24、25 空间角与距离(教师版)
- 格式:doc
- 大小:2.65 MB
- 文档页数:10
1.4.2用空间向量研究距离、夹角问题(第2课时)教学设计本小节内容选自《普通高中数学选择性必修第一册》人教A版(2019)第一章《空间向量与立体几何》的第四节《空间向量的应用》。
以下是本节的课时安排:1.4 空间向量的应用课时内容 1.4.1用空间向量研究直线、平面的位置关系 1.4.2用空间向量研究距离、夹角问题所在位置教材第26页教材第33页新教材内容分析在向量坐标化的基础上,将空间中线线、线面、面面的位置关系,转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决立体几何问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
在向量坐标化的基础上,将空间中点到线、点到面、两条平行线及二平行平面角的距离问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间距离问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
核心素养培养通过直线的方向向量、平面的法向量的理解,培养数学抽象的核心素养;通过计算法向量判断直线与平面的位置关系,提升逻辑推理和数学运算的核心素养。
通过线线角、线面角、二面角的理解,培养数学抽象的核心素养;通过空间角、空间距离的计算,强化数学运算和逻辑推理的核心素养。
教学主线直线与平面平行、垂直通过前面的学习,学生已经掌握了空间向量的基本运算,在此基础上,可以研究空间向量在求距离、夹角的应用,体现了向量的优势。
1.理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两异面直线所成角,培养数学抽象的核心素养.2.理解直线与平面所成角与直线方向向量和平面法向量夹角之间的关系,会用向量方法求直线与平面所成,强化数学运算的核心素养.3.理解二面角大小与两个面法向量夹角之间的关系,会用向量方法求二面角的大小,提升逻辑推理的核心素养。
重点:理解运用向量方法求空间角的原理难点:掌握运用空间向量求空间角的方法(一)新知导入地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为23°26'.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9°以内的区域称为黄道带,太阳及大多数行星在天球上的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起,每30°便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.【问题】空间角包括哪些角?求解空间角常用的方法有哪些?【提示】线线角、线面角、二面角; 传统方法和向量法.(二)用空间向量研究夹角【探究1】根据前面数量积的学习,我们已经知道向量法求两条异面直线a ,b 的夹角的方法,思考:异面直线a ,b 的夹角为θ,方向向量分别为a ,b ,那么夹角θ与方向向量的夹角〈a ,b 〉之间有怎样的关系式?【提示】cos θ=|cos 〈a ,b 〉|.◆异面直线所成的角的向量表示式:若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u ·v ||u ||v |. 【思考】两直线夹角的公式为什么不是cos θ=a ·b|a |·|b |?【提示】由于两直线夹角的范围为[0,π2],两向量夹角的范围为[0,π],因此,两直线夹角的公式为cos θ=|a ·b |a |·|b ||,而不能直接用向量夹角公式求两直线的夹角.【做一做】(教材P38练习1改编)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是( )A.65B.64C.63D.66 【答案】D【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,可知A 1(1,0,2),B (0,1,0),A (1,0,0),C (0,0,0),则A 1B →=(-1,1,-2),AC →=(-1,0,0),∴cos 〈A 1B →,AC →〉=AC →·A 1B →|AC →|·|A 1B →|=11+1+4=66,即A 1B 与AC 所成角的余弦值是66.【探究2】如图,设直线AB 的方向向量为u ,AC ⊥平面α,垂足为C ,平面α的法向量为n ,思考:直线AB 与平面α所成的角是哪个角?这个角与向量的夹角〈u ,n 〉之间满足什么关系式?[提示] 直线AB 与平面α所成的角是∠ABC =θ,sin θ=|cos 〈u ,n 〉|.◆直线与平面所成的角的向量表示式:直线与平面相交,设直线与平面所成的角为θ,直线的方向向量为u ,平面的法向量为n ,则sin θ=|cos 〈u ,n 〉|=|u ·n ||u ||n |. 【思考】设平面α的斜线l 的方向向量为a ,平面α的法向量为n ,l 与α所成的角的公式为什么不是cos θ=a ·n|a ||n |? 【提示】(1)当a ,n 与α,l 的关系如下图所示时,l 与α所成的角与a ,n 所成的角互余.即sin θ=cos a ,n . (2)当a ,n 与α,l 的关系如下图所示时,l与α所成的角与两向量所成的角的补角互余.此时,sinθ=|cos a,n|.总之,若设直线与平面所成的角为θ,直线的方向向量与平面的法向量所成的角为φ,则有sinθ=|cosφ|.若直线的方向向量为a,平面α的法向量为n,则sinθ=|a·n||a|·|n|.【做一做】已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉=-3 2,则l与α所成的角为()A.30°B.60°C.150°D.120°【答案】B【解析】设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=32,∴θ=60°,应选B.【探究3】如图,设平面α,β的法向量分别是n1和n2,平面α与平面β所成的夹角为θ,思考:角θ与向量的夹角〈n1,n2〉满足什么关系式?【提示】cos θ=|cos〈n1,n2〉|.◆(1)平面与平面的夹角的定义:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.(2)平面与平面的夹角的向量表示式:设平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|. 【说明】二面角的平面角也可转化为两直线的方向向量的夹角.在两个半平面内,各取一直线与棱垂直,当直线的方向向量的起点在棱上时,两方向向量的夹角即为二面角的平面角.【思考】两平面法向量的夹角就是两平面的夹角吗?【提示】不一定.两平面法向量的夹角可能等于两平面的夹角(当0≤n 1,n 2≤π2时),也有可能与两平面的夹角互为补角(当π2<n 1,n 2≤π时).其中n 1,n 2是两平面的法向量. 【做一做】平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β的夹角为_______. 【答案】π3【解析】设u =(1,0,-1),v =(0,-1,1),α与β的夹角为θ,则cos θ=|cos 〈u ,v 〉|=⎪⎪⎪⎪⎪⎪-12×2=12,∴θ=π3.【超级概括】1.求两异面直线所成的角时,要注意其范围是(0,π2].2.求线面角的大小时,要注意所求直线的方向向量与平面的法向量夹角的余弦值的绝对值才是线面角的正弦值.3.求二面角的大小要特别注意需根据具体的图形来判断该二面角是锐角还是钝角.(三)典型例题 1.异面直线所成角例1.(2022·浙江高二期末)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,3PD =,2PN ND =,底面ABCD 为直角梯形,90ADC ∠=︒,//AD BC ,22=3BC AD DC ==.(1)求证://PB 平面ACN ;(2)求异面直线PA 与CN 所成角的余弦值. 【解析】(1)连接,AC BD 相交于点E ,连接EN .//AD BC ,可得AED 与BCE 相似,则12ED AD BE BC == 又12ND PN =,则12ND AD PN BC ==,所以//EN PB 又PB ⊄平面ACN ,EN ⊂平面ACN ,所以//PB 平面ACN ;(2)由PD ⊥平面ABCD ,90ADC ∠=︒.以D 为原点,以,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图. 由3PD =,2PN ND =,22=3BC AD DC == 则()0,0,1N ,33,0,0,0,,022A C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,()0,0,3P 则3,0,32AP ⎛⎫=-⎪⎝⎭,30,,12CN ⎛⎫=- ⎪⎝⎭所以465cos ,999144AP CN AP CN AP CN⋅===+⋅+465所以异面直线PA与CN【类题通法】利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.],故两直线方向向量夹角的余弦值为负时,应取其绝对值.(2)范围:异面直线所成角的范围是(0,π2【巩固练习1】(2022·贵州遵义市第五中学)在三棱锥P—ABC中,P A、PB、PC两两垂直,且P A=PB=PC,M、N分别为AC、AB的中点,则异面直线PN和BM所成角的余弦值为()A3B3C6D6【答案】B【解析】以点P为坐标原点,以PA,PB,PC方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选B.2.直线与平面所成的角例2.(2022·江西省信丰中学)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PAB△为正三角形,且侧面PAB ⊥底面ABCD ,M 为PD 的中点.(1)求证:PB ∥平面ACM ;(2)求直线BM 与平面PAD 所成角的大小;【解析】(1)证明:连接BD ,与AC 交于O ,则O 为BD 的中点,又M 分别为PD 的中点,∴BP OM ∥,∵BP ⊄平面ACM ,OM ⊂平面ACM ,∴BP ∥平面ACM.(2)解:设E 是AB 的中点,连接PE ,∵ABCD 是正方形,PAB △为正三角形,∴PE AB ⊥.又∵面PAB ⊥面ABCD ,交线为AB ,∴PE ⊥平面ABCD .以E 为原点,分别以EB ,EO ,EP 所在直线为x ,y ,z 轴,如图,建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0B ,()1,0,0A -,(3P ,()1,2,0C ,()1,2,0D -,132M ⎛- ⎝⎭,∴(1,0,3PA =--,()0,2,0AD =,332BM ⎛=- ⎝⎭. 设平面PAD 的法向量为(),,n x y z =,则3020n PA x z n AD y ⎧⋅=--=⎪⎨⋅==⎪⎩,令1z =.则3x =-()3,0,1n =-.设直线BM 与平面PAD 所成角为α,∴33sin |cos ,|||||n BMn BM n BM α→→→→→→⋅=<>===,即直线BM 与平面PAD 3 故所求角大小为60°.【类题通法】求直线与平面的夹角的方法与步骤方法一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).方法二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量. 