微电子器件试验二极管高低温特性测试及分析完整版
- 格式:docx
- 大小:61.97 KB
- 文档页数:4
二极管测试电路实验报告一、实验目的本次实验的主要目的是深入了解二极管的特性,并通过设计和搭建测试电路,对二极管的正向导通特性、反向截止特性以及其他相关参数进行测量和分析。
二、实验原理1、二极管的基本特性二极管是一种具有单向导电性的半导体器件。
当二极管正向偏置时(阳极接高电位,阴极接低电位),它呈现低电阻状态,电流能够顺利通过;而当二极管反向偏置时(阳极接低电位,阴极接高电位),它呈现高电阻状态,只有极小的反向漏电流。
2、二极管的伏安特性二极管的伏安特性是指通过二极管的电流 I 与二极管两端的电压 V 之间的关系。
其正向特性曲线在起始阶段电流增加缓慢,当电压超过阈值电压(通常为 05 07V 左右,具体取决于二极管的类型)后,电流迅速增加。
反向特性曲线在反向电压较小时,反向电流很小;当反向电压超过一定值(反向击穿电压)时,反向电流急剧增加。
三、实验设备与材料1、实验设备直流电源:提供稳定的电压输出。
数字万用表:用于测量电压、电流等参数。
示波器:观察电压和电流的变化波形。
2、实验材料不同型号的二极管若干(如硅二极管 1N4007、锗二极管 1N4733 等)。
电阻、电容、导线等。
四、实验电路设计1、正向特性测试电路电路组成:将直流电源、限流电阻和二极管串联连接。
通过调节电源电压,测量不同电压下通过二极管的电流。
2、反向特性测试电路电路组成:将直流电源、二极管和电阻串联连接,电源反接。
测量不同反向电压下的反向电流。
五、实验步骤1、正向特性测试按照设计的正向特性测试电路连接好实验设备。
从 0V 开始,逐步增加直流电源的输出电压,每次增加 01V 或 02V,记录对应的电流值。
当电流增长过快时,适当减小电压增量,以获取更准确的数据。
2、反向特性测试按照设计的反向特性测试电路连接好实验设备。
从 0V 开始,逐步增加直流电源的反向输出电压,每次增加 1V 或2V,记录对应的反向电流值。
注意观察反向电流的变化,当接近反向击穿电压时,小心操作,避免损坏二极管。
实验一二极管特性实验一、实验目的:1、验证晶体二极管的单向导电特性。
2、学会测量晶体二极管的伏安特性曲线。
3、掌握几种常用特种功能二极管的性能和使用方法。
二、实验前准备:1、复习晶体二极管结构和伏安特性。
2、阅读光电二极管、发光二极管和稳压管的特性和使用范围。
3、复习用万用表测量晶体二极管的方法。
阅读用图示仪测试晶体二极管及用示波器测量输出电压的方法。
三、实验设备:KJ120学习机一台数字式万用表一块指针式万用表一块(20KΩ/V DC)四、实验原理:晶体二极管由一个PN结构成,具有单向导电作用。
几种常用二极管的符号如图1.1所示。
(a) (b) (c)图1.1几种常见二极管的符号图1.1(a)为普通二极管,如In4001;In4148;2AP等。
图1.1(b)~(c)为稳压管、发光二极管等。
如稳压管,它工作在反向击穿区。
使用时,利用反向电流在击穿区很大范围内变化而电压基本恒定的特性来进行稳压。
发光二极管是一种把电能变成光能的半导体器件。
发光二极管有各种颜色,例如有发红光的,发黄光的,发绿光的等等。
发光二极管工作电压较低(1.6~3V),正向工作电流只需几毫安到几十毫安,故常作线路通断指示和数字显示。
若将万用表黑表笔接二极管正极,红表笔接二极管负极,则二极管处于正向偏置,呈现低阻,表针偏转大;反之,二极管处于反向偏置,呈现高阻,表针偏转小。
根据两次测得的阻值,就可以辨别二极管的极性。
注意万用表不同的电阻挡的等效内阻各不相同测得的阻值有差异。
一般不宜采用RX10K 挡来测二极管,因该挡的电源电压较高(一般为9V ),有可能损坏管子.五、实验步骤:1、二极管的一般测试。
(1)按实验报告表1.1要求多用万用表测量二极管(IN4001、IN4148、2AP 、LED )的正、反向阻值。
将数据填入表1-1中。
(2)二极管正向电压测量:调电位器,使I=5mA 分别测量五种二极管的正向电压,将数据填入表1-1中。
毕业论文题目:二极管的温度特性及应用实例研究学院:物理与机电工程学院河西学院本科生毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
