后回馈送到系统输入端的信号。
偏差信号e(t)是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点是控制精度高,抗干扰能力强。
但是使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求包括稳定性、快速性和准确性。
稳定性和快速性反映了系统的过渡过程的性能,而准确性则是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章控制系统的数学模型拉氏变换是一种将时间域函数转换为复频域函数的数学工具。
单位阶跃函数1(t)、单位斜坡函数、等加速函数、指数函数e-at、正弦函数sinωt、余弦函数cosωt和单位脉冲函数(δ函数)都有其典型的拉氏变换。
拉氏变换的基本法则包括线性法则、微分法则、积分法则、终值定理和位移定理。
传递函数是线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比,称为系统或元部件的传递函数。
动态结构图及其等效变换包括串联变换法则、并联变换法则、反馈变换法则、比较点前移“加倒数”和比较点后移“加本身”,以及引出点前移“加本身”和引出点后移“加倒数”。
梅森公式是一种求解传递函数的方法,典型环节的传递函数包括比例(放大)环节、积分环节、惯性环节、一阶微分环节、振荡环节和二阶微分环节。
第三章时域分析法时域分析法是一种分析控制系统时域特性的方法。
其中,时域响应包括零状态响应和零输入响应。
⾃动控制原理总结⾃动控制原理1. ⾃动控制的⼀般概念反馈系统的基本组成测量元件给定元件⽐较元件放⼤元件执⾏元件校正元件⾃动控制系统的基本控制⽅式反馈控制⽅式⽆论什么原因使被控量偏离期望值⽽出现偏差时,必定会产⽣⼀个相应的控制作⽤去降低或消除这个偏差。
开环控制⽅式特点是控制装置与被控对象之间只有顺向作⽤⽽没有反向联系,系统的输出量不会对系统的控制作⽤产⽣影响。
⾃动控制系统的分类线性连续控制系统线性定常离散控制系统⾮线性控制系统系统只要有⼀个元部件的输⼊-输出特性是⾮线性的,这类系统就称之为⾮线性控制系统。
对⾃动控制系统的基本要求稳定性我们先讨论为什么控制系统会不稳定。
由于⼀般的控制系统都含有⼀个储能元件或者惯性元件,这类元件的能量不可能发⽣突变。
因此从被控量偏离期望值,到控制量做出反应,需要⼀定的延缓时间,这个过程称为过渡过程。
当控制量已经回到期望值⽽使偏差为零时,执⾏机构本应⽴刻停⽌,但是由于过渡过程的存在,使得控制量反⽽向反向变化,如此反复进⾏,使得被控量在期望值附近来回摆动,这个过程呈现振荡形式。
如果这个振荡是逐渐减弱的,即控制量最终会回到期望值,我们称这个系统是稳定的;如果振荡逐渐增强,我们称这个系统是不稳定的。
快速性前⾯提到,虽然稳定系统最终会回到稳定状态,但是这个回到稳定状态的快慢对于⼀些系统来说是⾮常关键的。
⼀般从控制开始,到系统的输出量在期望值的⼀定误差范围内来回摆动的时间,我们称之为调节时间。
这个时间⼀般可以⽤来反映系统调节的快慢。
⽽在调节过程,⼀般振荡都会有个最⼤振幅,最⼤振幅⼀般也对于⼀些系统来说也⾮常重要,我们⽤来这个最⼤振幅与期望值的差与期望值的⽐值来反映系统的这个性质,称之为超调量。
准确性尽管前⾯我们提到稳定系统最终会趋于稳定,但是是在期望值的允许误差范围内,即使在很⼤的时间长度上,最终输出量也难以与期望值完全⼀致。
我们将⽆穷的时间尺度下,最终输出量与期望值之差成为稳态误差,稳态误差为⽆穷⼤的系统说明不稳定。
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。
对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。
振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。
|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。
(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。
当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。
这条曲线就是幅相频率特性曲线,简称幅相曲线。
(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。
对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。
对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。
(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。
自动控制原理总总结集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#《自动控制原理》总复习1. 2. 3. 4. 5. 对自动控制系统的基本要求:稳、快、准。
6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。
3. 了解控制系统的典型输入信号。
4. 掌握由系统工作原理图画方框图的方法。
三、内容结构图1(1(32(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(#)5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图及结构图的简化,并能用梅逊公式求系统传递函数。
(##)6、传递函数的求取方法:1)直接法:由微分方程直接得到。
2)复阻抗法:只适用于电网络。
3)结构图及其等效变换,用梅逊公式。
4)信号流图用梅逊公式。
4.一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。
5.了解稳定性的概念,掌握线性定常系统稳定的充要条件(#)。
6.重点掌握判断稳定性的Routh代数判据及应用(#)(#),对Hurwitz判据有一般了解。
能根据系统要求确定满足稳定的系统参数范围(#)(#)。
7.了解稳态误差的概念、定义、产生原因、类型。
自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。