利用法向量求直线与平面的夹角的基本步骤:【巩固练习2】(2022·青海海东市第一中学)如图,在三棱柱111ABC AB C -中,11222AC AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.【解析】(1)设2AB =.在四边形11AA B B 中,∵12AA AB =,160BAA ∠=︒,连接1A B ,∴由余弦定理得2221112cos6012A B AA AB AA AB =+-⋅︒=,即123A B =∵22211A B AB AA +=,∴1A B AB ⊥.又∵22211A B BC A C +=,∴1A B BC ⊥,AB BC B ⋂=,∴1A B ⊥平面ABC ,∵1A B ⊂平面11AA B B ,∴平面ABC ⊥平面11AA B B . (2)取AB 中点D ,连接CD ,∵AC BC =,∴CD AB ⊥, 由(1)易知CD ⊥平面11AA B B ,且3CD =如图,以B 为原点,分别以射线BA ,1BA 为x ,y 轴的正半轴,建立空间直角坐标系B -xyz ,则(2,0,0)A ,1(0,23,0)A ,3)C ,1(2,23,0)B -,1(1,23,3)C -,3,3)P .11(2,0,0)A B =-,1(0,3,3)A P =-,设平面11PA B 的法向量为(,,)n x y z =,则11100n A B n A P ⎧⋅=⎪⎨⋅=⎪⎩,得20330x z -=⎧⎪⎨-=⎪⎩,令1y =,则取(0,1,1)n =,(13)AC =-,||36cos,||||22AC n AC n AC n ⋅〈〉===AC 与平面11PA B 63.二面角【例3】在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,,2AB AP AD E F ==分别是AP BC ,的中点.(1)求证://EF 平面PCD ; (2)求二面角C EF D --的余弦值.【解析】(1)证明:取DP 的中点G ,连接EG ,CG , 又E 是AP 的中点,所以EG AD ∥,且12EGAD . 因为四边形ABCD 是矩形,所以BC AD =且//BC AD ,所以12EG BC =,且//EG BC . 因为F 是BC 的中点,所以12CF BC =,所以EG CF =且//EG CF , 所以四边形EFCG 是平行四边形,故//EF CG .因为EF ⊄平面PCD ,CG ⊂平面PCD ,所以//EF 平面PCD .(2) 解:因为PA ⊥平面ABCD ,四边形ABCD 是矩形,所以AB ,AD ,AP 两两垂直,以点A 为坐标原点,直线AB ,AD ,AP 分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).设122AB AP AD ===,所以2AB AP ==,4AD BC ==. 因为E ,F 分别为AP ,BC 的中点,所以()2,4,0C ,()0,4,0D ,()0,0,1E ,()2,2,0F 所以()2,2,1EF =-,()2,2,0DF =-,()0,2,0CF =-.设平面CEF 的一个法向量为()111,,m x y z =,由0,0,m EF m CF ⎧⋅=⎨⋅=⎩即1111220,20.x y z y +-=⎧⎨-=⎩ 令11x =,则12z =,10y =,所以()1,0,2m =.设平面DEF 的一个法向量为()222,,n x y z =,由0,0,n EF n DF ⎧⋅=⎨⋅=⎩即22222220,220.x y z x y +-=⎧⎨-=⎩ 令21x =,则21y =,24z =,所以()1,1,4n =.所以9310cos ,10518m n m n m n ⋅===⋅⨯. 由图知二面角C EF D --为锐角,所以二面角C EF D --310.【类题通法】利用平面的法向量求二面角利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.提醒:若求二面角θ,求出cos 〈n 1,n 2〉后,观察图形,判断二面角为锐角还是钝角,若二面角为锐角,则cos θ=|cos 〈n 1,n 2〉|,若二面角为钝角,则cos θ=-|cos 〈n 1,n 2〉|.【巩固练习3】如图,在三棱台111ABC A B C -中,AB AC ⊥,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:平面1BB C ⊥平面1AB C ; (2)求二面角C BD A --的正弦值.【解析】(1)证明:因为1A A ⊥平面ABC ,AC ⊂平面ABC ,所以1AA AC ⊥, 又AB AC ⊥,1AA AB A =,1AA ,AB平面11ABB A ,所以AC ⊥平面11ABB A .又1BB ⊂平面11ABB A ,所以1AC BB ⊥. 又因为2212222AB =+,()22142222BB =-+=22211AB AB BB =+,所以11AB BB ⊥.又1AB AC A =,1AB ,AC ⊂平面1AB C ,所以1BB ⊥平面1AB C ,因为1BB ⊂平面1BB C ,所以平面1BB C ⊥平面1AB C .(3) 解:以A 为坐标原点,AB ,AC ,1AA 的所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.因为4AB AC ==,111112A A A B A C ===,所以()0,0,0A ,()4,0,0B ,()0,4,0C ,()10,2,2C ,()0,3,1D .设平面ABD 的一个法向量为()1111,,x n y z =,设平面CBD 的一个法向量为()2222,,n x y z =,且()4,0,0AB =,()0,3,1AD =,()4,4,0CB =-,()0,1,1CD =-,因为110,0,AB n AD n ⎧⋅=⎪⎨⋅=⎪⎩所以1110,30,x y z =⎧⎨+=⎩令11y =,则10x =,13z =-,所以()10,1,3n =-.又因为220,0.CB n CD n ⎧⋅=⎪⎨⋅=⎪⎩所以22220,0,x y y z -=⎧⎨-=⎩令21x =,则21y =,21z =,所以()21,1,1=n .所以121212130cos ,310n n n n n n ⋅===⋅设二面角C BD A --的大小为θ,则230195sin 115θ⎛⎫=--= ⎪ ⎪⎝⎭, 所以二面角C BD A --195(四)操作演练 素养提升1.已知直线l 1的方向向量s 1=(1,0,1)与直线l 2的方向向量s 2=(-1,2,-2),则l 1和l 2夹角的余弦值为( )A.24B.12C.22D.32 【答案】C【解析】因为s 1=(1,0,1),s 2=(-1,2,-2),所以cos 〈s 1,s 2〉=s 1·s 2|s 1||s 2|=-1-22×3=-22.又两直线夹角的取值范围为(0,π2],所以l 1和l 2夹角的余弦值为22.2.正方形ABCD 所在平面外有一点P ,PA ⊥平面ABCD .若PA =AB ,则平面PAB 与平面PCD 所成的夹角的大小为( )A .30°B .45°C .60°D .90°【答案】B【解析】建系如图,设AB =1,则A (0,0,0),B (0,1,0),P (0,0,1),D (1,0,0),C (1,1,0). 平面PAB 的法向量为n 1=(1,0,0).设平面PCD 的法向量n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧n 2·PD →=0,n 2·CD →=0,得⎩⎨⎧x -z =0,y =0.令x =1,则z =1,∴n 2=(1,0,1),cos 〈n 1,n 2〉=12=22. ∴平面PAB 与平面PCD 所成的二面角的余弦值为22.∴此角的大小为45°. 3.在正方体ABCD A 1B 1C 1D 1中,E 、F 分别为AB 、C 1D 1的中点,则A 1B 1与平面A 1EF 夹角的正弦值为( ) A.62 B.63C.64D.2【答案】B【解析】建系如右图,设正方体棱长为1,则A 1(1,0,1),E (1,12,0),F (0,12,1),B 1(1,1,1).A 1B 1→=(0,1,0),A 1E →=(0,12,-1),A 1F →=(-1,12,0).设平面A 1EF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1E →=0n ·A 1F →=0,即⎩⎨⎧12y -z =0-x +y2=0.令y =2,则⎩⎪⎨⎪⎧x =1z =1.∴n =(1,2,1),cos 〈n ,A 1B 1→〉=26=63.设A 1B 1与平面A 1EF 的夹角为θ,则sin θ=|cos 〈n ,A 1B 1→〉|=63,即所求线面角的正弦值为63. 4. (双空题)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则异面直线AE 与A 1C 1所成角的余弦值等于______,平面AEF 与平面ABC 的夹角的正切值等于________.【答案】3510 23【解析】如图,建立空间直角坐标系.设正方体的棱长为1,则A (1,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23,所以AE →=⎝⎛⎭⎫0,1,13,A 1C 1→=(-1,1,0),EF →=⎝⎛⎭⎫-1,0,13,所以cos 〈AE →,A 1C 1→〉=AE →·A 1C 1→|AE →||A 1C 1→|=3510.所以异面直线AE 与A 1C 1所成角的余弦值等于3510.平面ABC 的法向量为n 1=(0,0,1),设平面AEF 的法向量为n 2=(x ,y ,z ).则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·EF →=0,即⎩⎨⎧y +13z =0,-x +13z =0.取x =1,则y =-1,z =3.故n 2=(1,-1,3). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=31111.所以平面AEF 与平面ABC 的夹角α满足cos α=31111,sin α=2211,所以tan α=23. 答案:1.C 2.B 3.B4.3510 23【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。
专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