作者签名:二〇一三年五月二十日河西学院本科生毕业论文(设计)开题报告论文题目二极管的温度特性及应用实例研究学生姓名陈立娟所属学院物理与机电工程学院专业物理学年级09级指导教师南雅公所在单位河西学院职称副教授开题日期2012.12.15选题的根据:选题的理论、实际意义并综述有关本选题的研究动态和自己的见解本论文着眼于二极管的温度特性及应用实例研究,重点探讨温度对二极管正反向特性的影响,设计出一个简易温度调节器(传感器)电路。
该调节器,用于液氮气流式恒温器中77-300K范围的温度调节控制,它是通过给集成运算放大器uA741加电压U r和U x作为参考电压的,设定的温度也由U r给定,U x随温敏二极管的温度变化而变化。
uA741的输出按差分电压的变化而变化,并驱动由晶体管构成的电流控制器,控制加热器加热。
经过分析,本人认为理解和把握简易温度调节器的内部组成、工作流程是关键;弄清楚集成运算放大器在电路中的作用是突破口;而借助multism 仿真平台来模拟电路的工作过程和输出波形,是实现上述设计目的有力保障。
通过本设计工作,以加深对简易温度调节器的工作特征及优越性的更深层次的理解,为以后从事相关方面的进一步学习和研发打下一个坚实基础和知识与技术储备,所以,该工作具有很重要的理论和现实意义。
论文的主要内容、基本要求及其主要的研究方法:本论文主要着眼于对二极管的温度特性进行研究并对其进行应用。
在查阅大量文献的基础上,率先进行简易温度调节器电路的理论分析和设计。
低温高效发光二极管原理实验总结发光二极管(Light Emitting Diode,简称LED)是一种利用半导体材料发出光的电子元件。
随着科技的进步和节能环保意识的提高,LED已经渗透到各个领域,并成为照明行业的重要组成部分。
本篇文章将总结低温高效发光二极管原理实验的相关内容,并探讨其应用潜力。
一、实验原理低温高效发光二极管实验是通过对LED进行降温处理,观察其发光效果和性能变化。
实验中,首先将LED置于低温环境中,然后逐渐升温,记录不同温度下LED的电流、亮度、色温等数据。
实验的目的在于研究LED在不同温度下的工作特性,从而得出最佳工作温度范围,优化其性能。
在实验中,我们采用了常用的红光LED作为研究对象。
红光LED是LED家族中应用最广泛的一种,其在照明、显示、信号传输等领域具有广泛的应用前景。
通过对红光LED进行低温处理,并测量其电流-电压特性曲线、光强变化曲线等,可以得出一些有价值的实验结果。
二、实验结果通过实验,我们获得了以下重要的实验结果:1. 电流-电压特性曲线在不同温度下,红光LED的电流-电压特性曲线呈现出明显的变化。
随着温度的降低,LED的电流-电压曲线逐渐向左下方偏移。
这表明低温环境下,LED的电压降低,需要更小的电流就能够达到相同的发光效果。
这对于LED的电能转化效率提升具有重要意义。
2. 亮度与温度的关系在实验过程中,我们还测量了红光LED的亮度随温度变化的数据。
实验结果显示,随着温度的降低,LED的亮度呈现出上升的趋势。
这意味着将LED放置在低温环境中,可提高其亮度,从而实现高效能的照明效果。
3. 色温的变化我们还测量了红光LED的色温随温度的变化情况。
色温是定义光源颜色性质的重要指标,对于照明产品的质量至关重要。
实验结果显示,在不同温度下,红光LED的色温存在一定的变化。
这意味着通过控制LED的工作温度,可以调节其色温,满足不同的照明需求。
三、应用潜力低温高效发光二极管具有广阔的应用潜力。
二极管测量实验报告二极管测量实验报告引言:二极管是一种常见的电子元件,它具有单向导电性质,被广泛应用于电子电路中。
本次实验旨在通过测量二极管的电压-电流特性曲线,研究其工作原理和特性。
实验器材和方法:本次实验使用的器材包括二极管、电压源、电流表、电压表和电阻。
实验步骤如下:1. 将二极管连接到电路中,保证正极与正极相连,负极与负极相连。
2. 将电压源连接到电路中,调节电压值。
3. 使用电流表和电压表分别测量二极管的电流和电压值。
4. 在不同电压下,记录二极管的电流和电压值,并绘制电压-电流特性曲线。