一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。
控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。
控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。
测量元件负责测量被控量,并将其转化为电信号反馈给控制器。
执行机构接受控制器的控制信号,对控制对象施加作用。
自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。
开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。
闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。
二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。
数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程是最基本的描述形式,但求解比较复杂。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它可以方便地分析系统的频率特性和稳定性。
状态空间表达式则能更全面地描述系统的内部状态和动态特性。
建立数学模型的方法有分析法和实验法。
分析法是根据系统的物理规律和结构,推导出数学方程。
实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。
三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。
主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。
稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。
对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。
上升时间、峰值时间和调节时间反映了系统的快速性。
HEFEI UNIVERSITY自动控制原理课程总结系别电子信息与电气工程系专业自动化班级 09自动化(1)班姓名完成时间 2011.12.29自动控制原理课程总结前言自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。
在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。
本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。
一、控制系统的数学模型1.传递函数的定义:在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。
(1)零极点表达式:(2)时间常数表达式:2.信号流图(1)信号流图的组成节点:用来表示变量或信号的点,用符号“○”表示。
支路:连接两节点的定向线段,用符号“→”表示。
(2)信号流图与结构图的关系3.梅逊公式其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。
Pi:从输入端到输出端第k条前向通路的总传递函数Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。
La:所有单回路的“回路传递函数”之和LbLc:两两不接触回路,其“回路传递函数”乘积之和LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。
二、线性系统的时域分1.ζ、ωn坐标轴上表示如下:(1)闭环主导极点:当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。
(2)对于任何线性定常连续控制系统由如下的关系:①系统的输入信号导数的响应等于系统对该输入信号响应的导数;②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。
2.劳斯判据:设系统特征方程为 :劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。
第一章绪论1.机械系统:以实现一定的机械运动、输出一定的机械能和承受一定的机械载荷为目的。
激励(输入):外界与系统的作用,如作用力(载荷)。
分为控制输入和扰动输入。
响应(输出):系统由于激励作用而产生的变形或位移。
2.机械工程控制论的研究对象和任务是什么?机械工程控制论实质上是研究机械工程中广义系统的动力学问题。
具体地说,是广义系统在一定的外界条件作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性所决定的整个动态历程,研究系统与其输入、输出三者之间的动态关系。
从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械控制工程论的任务可以分为以下五个方面:(系统分析问题)已知系统和输入,求系统的输出。
(最优控制问题)已知系统和理想输出,设计输入。
(最优设计问题)已知输入和理想输出,设计系统(滤波与预测问题)已知输出,确定系统,以识别输入或输出中的有关信息。
(系统辨识问题)已知输入和输出,求系统的结构与参数。
3.控制系统的基本要求(稳、准、快)稳定性:动态过程的振荡倾向和系统能够恢复平衡状态的能力。
稳定性是系统工作的首要条件。
准确性:在调整过程结束后输出量与给定的输入量之间的偏差。
衡量系统工作性能的重要指标。
快速性:系统输出量与希望值之间产生偏差时,消除这种偏差的快速程度。
控制的三要素:控制对象、控制目标、控制手段。
控制论的两个核心:信息和反馈需要解决的两大基本问题:控制系统的分析和控制系统的设计。
4.反馈:将系统的输出以一定的方式返回到系统的输入端并共同作用于系统的过程。
内反馈:系统或过程中存在的各种自然形成的反馈。
内反馈是造成机械系统存在动态特性的根本原因。
外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈。
正反馈:能使系统的绝对值增大的反馈。
负反馈:能使系统的绝对值减小的反馈。
5.自动控制的本质:闭环自动控制系统的工作过程就是一个“检测偏差并纠正偏差”的过程。