高三数学空间角与空间距离的计算通用版【本讲主要内容】空间角与空间距离的计算 空间直线与直线、直线与平面、平面与平面所成角的大小,直线与直线、直线与平面、平面与平面间的距离的求解【知识掌握】 【知识点精析】空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 1. 空间的角的概念及计算方法(1)空间角概念——空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值X 围,如①两异面直线所成的角θ∈(0,2π) ②直线与平面所成的角θ∈[0,2π] ③二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π).说明:对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步提高运算能力、逻辑推理能力及空间想象能力.(2)空间的角的计算方法①求异面直线所成的角常用平移法(转化为相交直线);②求直线与平面所成的角常利用射影转化为相交直线所成的角; ③求二面角α-l -β的平面角(记作θ)通常有以下几种方法: (ⅰ)根据定义; (ⅱ)过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);(ⅲ)利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ或∠ACB =π-θ(图2);(ⅳ)设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ(图3);(ⅴ)利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ‘,则cos θ=SS '.2. 空间的距离问题 (1)空间各种距离是对点、线、面组成的空间图形位置关系进行定量分析的重要概念.空间距离是指两点间距离、点线距离、点面距离、线线距离、线面距离以及面面距离等,距离都要转化为两点间距离即线段长来计算,在实际题型中,这六种距离的重点和难点是求点到平面的距离,因线线距离、线面距离和面面距离除用定义能直接计算出结果的外,都要转化为求点到平面的距离进行计算.(2)空间的距离问题主要是:求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.(3)求距离的一般方法和步骤是: 一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值. 此外,我们还常用体积法或向量法求点到平面的距离.【解题方法指导】例1. 三棱锥P-ABC 中,∠ABC =90,PA =1,AB =3,AC =2,PA ⊥平面ABC.(1)求直线AB 与直线PC 所成的角; (2)求PC 和面ABC 所成的角; (3)求二面角A-PC-B 的大小.PA BC解:(1)作矩形ABCD.∴AB 和PC 所成角即为CD 和PC 所成角,且CD ⊥PD .CD =3,AD =1,PD =2,tanPCD =3632=.故AB 和PC 所成角为arctan 36(2)∵PA ⊥面ABC ,PC 和面ABC 所成角即为∠ACP ,求得tanACP =21, ∴∠ACP =arctan21 (3)∵PA ⊥面ABC ,∴面PAC ⊥面ABC ,过B 作BG ⊥AC 于G ,则BG ⊥面PAC.过G 作GH ⊥PC 于H ,连接BH ,则BH ⊥PC . ∴∠BHG 为二面角A-PC-B 的平面角. 在Rt △ABC 与Rt △PBC 中,PB =2,BC =1,AC =2,AB =3∴PC =5∴BH =52,BG =23. ∴sinBHG =4155223==BH BG ∴∠BHG =arcsin 45.故二面角A-PC-B 的大小为arcsin 45.例2. 在正三棱柱111C B A ABC -中,各棱长都等于a ,D 、E 分别是1AC 、1BB 的中点, (1)求证:DE 是异面直线1AC 与1BB 的公垂线段,并求其长度;(2)求二面角C AC E --1的大小; (3)求点1C 到平面AEC 的距离.解:(1)取AC 中点F ,连接DF .∵ D 是1AC 的中点,F∴DF ∥1CC ,且121CC DF =.又11//CC BB ,E 是1BB 的中点, ∴DF ∥BE ,DF =BE ,∴四边形BEDF 是平行四边形, ∴DE ∥BF ,DE =BF .∵1BB ⊥面ABC ,⊂BF 面ABC ,∴1BB ⊥BF .又∵F 是AC 的中点,△ABC 是正三角形,∴BF ⊥AC ,a BF 23=. ∵1BB ⊥BF ,1BB ∥1CC ,∴BF ⊥1CC ,∴BF ⊥面11A ACC , 又∵⊂1AC 面11A ACC ,∴BF ⊥1AC , ∵DE ∥BF ,∴DE ⊥1AC ,DE ⊥1BB ,∴DE 是异面直线1AC 与1BB 的公垂线段,且a DE 23=. (2)∵11//CC BB ,DE ⊥1BB , ∴DE ⊥1CC , 又∵为DE ⊥1AC ,∴DE ⊥面11A ACC . 又⊂DE 面1AEC ,∴面1AEC ⊥面1ACC , ∴二面角C AC E --1的大小为90°.(3)连接CE ,则三棱锥1CEC A -的底面面积为221a S CEC =∆,高a h 23=.所以32123232311a a a V CEC A ==⋅⋅-.在三棱锥AEC C -1中,底面△AEC 中,a CE AE 25==,则其高为a ,所以22a S AEC =∆.设点1C 到平面AEC 的距离为d ,由AEC C CEC A V V --=11得32123231a a d =⋅, 所以a d 23=,即点1C 到平面AEC 的距离为a 23【考点突破】【考点指要】空间角是立体几何中的一个重要概念.它是空间图形中的一个突出的量化指标,是空间图形位置关系的具体体现,故它以高频率的姿态出现在历届高考试题中,可以在填空题或选择题中出现,更多的在解答题中出现.空间中各种距离都是高考中的重点内容,可以和多种知识相结合,是诸多知识的交汇点,考查题型多以选择题、填空题为主,有时渗透于解答题中,所以复习时应引起重视.【典型例题分析】例1. (2003全国卷文)如图,已知正四棱柱2,1,11111==-AA AB D C B A ABCD ,点E 为1CC 中点,点F 为1BD 中点.(1)证明EF 为BD 1与CC 1的公垂线;(2)求点1D 到平面BDE 的距离.解法1:(1)连结AC 交BD 于点O ,则点O 为BD 中点,连OF ,则可证OCEF 为矩形, 故EF ⊥CC 1 ,EF ∥AC .又可证AC ⊥平面BD 1 ∴AC ⊥BD 1,∴EF ⊥BD 1, 故 EF 为BD 1与CC 1的公垂线.O(2)连结D 1E ,则有三棱锥D1-DBE 的高d 即为点1D 到平面BDE 的距离. 由已知可证三角形DBE 为边长为2的正三角形,故2331311⋅⋅=⋅⋅=∆-d S d V DBE DBE D ; 又31311111=⋅===∆---DBD DBD C DBD E DBE D S CO V V V∴3123=d ∴332=d , 即1D 到平面BDE 的距离为332解法2:解(1)以D 为原点,建立如图所示的直角坐标系,则 )0,0,0(D ,)2,0,0(1D)0,1,1(B ,)0,1,0(C ,)2,1,0(1C ,)1,1,0(E ,)1,21,21(F ,∴)0,21,21(-=EF ,)2,1,1(1--=BD ,)2,0,0(1=CC∴01=⋅BD EF ,01=⋅CC EF ;∴1BD EF ⊥,1BD EF ⊥ 又EF 与CC 1、BD 1分别交于E 、F ,故EF 为BD 1与CC 1的公垂线. (2)由(1))0,1,1(--=BD ,)1,0,1(-=BE ,)2,1,1(1--BD , 设 平面BDE 的法向量为 ),,(z y x n =,则BD n ⊥,BE n ⊥,∴⎪⎩⎪⎨⎧=⋅=⋅00BE n BD n , ∴⎩⎨⎧=+-=--00z x y x , 即 ⎩⎨⎧=-=z x y x ,∴ 不妨设 )1,1,1(-=n ,则点1D 到平面BDE 的距离为33232||1===n n BD d , 即为所求.例2. (2006全国卷Ⅲ文20)如图,12l l ,是互相垂直的异面直线,MN 是它们的公垂线段.点A B ,在1l 上,C 在2l 上,AM MB MN ==.(Ⅰ)证明AC NB ⊥;(Ⅱ)若60ACB ∠=,求NB 与平面ABC 所成角的余弦值.C1l2解法一:(Ⅰ)由已知221l MN l l ⊥⊥,,1MNl M =,可得2l ⊥平面ABN .由已知1MN l AM MB MN ⊥==,,可知AN NB =且AN NB ⊥. 又AN 为AC 在平面ABN 内的射影, AC NB ∴⊥.(Ⅱ)Rt Rt CNA CNB △≌△,AC BC ∴=,又已知60ACB ∠=︒,因此ABC △为正三角形. Rt Rt ANB CNB △≌△,NC NA NB ∴==,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心, 连结BH ,NBH ∠为NB 与平面ABC 所成的角.在Rt NHB △中,cos 3ABHB NBH NB ∠===.N1l l解法二:如图,建立空间直角坐标系M xyz -.1l令1MN =,则有(100)(100)(010)A B N -,,,,,,,,.(Ⅰ)MN 是12l l ,的公垂线,21l l ⊥, 2l ∴⊥平面ABN .2l ∴平行于z 轴.故可设(01)C m ,,.于是(11)(110)AC m NB ==-,,,,,, ∵0011=+-=⋅NB AC AC NB ∴⊥. (Ⅱ)(11)AC m =,,,(11)BC m =-,,,AC BC ∴=.又已知60ACB ∠=︒,ABC ∴△为正三角形,2AC BC AB ===. 在Rt CNB △中,NB =NC =(0C . 连结MC ,作NH MC ⊥于H ,设(0)(0)H λλ>,.(012)(01HN MC λλ∴=--=,,,,,.∵021=--=⋅λλMC HN ,∴31=λ1033H ⎛⎫∴ ⎪ ⎪⎝⎭,,,可得2033HN ⎛⎫=- ⎪ ⎪⎝⎭,,, 连结BH ,则1133BH ⎛⎫=- ⎪ ⎪⎝⎭,,,∵092920=-+=⋅BH HN ,HN BH ∴⊥,又MC BH H =, HN ∴⊥平面ABC ,NBH ∠为NB 与平面ABC 所成的角.又(110)BN =-,,, ∴3623234cos =⨯=⋅=∠BN BH BN BH NBH【综合测试】一、选择题1、已知AB 是异面直线a 、b 的公垂线段,AB =2,a 与b 成30°,在直线a 上取AP =4,则点P 到直线b 的距离是( )A 、22B 、25C 、142D 、5 2、将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A 、a 43B 、a 43C 、a 23 D 、64a 3、正方体ABCD-A 1B 1C 1D 1中,M 是DD 1的中点,O 为正方形A 1B 1C 1D 1的中心,P 是棱AB 上的垂足,则直线A 1M 与OP 所成的角( ).A 、30oB 、45oC 、60oD 、90o 4、二面角α-AB-β大小为θ(0°≤θ≤90°),AC ⊂α,∠CAB =45o ,AC 与平面β所成角为30o ,则θ角等于( ).A 、30oB 、45oC 、60oD 、90o 5、(2005某某卷文4)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( )A 、23 B 、22C 、21 D 、336、已知直线a 及平面α,a 与α间的距离为d .a 在平面α内的射影为a ',l 为平面α内与a '相交的任一直线,则a 与l 间的距离的取值X 围为( )A 、[),d +∞B 、(),d +∞C 、(]0,dD 、{}d二、填空题 7、(2005某某卷理12)如图,PA ⊥平面ABC ,∠ACB =90°且PA =AC =BC =a ,则异面直线PB 与AC 所成角的正切值等于____________.8、已知∠60o ,则以OC三、解答题:9. C 点到AB 1ABC DA 1E B 1C10.(2006理17)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证:PB ∥平面AEC ; (Ⅲ)求二面角E AC B --的大小.B[参考答案]一、选择题1. 选A 提示:过P 做直线b 的垂线2. 选A 提示:用异面直线距离公式求解3. 选D 提示:过A 1做OP 的平行线4. 选B 提示:过C 做平面β的垂线5. 选B. 提示:转化为求B 1到平面AB C 1D 1的距离6. 选D 提示:转化为a 与α间的距离 二、填空题7.2. 提示:将三角形ABC 补成正方形ACBD. 8. 