实验结果与分析:通过实验测量得到的电压-电流特性曲线如下图所示:[插入电压-电流特性曲线图]从图中可以观察到,二极管在正向偏置下,电流随电压的增加而迅速增加,呈现出指数增长的特点。
而在反向偏置下,二极管的电流基本保持在很小的值,呈现出近似于零的特性。
这种特性是由二极管的结构决定的。
二极管由n型半导体和p型半导体组成,两者之间形成p-n结。
在正向偏置下,p区的空穴和n区的电子被推向p-n结,形成电流。
而在反向偏置下,由于p-n结两侧的电荷分布不均匀,形成电场,阻止了电流的流动。
通过实验还可以得到二极管的正向电压降,即正向压降。
正向压降是指在正向偏置下,二极管两端的电压差。
通过测量不同电压下的电流和电压值,可以得到正向压降的变化规律。
实验中还可以通过改变电压源的电压值,观察二极管的工作状态。
当电压源的电压大于二极管的正向压降时,二极管处于正向导通状态,电流较大。
而当电压源的电压小于二极管的正向压降时,二极管处于截止状态,电流接近于零。
结论:通过本次实验,我们深入了解了二极管的工作原理和特性。
二极管具有单向导电性质,正向导通时电流迅速增加,反向截止时电流接近于零。
正向导通时,二极管具有正向压降,该压降与电压源的电压差相关。
二极管在电子电路中有着广泛的应用,例如用于整流电路、稳压电路和信号检测电路等。
通过对二极管特性的研究,我们可以更好地理解和设计电子电路,提高电路的性能和稳定性。
二极管特性的研究实验报告二极管特性的研究实验报告引言:二极管是一种基本的电子元件,具有非常重要的应用价值。
本实验旨在通过研究二极管的特性,深入了解其工作原理和应用。
实验目的:1. 研究二极管的正向工作特性;2. 研究二极管的反向工作特性;3. 探究二极管的导通电压和截止电压。
实验仪器和材料:1. 二极管(正向工作时使用硅二极管,反向工作时使用锗二极管);2. 直流电源;3. 电阻箱;4. 数字万用表;5. 示波器;6. 连接线等。
实验步骤:1. 正向工作特性的研究将二极管连接到直流电源的正极,通过电阻箱调节电流大小,使用数字万用表测量二极管的正向电压和电流。
记录不同电流下的电压和电流值,并绘制出二极管的正向工作特性曲线。
2. 反向工作特性的研究将二极管连接到直流电源的负极,通过电阻箱调节电流大小,使用数字万用表测量二极管的反向电压和电流。
记录不同电流下的电压和电流值,并绘制出二极管的反向工作特性曲线。
3. 导通电压和截止电压的测量在正向工作特性曲线上,找到二极管开始导通的电压值,即导通电压;在反向工作特性曲线上,找到二极管开始截止的电压值,即截止电压。
通过实验测量得到的数值,与理论值进行比较和分析。
实验结果与分析:1. 正向工作特性根据实验数据,我们得到了二极管的正向工作特性曲线。
通过观察曲线,我们可以看到,当正向电压小于导通电压时,二极管处于截止状态,电流几乎为零;当正向电压大于导通电压时,二极管开始导通,电流急剧增加。
这说明二极管具有单向导电性。
2. 反向工作特性根据实验数据,我们得到了二极管的反向工作特性曲线。
观察曲线可以发现,在反向电压较小时,二极管的反向电流非常小,可以忽略不计;但当反向电压超过截止电压时,反向电流急剧增加,这是因为电压超过一定值后,二极管内部的PN结会被击穿,形成电流通路。
这也是二极管用作电路保护元件的原理之一。
3. 导通电压和截止电压通过实验测量,我们得到了二极管的导通电压和截止电压的数值。
【实验1-二极管的特性测试】二极管的特性研究实验报告实验报告一指导老师:花元涛学生班级:网络工程21-1 学生姓名:张久梅、赵璐璐学生学号:5071217137、5071217124 实验一二极管的特性测试课程名称:电子技术基础任课教师:花元涛机房:计算机编号:实验班级:网络工程21-1 学生姓名:张久梅、赵璐璐实验名称:二极管的特性测试一、实验目的 1、熟悉Multism10软件的使用方法 2、掌握二极管的单向导电性及其应用二、实验内容 1、二极管的单向导电性测试 l 加正向直流电压电路原理图:图1 数据表如下:正向输入直流电压Vi 0.2V 0.4V 0.6V 1.0V 2V 3 4V 5V 输出电压Vo 0.140V 0.298V 0.466V 0.820V 1.752V 2.71V 3.68V 4.656V 数据分析:随着正向输入直流电压的增大,输出电压也逐渐增大。
并且幅度大。
图2 数据表如下:反向输入直流电压Vi 0.5V 1.0V 1.5V 2.0V 2.5V 3V 3.5V 4.0V 输出电压Vo 170.868mv 178.005mv 178.377mv 178.45mv 178.473mv 178.483mv 178.487mv 178.49mv 数据分析:随着反向输入直流电压的增大,输出电压也在小幅度的增加。
l 加交流电压电路原理图:图3 数据表如下:交流电压Vi 输出电压Vo波形波形分析:两输入端的的波形相似,经过二极管的消耗,通道B的峰值略高于通道A的峰值。
2、二极管的限幅特性测试 a) 限幅特性电路a图: 图4 数据表如下:输入交流有效电压输出电压波形波形分析:通道A所示波形为电源的波形,峰值略小于电源的峰值;通道B输出的电压正向输出电压经过二极管限压所以为方形波,不能达到峰值;反向输出电压没有二极管限压。
b) 限幅特性电路b图: 图5 数据表如下:输入交流有效电压输出电压波形波形分析:通道A输出的电压波形为电源波形,峰值略小于电源峰值;通道B输出的电压因为经过正反两二极管的限压,为方形,不能达到峰值 3、单相桥式整流电路电路原理图:图6 数据表如下:输出电压Vo波形波形分析:通道A输出的电压波形为电源波形,通道B输出电压因为四个二极管的作用,只存在正向电压;反向是约为0.。
二极管实验报告引言:二极管是一种电子元件,具有基本的电子特性以及多种应用。
本次实验旨在通过对二极管的实际测量,深入了解其工作原理和性能参数。
实验一:二极管的直流特性测量在实验中,我们使用了直流电源、电阻箱和万用电表等器材。
首先,将二极管连接到直流电源和电阻箱上,通过调节电阻箱的阻值,改变二极管的电流。
然后,使用万用电表测量二极管的电压和电流值,并记录数据。
实验数据表明,二极管存在一个正向电压和逆向电压的阈值,当正向电压小于该阈值时,电流非常小;而当正向电压大于阈值时,电流迅速增大。
逆向电压下,电流几乎为零。
实验二:二极管的交流特性测量为了进一步探究二极管的特性,我们进行了交流特性的测量实验。
实验装置包括交流信号发生器、示波器等器材。
在实验中,我们将交流信号发生器与示波器相连,并将二极管连接到这一电路中。
通过调节交流信号发生器的频率和幅度,我们可以观察到二极管的正向和逆向电流的变化情况。
实验结果表明,随着交流信号频率的增加,二极管的正向电流增大,逆向电流逐渐减小。
这是由于二极管的载流子寿命和带宽限制引起的。
实验三:二极管的温度特性测量为了研究二极管的温度特性,我们进行了一系列温度变化下的实验。
实验装置包括恒温箱、温度计等器材。
我们将恒温箱的温度从低到高逐渐升高,同时测量二极管的电流和电压。
实验结果显示,随着温度的升高,二极管的正向电流增加,逆向电流减小。
这是因为温度能够改变载流子浓度和载流子电子流动性,进而影响二极管的电导率。
结论:通过三个实验,我们深入了解了二极管的直流、交流和温度特性。
根据实验数据,我们可以看出二极管具有非线性电性质,只能使电流在一个方向上流动。
二极管的特性参数包括正向电压阈值、逆向电压阈值、正向漏电流和温度系数等。
将这些特性应用于实际电路设计中可以实现整流、限幅和开关等功能。
此外,二极管还有很多其他应用,如光电二极管、二极管激光器等。
总结:通过本次实验,我们对二极管的工作原理及其相关特性有了深入了解。
实验三二极管特性的测试、实验目的:1掌握用万用表判断二极管管脚极性及质量好坏;2、掌握二极管的伏案特性及其测试方法;3、学会伏案特性曲线的绘制。
二、实验设备:1 可调电压源DS-2B-112、直流电压表、直流电流表(DS-2B-01)3、100 Q、二极管(DS-2B-02)三、实验原理:1、二极管管脚极性及质量判断:二极管实质上是一个PN结,具有单向导电性。
当加入超过开启正向电压时,二极管导通,具有很小的电阻,称为正向电阻;当加入反向电压时,二极管截止,具有很大的电阻,称为反向电阻,这样可以用万用表的电阻档测量出二极管的正反向电阻来判断二极管的管脚极性及质量。