33- 提示:利用直线与直线所成角的大小求出边长,再求二面角平面角的大小三、解答题:9. 解:由CD ⊥平面A 1B 1BA ∴CD ⊥DE ∵AB 1⊥平面CDE ∴DE ⊥AB 1,∴DE 是异面直线AB 1与CD 的公垂线段∵CE =23,AC =1 ,∴CD =.22∴21)()(22=-=CD CE DEABC DA 1E B 1C 110. 解法一:(Ⅰ)(Ⅱ)(略 解见第45讲【达标测试】第9题)(Ⅲ)过O 作FG AB ∥,交AD 于F ,交BC 于G ,则F 为AD 的中点.CDAB AC ⊥,OG AC ∴⊥. 又由(Ⅰ),(Ⅱ)知,AC PB EO PB ,⊥∥,AC EO ∴⊥. EOG ∴∠是二面角E AC B --的平面角.连接EF ,在EFO △中,1122EF PA FO AB ==,,word11 / 11 又PA AB EF FO =,⊥,45135EOF EOG ∴∠=∠=,,∴二面角E AC B --的大小为135.解法二:(Ⅰ)建立空间直角坐标系A xyz -,如图.y 设AC a PA b ==,,则有(000)(00)(00)(00)A B b C a P b ,,,,,,,,,,,,(00)(0)AC a PB b b ∴==-,,,,,,从而0=⋅PB AC ,AC PB ∴⊥.(Ⅱ)连接BD ,与AC 相交于O ,连接EO .由已知得(0)D a b -,,,002222ab b a E O ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,,, 022b b EO ⎛⎫∴=- ⎪⎝⎭,,,又(0)PB b b =-,,, 2PB EO ∴=,PB EO ∴∥,又PB ⊄平面AEC EO ,⊂平面AEC , PB ∴∥平面AEC .(Ⅲ)取BC 中点G .连接OG ,则点G 的坐标为000222a b b OG ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,,,,,, 又0(00)22b b OE AC a ⎛⎫=-= ⎪⎝⎭,,,,,,00=⋅=⋅∴AC OG AC OE ,.OE AC OG AC ∴,⊥⊥.EOG ∴∠是二面角E AC B --的平面角.22cos -=⋅<OGOE OG OE .135EOG ∴∠=. ∴二面角E AC B --的大小为135.。
§8.8立体几何中的向量方法(二)——求空间角距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a-β的大小是π-θ.( ×)题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110B.35C.710D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC=2,∴AC2+BC2=AB2,即BC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF,而AE⊂平面ACEF,∴AE⊥BC,连接CF,∵四边形ACEF为菱形,∴AE⊥FC,又∵BC∩CF=C,BC,CF⊂平面BCF,∴AE⊥平面BCF,∵BF⊂平面BCF,∴BF⊥AE.(2)解取EF的中点M,连接MC,∵四边形ACEF是菱形,且∠CAF=60°,∴由平面几何易知MC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,CM⊂平面ACEF,∴MC⊥平面ABCD.以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0), ∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130,故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为»CD的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2), DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD=CS=2,∠BSD=90°.(1)求证:AC⊥平面SBD;(2)若SC⊥BD,求二面角A-SB-C的余弦值.(1)证明设AC∩BD=O,连接SO,如图①,因为AB=AD,CB=CD,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt△SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分] 因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt△SOB 中,OK =SO ·OB SB =62. 在Rt△AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A.60°B.120°C.60°或120°D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6B.π4C.π3D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55, ∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →, 可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt△ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt△CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC . 在△PAD 中,cos∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos∠PAE =5+1-2×5×1×55=4, 所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎪⎫22,-22,0,D (-2,2,0),F ⎝ ⎛⎭⎪⎫-22,22,1, AB →=⎝⎛⎭⎪⎫22,22,0,BF →=⎝ ⎛⎭⎪⎫-322,22,1, BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, ∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角, 即FA →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎫0,12,0,NM →=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( )A.1B.2C.13D.26 答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧ 4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626, ∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD=CD=BC=1,∵AB∥CD,∠BCD=120°,∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos60°=3,∴AB2=AC2+BC2,则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,CF,BC⊂平面BCF,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF.(2)解以C为坐标原点,分别以直线CA,CB,CF为x轴、y轴、z轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BM →=0,得⎩⎨⎧ -3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
空间角和空间距离一、空间角:(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为 0;②当α⊥l 时, l 与α所成的角为 90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内; ③角的两边与棱都垂直.二面角的范围: .方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足/P 的确定),垂足/P 和斜足A 的连线即为斜线PA 在平面α上的射影,则/PAP ∠即为所求;(2)将/PAP ∠放到/PAP ∆或其它包含此角的三角形中去求. 说明:关于线线角和线面角,下面的结论经常用到:①“爪角定理”:如图9-4-1,已知,AB AO 分别是面α在面α内过斜足O 任意引一直线OC ,设12,AOB BOC θθ∠=∠=,AOC θ∠=,则:21cos cos cos θθθ⋅=;② 经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的②及下面的几个结论是找垂足的有力工具:(ⅰ)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心;②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(ⅱ)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;(ⅲ)三垂线定理及其逆定理.3、求二面角的平面角的一般方法:如何作出(或找出)二面角的平面角是解题的关键,常用以下方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,用定义法时应认真观察图形的特性;②三垂线法(比较常用):已知二面角其中一个面内一点P 到另一个面的垂线(垂足为/P ),则只需过P (或/P )作棱的垂线(垂足为O ),由三垂线定理或其逆定理知/POP ∠即为所求(关键是从题中找到适当的点P );③垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角(由此知,二面角的平面角所在的平面与棱垂直);④面积投影法:此法最大的优点在于不用作出平面角θ,常用于“无棱二面角”(即在图中没有画出棱);如果α上某一平面图形的面积为斜S ,它在β上的射影的面积为射S ,则射斜S S =θcos 。
浙江省2014届理科数学复习试题选编28:空间角和空间距离一、选择题1 .(浙江省海宁市2013届高三2月期初测试数学(理)试题)在平行四边形ABCD中,22,60BC AB B ==∠=o ,点E 是线 段AD 上任一点(不包含点D ),沿直线CE 将△CDE 翻折成△E CD ',使'D 在平面ABCE 上的射影F 落在直线CE 上,则'AD 的最小值是()A B C .2 D 【答案】A2 .(浙江省六校联盟2013届高三回头联考理科数学试题)棱长为2的正方体ABCD-A 1B 1C 1D 1在空间直角坐标系中移动,但保持点( )A .B 分别在X 轴、y 轴上移动,则点C 1到原点O 的最远距离为 ( )A .B .C .5D .4【答案】D3 .(温州市2013年高三第一次适应性测试理科数学试题)正方体1111ABCD A B C D -中,1CC 与平面1A BD所成角的余弦值为()A B C .23D 【答案】D4 .(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)已知正方体1111D C B A ABCD -的棱长为1,N M ,是对角线1AC 上的两点,动点P 在正方体表面上且满足||||PN PM =,则动点P 的轨迹长度的最大值为() A .3B .23C .33D .6【答案】B5 .(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)如图所示,在正方体1111D C B A ABCD -中,E 为1DD 上一点,且131DD DE =,F 是侧面11C CDD 上的动点,且//1F B 平面BE A 1,则F B 1与平面11C CDD 所成角的正切值构成的集合是 ( )A .}23{ B .}1352{C .}22323|{≤≤m m D .}231352|{≤≤m m【答案】C6 .(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )已知四面体A BCD -中,P为棱AD 的中点,则过点P 与侧面ABC 和底面BCD 所在平面都成60的平面共有(注:若二面角l αβ--的大小为120,则平面α与平面β所成的角也为60)( ) A .2个 B .4个 C .6个 D .无数个【答案】B 提示:设平面ABC 的法向量为a ,平面BCD 的法向量为b,因为二面角A BC D --的平面角的余弦值为13,即平面角大约为71 ,所以过点P 与法向量,a b 都成60的向量有4个,所以过点P 与侧面ABC 和底面BCD 所在平面都成60的平面共有4个.7 .(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)已知正四面体ABCD -中,P 为AD 的中点,则过点P 与侧面ABC 和底面BCD 所在平面都成 60的平面共有(注:若二面角l αβ--的大小为120,则平面α与平面β所成的角也为 60)() A .2个 B .4个 C .6个 D .无数个非选择题部分(共100分) 【答案】 B .8 .(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)如图ABC ∆是等腰直角三角形,其中90A ∠=︒,且,30DB BC BCD ⊥∠=︒,现将ABC ∆折起,使得二面角A BC D --为直角,1C (第10题图)ABCDE1A 1B 1D则下列叙述正确的是①0BD AC ⋅=; ②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60︒;④直线DC 与平面ABC 所成的角为30︒ ( ) A .①③ B .①④ C .①③④ D .①②③④ 【答案】【答案】B 解析:易证BD ABC ⊥面,则AC ABD ⊥面,到此很容易证明①④正确,②错误,而BC 与AD9 .(浙江省五校2013届高三上学期第一次联考数学(理)试题)一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成120 角,且12,F F 的大小分别为1和2,则有()A .13,F F 成90 角B .13,F F 成150 角C .23,F F 成90 角D .23,F F 成60 角【答案】() A .10.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则()A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A11.(浙江省宁波市2013届高三第一学期期末考试理科数学试卷)正方体ABCD-A 1B 1C 1D 1中BC 1与截面BB 1D 1D所成的角是 () A .6π B .4π C .3π D .2π 【答案】A 二、填空题12.(浙江省永康市2013年高考适应性考试数学理试题 )如图,斜边长为4的直角ABC ∆,=90B ∠ ,60A ∠= 且A 在平面α上,B ,C 在平面α的同侧,M 为BC 的中点.若ABC ∆在平面α上的射影是以A 为直角顶点的三角形''C AB ∆,则M 到平面α的距离的取值范围是____.【答案】5(2,)213.(浙江省温州八校2013届高三9月期初联考数学(理)试题)在二面角βα--l 中,,,,,βα⊂⊂∈∈BD AC l B l A 且,,l BD l AC ⊥⊥已知,1=AB 2==BD AC ,5=CD , 则二面角βα--l 的余弦值为___________【答案】2114.(浙江省宁波一中2013届高三12月月考数学(理)试题)正四面体S —ABC 中,E 为SA 的中点,F为ABC ∆的中心,则直线EF 与平面ABC 所成的角的正切值是___________________.15.(浙江省2013年高考模拟冲刺(提优)测试二数学(理)试题)在三棱锥S-ABC 中,△ABC 为正三角形,且A 在面SBC 上的射影H 是△SBC 的垂心,又二面角H-AB-C 为300,则SAAB=________; 16.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)如图,在正方形ABCD 中,E ,F 分别为线段AD ,BC 上的点,∠ABE =20°,∠CDF =30°.将△ABE 绕直线BE 、△CDF 绕直线CD 各自独立旋转一周,则在所有旋转过程中,直线AB 与直线DF 所成角的最大值为_________.【答案】70°17.(浙江省杭州高中2013届高三第六次月考数学(理)试题)1ABC ∆和2ABC ∆是两个腰长均为 1 的等腰直角三角形,当二面角12C AB C --为60 时,点1C 和2C 之间的距离等于 __________.(请写出所有可能的值)三、解答题18.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图2). (Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60 ?若存在,求出PB 的长,若不存在,请说明理由.【答案】证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =,所以1AD =,2AE =. 在△ADE 中,60DAE ∠= ,由余弦定理得DE ==. 因为222AD DE AE +=,所以AD DE ⊥.折叠后有1A D DE ⊥. 因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED . 又平面1A DE 平面BCED DE =,1A D ⊂平面CDF1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED .(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 .如图,作PH BD ⊥于点H ,连结1A H 、1A P .由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED ,所以1A D ⊥PH .又1A D BD D = ,所以PH ⊥平面1A BD .所以1PA H ∠是直线1PA 与平面1A BD 所成的角. 设PB x=()03x ≤≤,则2x BH =,PH x =.在Rt △1PA H 中,160PA H ∠= ,所以112A H x =. 在Rt △1A DH中,11A D =,122DH x =-. 由22211A D DH A H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭.解得52x =,满足03x ≤≤,符合题意.所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 ,此时52PB =. 解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图设2PB a =()023a ≤≤,则BH a =,PH =,2DH a =-. 所以()10,0,1A ,()2,0P a -,()E .所以()12,,1PA a =-.因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()DE = .因为直线1PA 与平面1A BD 所成的角为60 ,所以11sin 60PA DE PA DE===, 解得54a =.即522PB a ==,满足023a ≤≤,符合题意. 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60 ,此时52PB =.19.(浙江省考试院2013届高三上学期测试数学(理)试题)如图,平面ABCD ⊥平面ADEF ,其中ABCD为矩形,ADEF 为梯形, AF ∥DE ,AF ⊥FE ,AF =AD =2 DE =2.(Ⅰ) 求异面直线EF 与BC 所成角的大小;(Ⅱ) 若二面角A-BF-D 的平面角的余弦值为13,求AB 的长.【答案】本题主要考查空间点、线、面位置关系,异面直线所成角、二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力.满分15分. (Ⅰ) 延长AD ,FE 交于Q .因为ABCD 是矩形,所以 BC ∥AD ,所以∠AQF 是异面直线EF 与B C 所成的角.在梯形ADEF 中,因为DE ∥AF ,AF ⊥FE ,AF =2,DE =1得(第20题图)∠AQF =30°(Ⅱ) 方法一:设AB =x .取AF 的中点G .由题意得 DG ⊥AF .因为平面ABCD ⊥平面ADEF ,A B ⊥AD,所以 AB ⊥平面ADEF , 所以 AB ⊥DG . 所以DG ⊥平面ABF .过G 作GH ⊥BF ,垂足为H ,连结DH ,则DH ⊥BF , 所以∠DHG 为二面角A -BF -D 的平面角. 在直角△AGD 中,AD =2,AG =1,得 DG在直角△BAF 中,由AB BF =sin ∠AFB =GH FG,得 GHx=所以 GH.在直角△DGH 中,DGGH,得DH=因为cos ∠DHG =GH DH =13,得 x, 所以(第20题图)AB. 方法二:设AB =x .以F 为原点,AF ,FQ 所在的直线分别为x 轴,y 轴建立空间直角坐标系Fxyz .则 F (0,0,0),A (-2,0,0),EDB (-2,0,x ), 所以 DFBF=(2,0,-x ).因为EF ⊥平面ABF ,所以平面ABF 的法向量可取1n=(0,1,0).设2n=(x 1,y 1,z 1)为平面BFD 的法向量,则111120,0,x z x x -=⎧⎪⎨=⎪⎩ 所以,可取2n因为cos<1n ,2n >=1212||||n n n n ⋅⋅=13,得 x, 所以 AB.20.(浙江省温州市十校联合体2013届高三上学期期末联考理科数学试卷)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC 交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1. (I)证明:EM⊥BF;(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.(第20题图)(第20题图)【答案】解:(1)3AM BM =,.如图,以A 为坐标原点,垂直于AC 、AC 、AE 所在的直线为,,x y z 轴建立空间直角坐标系.由已知条件得(0,0,0),(0,3,0),(0,0,3),3,0),(0,4,1)A M E B F,(0,3,3),(,1)ME BF ∴=-=.由(0,3,3)(,1)0ME BF ⋅=-⋅=, 得MF BF ⊥, EM BF ∴⊥(2)由(1)知(3,3),(,1)BE BF =-= . 