1)二极管的质量判断:设二极管的两管脚一支为A,另一支为B,若用万用表黑表笔接A, 红表笔接B没一次,然后对调红黑表笔再测量一次,若两次读数差别越大,即正反向电阻值差异越大,则说明单向导电性越好;若正反电阻值差异不大则说明此管为劣质;如果正反向电阻值都很小或都是无穷大没说明该管子已损坏。
2)二极管管脚极性判断:在用万用表测量二极管没测量电阻小时,测说明二极管两端加了正向电压,此时二极管处于正向导通状态,这时黑表笔(与内部电源正极相连接)所接的一端为二极管的正极,红表笔所接的一端为负极;当测得其电阻很大时,说明二极管两端接入了反向电压,二极管处于反向截止状态,此时黑表笔所接的一端为负极,红表笔所接一端为正极。
2、二极管伏安特性曲线测试:二极管伏安特性曲线是指二极管两端电压与电流之间的关系(如图3-1 ),当二极管加正向偏置电压时有正向电流流过二极管,且随正向偏置电压增大而增大;开始时电流随电压变化缓慢,而当电压接近二极管的导通电压,电流明显变化,当二极管导通后,电压变化少许,电流就急剧变化。
图3-1当二极管加反向偏置电压时,二极管处于截止状态,反向电流随反向偏置电压增加缓慢,而当反向偏置电压增至该二极管击穿电压时,电流剧增,二极管PN结被反向击穿。
微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
电子科技大学微固学院
标准实验报告
(实验)课程名称微电子器件
电子科技大学教务处制表
电子科技大学
实验报告
学生姓名:学号:指导教师:张有润
实验地点: 211楼605 实验时间:
一、实验室名称:微电子器件实验室
二、实验项目名称:二极管高低温特性测试及分析
三、实验学时:3
四、实验原理:
1、如图1,二极管的基本原理是一个PN结。
具有PN结的特性——单向导电
性,如图2所示。
图 1 二极管构成原理
2、正向特性:二极管两端加正向电压,产生正向电流。
正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。
3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。
4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。
图 2 二极管直流特性
五、实验目的:
学习晶体管图示仪的使用,掌握二极管的高低温直流特性。
六、实验内容:
1、测量当二极管的正向电流为100A时的正向导通压降;
2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。
七、实验器材(设备、元器件):
二极管、晶体管特性图示仪、恒温箱
八、实验步骤:
1、测晶体管的正向特性。
各旋钮位置为:
•峰值电压范围 0~10V
•极性(集电极扫描)正(+)
•功耗限制电阻 ~1kΩ(适当选择)
•x轴作用电压0 .1V/度
•y轴作用电流10A/度
2、测晶体管的反向特性。
各旋钮位置为:
•峰值电压范围 0~10V
•极性(集电极扫描)正(+)
•功耗限制电阻 10k~100kΩ(适当选择)
•x轴作用电压1V/度
•y轴作用电流A/度
3、对高温时的二极管进行参数测量。
九、实验数据及结果分析:
实验数据:
十、实验结论:
通过测试,可以知道:高温时正向导通压降降低了,这与所学理论知识一致,实验结果正确。
其常温下的正向直流特性如图3所示。
十一、总结及心得体会:
二极管因其单向导通的特性,在很多方面均有应用,例如运用在整流电路、检波电路、稳压电路、各种调制电路,尤其是近年来发光二极管的广泛推广,这些运用使得二极管在现代社会中扮演着极其重要的角色。
所以对二极管直流和高低温的分析将使得我们对二极管的认知更加深刻,对二极管的应用也大有帮助。
对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础。
通过这次试验,让我们更加清晰地认识了二极管的特性,促进了我们能够结合课本更加直观地认识二极管的相关概念,继而提高了自己对于二极管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。
十二、对本实验过程及方法、手段的改进建议:
高温特性测量的仪器就一台,测量效率不高,建议增加仪器数量。
报告评分:
指导教师签字:。