设平面BEF 的法向量为(,,)n x y z =,由0,0,n BE n BF ⋅=⋅=得3300y z y z ⎧-+=⎪⎨++=⎪⎩,]令x =1,2y z ==,)2n ∴= ,由已知EA ⊥平面ABC ,所以取面ABC 的法向量为(0,AE =设平面BEF 与平面ABC 所成的锐二面角为θ,则cos cos ,n AE θ→=<>==,平面BEF 与平面ABC 所成的锐二面角的余弦值为21.(浙江省名校新高考研究联盟2013届高三第一次联考数学(理)试题)如图,AB 为圆O 的直径,点E 、F 在圆O 上,EF AB //,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2=AB ,1=EF .(Ⅰ)求证:平面⊥DAF 平面CBF ;(Ⅱ)求直线AB 与平面CBF 所成角的大小;(Ⅲ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60 ?(I)证明: 平面⊥ABCD 平面ABEF ,AB CB ⊥, 平面 ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF .⊂AF 平面ABEF ,CB AF ⊥∴, 又AB 为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF⊂AF 平面ADF ,∴平面⊥DAF 平面CBF . (II)根据(Ⅰ)的证明,有⊥AF 平面CBF , ∴FB 为AB 在平面CBF 内的射影,因此,ABF ∠为直线AB 与平面CBF 所成的角 6分 EF AB // ,∴四边形ABEF 为等腰梯形, 过点F 作AB FH ⊥,交AB 于H .2=AB ,1=EF ,则212=-=EF AB AH .在AFB Rt ∆中,根据射影定理AB AH AF ⋅=2,得1=AF21sin ==∠AB AF ABF , 30=∠∴ABF . ∴直线AB 与平面CBF 所成角的大小为 30(Ⅲ)设EF 中点为G ,以O 为坐标原点,OA 、OG 、AD 方向分别为x 轴、y 轴、z 轴方向建立空间直角坐标系(如图).设t AD =)0(>t ,则点D 的坐标为),0,1(t 则 (1,0,)C t -,又1(1,0,0),(1,0,0),(2A B F -1(2,0,0),(,)2CD FD t ∴==设平面DCF 的法向量为),,(1z y x n =,则10n CD ⋅= ,10n FD ⋅=.即20,0.x y tz =⎧⎪⎨+=⎪⎩ 令3=z ,解得t y x 2,0== )3,2,0(1t n =∴由(I)可知AF ⊥平面CFB ,取平面CBF的一个法向量为21(,0)2n AF ==- ,依题意1n与2n 的夹角为 6060cos ∴12=,解得t =因此,当AD,平面与DFC 平面FCB 所成的锐二面角的大小为60 .22.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )如图,一个正ABC '∆和一个平行四边形ABDE 在同一个平面内,其中8AB BD AD ==,AB DE ,的中点分别为F G ,. 现沿直线AB 将ABC '∆翻折成ABC ∆,使二面角C AB D --为120︒,设CE 中点为H . (Ⅰ) (i)求证:平面//CDF 平面AGH ; (ii)求异面直线AB 与CE 所成角的正切值; (Ⅱ)求二面角C DE F --的余弦值.【答案】解法一:(Ⅰ) (i)证明:连FD . 因为ABDE 为平行四边形,F G 、分别为AB DE 、中点, 所以FDGA 为平行四边形,所以//FD AG又H G 、分别为CE DE 、的中点,所以//HG CD FD CD ⊄、平面AGH ,AG HG 、⊂平面AGH ,所以//FD 平面AGH ,//CD 平面AGH ,而FD CD ⊂、平面CDF ,所以平面//CDF 平面AGH(ii)因为//DE AB ,所以CED ∠或其补角即为异面直线AB 与CE 所成的角因为ABC 为正三角形,BD AD =,F 为AB 中点,所以AB CF AB DF ⊥⊥,,从而AB ⊥平面CFD ,而//DE AB ,所以DE ⊥平面CFD ,因为CD ⊂平面CFD ,所以DE CD ⊥由条件易得CF DF ===又CFD ∠为二面角C AB D --的平面角,所以120CFD ∠=︒,所以CD所以tan CD CED DE∠=(Ⅱ) 由(Ⅰ)的(ii)知DE ⊥平面C F D ,即CD DE FD DE ⊥⊥,,所以C D F ∠即为二面角C DE F --的平面角222cos 2CD DF CF CDF CD DF +-∠===⋅解法二:(Ⅰ) (i )同解法一;(ii) 因为ABC 为正三角形,BD AD =,F 为AB 中点,所以AB CF AB DF ⊥⊥,,从而CFD ∠为二面角C AB D --的平面角且AB ⊥平面CFD ,而AB ⊂平面ABDE ,所以平面CFD ⊥平面ABDE .作CO ⊥平面ABDE 于O ,则O 在直线DF 上,又由二面角C AB D --的平面角为120CFD ∠=︒,故O 在线段DF 的延长线上. 由CF=6FO CO ==以F 为原点,FA FD FZ 、、为x y z 、、轴建立空间直角坐标系,如图,则由上述及已知条件得各点坐标为()040A ,,,()040B -,,,()00D ,()80E ,()06C -,,所以()080AB =-,,,()86CE =- 你的首选资源互助社区所以异面直线AB 与CE 所成角的余弦值为()cos AB CE AB CE AB CE ∙===⋅,,=(Ⅱ)由(Ⅰ)的(ii)知()()06080CD DE =-= ,,,,设平面C D E 的法向量为1=n ()x y z ,,,则由1⊥n CD ,1⊥n DE 得6080.z y ⎧-=⎪⎨=⎪⎩,令z =得1=n (60,又平面DEF 的一个法向量为()2001=,,n ,而二面角C DE F --为锐二面角,所以二面角C DE F --的余弦为121212cos ∙=⋅,n n n n n n 23.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)如图:在直三棱柱111ABC A B C -中,1AB AC ==,90BAC ∠= .(Ⅰ)若异面直线1A B 与11B C 所成的角为60 ,求棱柱的高h ;(Ⅱ)设D 是1BB 的中点,1DC 与平面11A BC 所成的角为θ,当棱柱的高h 变化时,求sin θ的最大值.【答案】解法1:(Ⅰ)由三棱柱111C B A ABC -是直三棱柱可知,1AA 即为高,如图1,因为11//C B BC ,所以BC A 1∠是异面直线B A 1与11C B 所成的角或其补角, 连接1A C ,因为AB AC =,所以11A B AC =. 在Rt△ABC 中,由1AB AC ==,90BAC ∠= ,可得BC 又异面直线1A B 与11B C 所成的角为60 ,所以160A BC ∠= ,即△1A BC 为正三角形.于是111A B B C =.在Rt△1A AB 中,1A B 得11AA =,即棱柱的高为1 (Ⅱ)设1(0)AA h h =>,如图1,过点D 在平面11A B BA 内作1DF A B ⊥于F ,则 由11AC ⊥平面11BAA B ,DF ⊂平面11BAA B ,得11AC DF ⊥. 而1111AC A B A = ,所以DF ⊥平面11A BC .故1DC F ∠就是1DC 与平面11A BC 所成的角,即1DC F θ∠= 在Rt △DFB 中,由2hBD =,得DF =,在Rt △11DB C 中,由12h B D =,11B C =得1DC , 在Rt △1DFC 中,1sin DF DC θ===令()f h =,(Ⅰ)因为异面直线1A B 与11B C 所成的角60 ,所以111111||cos60||||B C A B B C A B ⋅=⋅,12=,解得1h = (Ⅱ)由D 是1BB 的中点,得(1,0,)2h D ,于是1(1,1,)2hDC =- .设平面11A BC 的法向量为(,,)x y z =n ,于是由1A B ⊥ n ,11AC ⊥n ,可得 1110,0,A B AC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x hz y -=⎧⎨=⎩ 可取(,0,1)h =n , 于是1sin |cos ,|DC θ=<>n .而111|||||cos ,|||||h h DC DC DC -+⋅<>===⋅n n n令()f h =,因为22899h h++≥,当且仅当228h h =,即h =,等号成立.所以()f h ==,故当h ,sin θ24.(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图,在四棱锥P ABCD -中,PA ⊥底面A,AD AB ⊥,CD AC ⊥ ,︒=∠60ABC ,BC AB PA == ,E 是PC 的中点.(Ⅰ)证明:CD AE ⊥; (Ⅱ)证明:PD ⊥平面ABE ; (Ⅲ)求二面角A PD C --的正切值.ABCDPE【答案】解法一:(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD , 故PA CD ⊥.AC CD PA AC A ⊥= ,∵,CD ⊥∴平面PAC .[而AE ⊂平面PAC ,CD AE ⊥∴(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C = ,所以AE ⊥平面PCD .而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A = ∵,综上得PD ⊥平面ABE(Ⅲ)过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥.因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD ∠=°.设AC a =,可得PA a AD PD AE ====,,,.在ADP Rt △中,AM PD ⊥∵,AMPD PA AD =∴··,则a PA AD AM PD===··. 在AEM Rt △中,sin AE AME AM ==所以二面角A PD C --的正切值为7解法二:(Ⅰ)证明:以AB 、AD 、AP 为x 、y,z 轴建立空间直角坐标系,设AB=a.60ABC AB BC ABC ∠==∴∆o Q ,,是正三角形6030BAC DAC AD ∴∠=∴∠=∴=oo,,(),0,,00,0,,2a C D P a ⎛⎫⎛⎫∴ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,42a a E ⎛⎫∴ ⎪ ⎪⎝⎭,0,,242a a a CD AE ⎛⎫⎛⎫∴=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭uu u r uu u r 220,88a a CD AE CD AE ∴⋅=-+=∴⊥uu u r uu u rABCDPEFMACDPEM(Ⅱ)证明:()(),0,0,,0,0,,B a AB a PD a ⎛⎫∴==- ⎪ ⎪⎝⎭uu u r uu u r Q 又 220,022a a PD AB PD AE ∴⋅=⋅=-=uu u r uu u r uu u r uu u r,PD AB PD AE ∴⊥⊥,AB AE A PD ADE =∴⊥I 又平面(Ⅲ)设平面PDC 的法向量为(),,n x y z =r则()0202az n a yx ⎧-=⎪⎧⎪⎪∴=⎨=⎪-+=⎪⎩r 即 又平面APD 的法向量是()1,0,0,cos ,,m m n m n =∴==u r u r r u r rtan ,m n =u r r所以二面角A PD C --的正切值是725.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)如图,ABC∆中,90,1,B AB BC D E ∠=== 、两点分别在线段AB AC 、上,满足,(0,1)AD AEAB ACλλ==∈.现将ABC ∆沿DE 折成直二面角A DE B --. (1)求证:当12λ=时,ADC ABE ⊥面面;(2)当(0,1)λ∈时,二面角E AC D --的大小能否等于4π?若能,求出λ的值;若不能,请说明理由.【答案】ABCDEAB CD E26.(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)如图,在三棱锥ABCP -中,22,4======BC AB AC PC PB PA(I)求证:平面ABC ⊥平面APC(II)若动点M 在底面三角形ABC 上,二面角M PA C --的余弦值为322,求BM 的最小值.【答案】 解:(1)取AC 中点O,因为AP=BP,所以OP⊥OC 由已知易得三角形ABC 为直角三角形,∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB∴OP⊥平面ABC, ∵OP 在平面PAC 中,∴平面ABC ⊥平面APC ( )[ ZXXK] (2) 以O 为坐标原点,OB 、OC 、OP 分别为 x 、y 、z 轴建立如图所示空间直角坐标系. 由题意平面PAC 的法向量1(1,0,0)n OB →→==,设平面PAM 的法向量为()()2,,,,,0n x y z M m n =((),,2,0AP AM m n ∴==+由220,0AP n AM n ⋅=⋅=()2020y mx n y ⎧+=⎪∴⎨++=⎪⎩,取)221n n m ⎛⎫+=-⎪ ⎪-⎝⎭21cos ,n n →→∴<>===∴0-∴BM的最小值为垂直距离d =27.(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)如图,在梯形ABCD中,//,,60AB CD AD CD CB a ABC ===∠=︒,平面ACFE ⊥ 平面ABCD ,四边形ACFE 是矩形,AE a =,点M 在线段EF 上.(1)求证:BC ⊥平面ACFE ;(2)求二面角B EF D --的余弦值.【答案】 证明:(1)在梯形ABCD 中,∵,,60AB CD AD DC CB a ABC ===∠=︒ ,∴四边形ABCD 是等腰梯形, 且30,120,DCA DAC DCB ∠=∠=︒∠=︒∴90ACB DCB DCA ∠=∠-∠=︒,∴.AC BC ⊥又∵平面ACFE ⊥平面ABCD ,交线为AC ,∴BC ⊥平面ACFE . (2)方法一;(几何法)取EF 中点G ,EB 中点H ,连结DG 、GH 、DH , ∵容易证得DE =DF ,∴.DG EF ⊥∵BC ⊥平面ACFE ,∴.BC EF ⊥ 又∵EF FC ⊥,∴.EF FB ⊥ 又∵GH FB ,∴.EF GH ⊥∴DGH ∠是二面角B —EF —D 的平面角.在△BDE 中,,.DE DB BE ==== ∴222BE DE DB =+∴90EDB ∠=︒,∴.DH =又,.DG GH ==∴在△DGH 中,由余弦定理得cos DGH ∠=即二面角B —EF —D 的平面角余弦值为1010方法二;(向量法)以C 为坐标原点,建立如图所示的直角坐标系:所以)0,0,3(a EF -=,),,0(a a BF -=,),2,23(a aa DF -=分别设平面BEF 与平面DEF 的法向量为),,(1111z y x n =,),,(2222z y x n =所以⎪⎩⎪⎨⎧=+-=⋅=-=⋅00311111az ay BF n ax EF n ,令11=y ,则1,011==z x又⎪⎩⎪⎨⎧=++-=⋅=-=⋅022*********az y a x a DF n ax EF n ,显然02=x ,令21-,122==z y 则 所以)1,1,0(1=n ,,设二面角的平面角为θθ,为锐角所以θ28.(2013届浙江省高考压轴卷数学理试题)如图,在斜三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,侧棱1AA 与底面ABC 成60°的角,12AA =.底面ABC 是边长为2的正三角形,其重心为G 点, E 是线段1BC 上一点,且113BE BC =.(1)求证:GE //侧面11AA B B ;(2)求平面1B GE 与底面ABC 所成锐二面角的正切值; (3)在直线..AG 上是否存在点T ,使得AG T B ⊥1?若存在,指出点T 的位置;若不存在,说明理由.【答案】【解析】解法1:(1)延长B 1E 交BC 于点第20题图F ,11B EC ∆ ∽△FEB ,BE =21EC 1,∴BF =21B 1C 1=21BC , 从而点F 为BC 的中点.∵G 为△ABC 的重心,∴A 、G 、F 三点共线.且11//,31AB GE FB FE FA FG ∴==, 又GE ⊄侧面AA 1B 1B ,∴GE //侧面AA 1B 1B .(2)在侧面AA 1B 1B 内,过B 1作B 1H ⊥AB ,垂足为H ,∵侧面AA 1B 1B ⊥底面ABC ,∴B 1H ⊥底面ABC .又侧棱AA 1与底面ABC 成60°的角,AA 1=2,∴∠B 1BH =60°,BH =1,B 1H =.3 在底面ABC 内,过H 作HT ⊥AF ,垂足为T ,连B 1T ,由三垂线定理有B 1T ⊥AF , 又平面B 1CE 与底面ABC 的交线为AF ,∴∠B 1TH 为所求二面角的平面角. ∴AH =AB +BH =3,∠HAT =30°,∴HT =AH 2330sin =︒.在Rt△B 1HT 中,332tan 11==∠HT HB TH B , 从而平面B 1GE 与底面ABC(3)(2)问中的T 点即为所求,T 在AG 的延长线上,距离A 点233处. 解法2:(1)∵侧面AA 1B 1B ⊥底面ABC ,侧棱AA 1与底面ABC 成60°的角,∴∠A 1AB =60°, 又AA 1=AB =2,取AB 的中点O ,则AO ⊥底面ABC . 以O 为原点建立空间直角坐标系O —xyz 如图,则()0,1,0A -,()0,1,0B,)C,(1A,(10,B,1C .∵G 为△ABC的重心,∴G ⎫⎪⎪⎭.113BE BC =,∴E ,∴113CE AB ⎛== ⎝ . 又GE ⊄侧面AA 1B 1B ,∴GE //侧面AA 1B 1B .(2)设平面B 1GE 的法向量为(,,)a b c =n ,则由10,0.B E GE ⎧⋅=⎪⎨⋅=⎪⎩ n n得0,0.b b -=⎪=⎪⎩可取=-n 又底面ABC 的一个法向量为()0,0,1=m设平面B 1GE 与底面ABC 所成锐二面角的大小为θ,则cos ||||θ⋅==⋅m n m n .由于θ为锐角,所以sin θ==,进而tan θ=故平面B 1GE 与底面ABC (3))0,1,33(=AG ,设)0,,33(λλλ==AG AT , )3,3,33(11--=+=λλAT A B T B , 由AG T B ⊥1,03311=-+=⋅∴λλAG T B ,解得49=λ 所以存在T 在AG 延长线上,2332349===AF AG AT . 29.(浙江省2013年高考模拟冲刺(提优)测试二数学(理)试题)如图:在多面体EF-ABCD 中,四边形ABCD 是平行四边形,△EAD 为正三角形,且平面EAD ⊥平面ABCD,EF∥AB, AB=2EF=2AD=4,060=∠DAB .(Ⅰ)求多面体EF-ABCD 的体积;(Ⅱ)求直线BD 与平面BCF 所成角的大小.【答案】30.(浙江省温岭中学2013届高三高考提优冲刺考试(五)数学(理)试题)如图,在长方形ABCD中,2=AB ,1=AD ,E 为DC 的中点,现将DAE ∆沿AE 折起,使平面DAE ⊥平面ABCE , 连DB ,DC ,BE .(Ⅰ)求证:BE ⊥平面ADE ; (Ⅱ)求二面角C BD E --的余弦值.【答案】所以所求二面角的余弦值为11222 解法二(坐标法)ACBAB(第20题)如图,取AE 的中点O ,则⊥DO 面ABCE .作EB OF //,则AE OF ⊥. 以O 为原点,OA 、OF 、OD 为轴建立空间坐标系xyz O - 则)2200(,,D ,)0,222(,-B ,)022,2(,-C ,)0022(,,A .所以)02222(,,--=BC ,)22222(--=,,DB ,)22,0,22(-=DA . 设面DBC 的法向量为),,(1z y x n =,则 ⎪⎪⎩⎪⎪⎨⎧=-+-=⋅=--=⋅0222220222211z y x DB n y x BC n ,取)3,1,1(1--=n设面DBE 的法向量为2n ,则DA n //2,取)1,0,1(2-=n 11222,cos 21>=<n n ,所以所求二面角的余弦值为11222 31.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)如图,直角梯形ABCD有EC=FD=2.(I )求证:AD 丄B F :(II )若线段EC 上一点M 在平面BDF 上的射影恰好是BF 的中点N,试求二面角 B-MF-C 的余弦值.【答案】解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC ,∴2=BD 且45=∠=∠BDC CBD ;又由DC AB //,可知45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且45=∠=∠DBA DAB , ∴90=∠ADB ,即DB AD ⊥;∵⊥FD 底面ABCD 于D,⊂AD 平面ABCD,∴DF AD ⊥, ∴⊥AD 平面DBF.又∵⊂BF 平面DB F,∴可得BF AD ⊥(Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系.可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D ,又∵ N 恰好为BF 的中点,∴)1,22,22(N又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n BM n BF 可得⎪⎩⎪⎨⎧=+-=--02022211111z y z y x , 取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n又∵平面MFC 的一个法向量为)0,1,0(2=n , ∴63,cos 21<n n .故所求二面角B-MF-C 的余弦值为6332.(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word 版) )如图,在矩形ABCD 中,21AB ,BC ,E ==为边AB 上一点,以直线EC 为折线将点B 折起至点,P 并保持PEB ∠为锐角,连接,,,PA PC PD 取PD 中点F ,若有//AF平面.PEC (I)求线段AE 的长;(II)当60PEB ∠=时(i)求证:平面PEC ⊥平面CDAE ;(ii)求平面PEC 与平面PAD 所成角的余弦值.【答案】解:(I)取PC 的中点G ,连接,FG EG ,//,//,//FG CD AE CD FG AE ∴ ,,,,A F G E ∴四点共面 //AF 平面,//PCE AF GE ∴AFGE ∴为平行四边形11122,GF CD AE AB =∴== (II)(i)证明: 异面直线,PE CD 所成的角为60,60PEB ∴∠=1,1 PE BE PB ==∴=,取CE 中点O , 1PE PC == 且90EDC ∠= ,同理BO =所以222,,, OP OB BP PO OB PO CE PO CDAE +=∴⊥⊥∴⊥平面,PO PCE PCE CDAE ⊆∴⊥ 平面平面平面(ii)将该几何体补形成如图所示的长方体,以点B 为坐标原点建立空间直角坐标系,1102012022(,(,,),(,,)P A D 取平面PCE 的一个法向量110(,,)m =设平面PAD 法向量为(,,)n x y z =,1310022(,,),(,AD AP ==- ,由00n AD n AP ⎧=⎪⎨=⎪⎩得03(,,)n z =,取3z =,得03()n =cos ,||||m n m n m n ∴<>==平面PEC 与平面MAB 133.(浙江省嘉兴市2013届高三上学期基础测试数学(理)试题)如图,1111ABCD A B C D -是棱长为1的正方体,四棱锥1111P A B C D -中,P ∈平面11DCC D,11PC PD ==. C1C A第20题(Ⅰ)求证:平面11PA B 平面11ABC D ;(Ⅱ)求直线1PA 与平面11ADD A 所成角的正切值.【答案】取11C D 的中点H ,连结PH ,AH .2511==PD PC ,111=C D ,∈P 平面11D DCC , ∴21,111=⊥H D C D PH ,∴12121=-=H D PD PH ,∴A A D D PH 11////, A A PH 1=,∴四边形AH PA 1为平行四边形,∴AH PA //1,(第20题)PBDC1B A1A 1C 1D H又⊂AH 平面11D ABC ,⊄1PA 平面11D ABC , ∴//1PA 平面11D ABC在正方体ABCD 中, AB B A //11, ∴//11B A 平面11D ABC ,1111A B A PA = ,∴平面//11B PA 平面11D ABC(II)方法1以直线1,,DD DC DA 为轴轴轴,z y x ,的如图所示空间直角坐标系,令,则)1,0,1(1A ,,2,21,0⎪⎭⎫ ⎝⎛P )0,0,0(D ∴ ,1,21,11⎪⎭⎫⎝⎛--=PA∵ =n (0,1,0)是平面11A ADD 的一个法向量 设直线1PA 与平面11A ADD 所成角为θ31sin θ,42tan =θ ∴直线1PA 与平面11A ADD 所成角的正切值为42方法2:∵AH PA //1,∴直线1PA 与平面11A ADD 所成角等于直线AH 与平面11A ADD 所成角. 正方体1111D C B A ABCD -中,显然⊥1HD 平面11A ADD , ∴1HAD ∠就是直线AH 与平面11A ADD 所成角在1HAD Rt ∆中,211=H D ,21=AD ,42tan 111==∠AD H D HAD∴直线1PA 与平面11A ADD 所成角的正切值为42. 34.(浙江省杭州高中2013届高三第六次月考数学(理)试题)如图,已知长方形ABCD中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥(2)点E 是线段DB 上的一动点,当二面角D AM E --大小为3π时,试确定点E 的位置.【答案】取AM 的中点O,AB 的中点B,则OD OA ON ,,两两垂直,以O 为原点建立空间直角坐标系,如图.根据已知条件,得)0,0,22(A ,)0,2,22(-B ,)0,0,22(-M ,)22,0,0(D (1)由于)0,2,0(),22,0,22(-=-=AD ,则0=⋅BM AD ,故BM AD ⊥.(2)设存在满足条件的点E,并设DB DE λ=, 则)22,2,22()22,,(--=-λE E E z y x 则点E的坐标为)2222,2,22(λλλ--.(其中]1,0[∈λ)易得平面ADM 的法向量可以取)0,1,0(1=n ,设平面AME 的法向量为),,(2z y x n =,则)0,0,2(-=AM,)2222,2,2222(λλλ---=AE 则⎪⎩⎪⎨⎧=-++--=⋅=-=⋅0)2222()2()2222(0222λλλz y x AE n x AM n 则λλ2:)1(:0::-=z y x ,取)2,1,0(2λλ-=n *由于二面角D AM E --大小为3π,则A|,cos |3cos212121n n =><=π214)1(122=+--=λλλ,由于]1,0[∈λ,故解得332-=λ.故当E 位于线段DB 间,且332-=DB DE 时,二面角D AM E --大小为3π35.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)如图,已知ABCD 是边长为1的正方形,AF ⊥平面ABCD ,CE ∥AF ,)1(>=λλAF CE . (Ⅰ)证明:BD ⊥EF ;(Ⅱ)若AF =1,且直线BE 与平面ACE 所成角的正弦值为1023,求λ的值.【答案】本题满分14分.(Ⅰ)方法1:连结BD 、AC ,交点为O .∵ABCD 是正方形 ∴BD ⊥AC ∵AF ⊥平面ABCD ∴AF ⊥BD ∴BD ⊥平面ACEF ∴BD ⊥EF方法2:如图建立空间直角坐标系A-x yz,∵)0,0,1(B ,)0,1,0(D ∴)0,1,1(-= 设),0,0(h F ,那么),1,1(h E λ, 则))1(,1,1(h EF λ---= ∴0=⋅EF BD ∴BD ⊥EF(Ⅱ)方法1:连结OE ,由(Ⅰ)方法1知,BD ⊥平面ACEF , 所以∠BEO 即为直线BE 与平面ACE 所成的角∵AF ⊥平面ABCD ,CE ∥AF ,∴CE ⊥平面ABCD ,CE ⊥BC , ∵BC =1,AF =1,则CE =λ,BE =21λ+,BO =22, ∴Rt△BEO 中, 1023122sin 2=λ+==∠BE BO BEO , 因为1>λ,解得34=λ 方法2:∵),1,0(λ=BE ,由(Ⅰ)法1知,BD ⊥平面ACEF , 故)0,1,1(-=是平面ACE 的法向量 记直线BE 与面ACE 所成角为θ,则sin , ;因为1>λ,解得34=λ36.(浙江省乐清市普通高中2013届高三上学期期末教学质量检测数学(理)试题)如图,底角为060的等腰梯形ABFE 垂直于矩形ABCD ,1,2==EF AB . (1)求证:平面⊥ADF 平面BCF ;(2)当AD 长为2时,求二面角A EF D --的余弦值的大小.【答案】(1)证明:∵平面⊥ABEF 平面ABCD ,且AB AD ⊥∴⊥AD 平面ABEF ∵⊂BF 平面ABEF ∴BF AD ⊥①在梯形ABEF 中,BF AF ⊥② 又∵A AF AD = ③由①②③得⊥BF 平面ADF ∴平面⊥ADF 平面BCF(2)解:分别取DC AB EF ,,的中点N M G ,,,两两连接, 易证MGN ∠就是所求二面角的一个平面角α 计算得23=GM ,又∵2==AD MN37.(浙江省六校联盟2013届高三回头联考理科数学试题)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD, ABC=60°,PA=AB=BC,E是PC的中点.(Ⅰ)证明:CD ⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-PD-C的正切值.【答案】38.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )已知四棱锥ABCD P -,⊥PA 底面ABCD ,AC AD AB BC AD ,,//⊥与bd 交于点O ,又,6,32,2,3====BC AB AD PA(Ⅰ) 求证:⊥BD 平面PAC ;(Ⅱ)求二面角A PB O --的余弦值.【答案】39.(浙江省重点中学协作体2013届高三摸底测试数学(理)试题)如图,斜三棱柱111C B A ABC -,已知侧面C C BB 11与底面ABC 垂直且∠BCA =90°,∠160B BC = ,1BB BC ==2,若二面角C B B A --1为30°,(Ⅰ)证明C C BB AC 11平面⊥及求1AB 与平面C C BB 11所成角的正切值; (Ⅱ)在平面B B AA 11内找一点P,使三棱锥C BB P 1-为正三棱锥,并求P 到平面C BB 1距离【答案】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识. 满分14分.解:(Ⅰ)面C C BB 11⊥面ABC ,因为面C C BB 11⋂面C C BB 11=BC ,BC AC ⊥, 所以⊥AC 面C C BB 11取1BB 中点E ,连接AE CE ,,在1CBB ∆中,01160,2=∠==CBB CB BB1CBB ∆∴是正三角形,1BB CE ⊥∴,又⊥AC 面C C BB 11且⊂1BB 面C C BB 11, AE BB ⊥∴1,即CEA ∠即为二面角C B B A --1的平面角为30°,⊥AC 面C C BB 11,CE AC ⊥∴,在ECA Rt ∆ 中,130tan ,30=⋅=∴=CE AC CE ,又⊥AC 面C C BB 11,A CB 1∠∴即1AB 与面C C BB 11所成的线面角, 在CA B Rt 1∆中,21tan 11==∠CB AC A CB (Ⅱ)在CE 上取点1P ,使1211=E P CP ,则因为CE 是BC B 1∆的中线, 1P ∴是BC B 1∆的重心,在ECA ∆中,过1P 作P P 1//CA 交AE 于P ,⊥AC 面C C BB 11,P P 1//CA⊥∴1PP 面1CBB ,即P 点在平面1CBB 上的射影是1BCB ∆的中心,该点即为所求,ABC11 1A C BCD且311=AC PP ,311=∴PP 40.(浙江省温州八校2013届高三9月期初联考数学(理)试题)如图,四棱锥P ABCD -的底面ABCD为矩形,且1PA AD ==,2AB =,120,90PAB PBC ︒︒∠=∠=,(Ⅰ)平面PAD 与平面PAB 是否垂直?并说明理由; (Ⅱ)求直线PC 与平面ABCD 所成角的正弦值.DCBAP【答案】(I)平面PAD ⊥平面PAB ;证明:由题意得AD AB ⊥且//AD BC 又BC PB ⊥,则DA PB ⊥ 则DA ⊥平面PAB ,故平面PAD ⊥平面PAB(Ⅱ)解法1:以点A 为坐标原点,AB 所在的直线为y 轴建立空间直角坐标系如右图示则(0,0,1)D ,(0,2,1)C,1,0)2P -可得5,1)2CP =--,平面ABCD 的单位法向量为(1,0,0)m =,设直线PC 与平面ABCD 所成角为θ,则cos()2||||m CP m CP πθ⋅-===⋅则sin θ=,即直线PC 与平面ABCD解法2:由(I)知DA ⊥平面PAB ,∵AD ⊂面ABCD ∴平面ABCD⊥平面PAB,在平面PAB 内,过点P 作PE⊥AB,垂足为E,则PE⊥平面ABCD,连结EC,则∠PCE 为直线PC 与平面ABCD 所成的角, 在Rt△P EA中,∵∠PAE=60°,PA=1,∴PE =,又2222cos1207PB PA AB PA AB =+-⋅=∴PC ==在Rt△PEC中sin PE PC θ===41.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////PO QH PQ OH ∴,且ABCDPQM(第20题图)OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在R T B H G ∆中, 13HG =∴=,所以在RT CHG ∆中tan tan 60CG CHG HG ∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;42.(浙江省诸暨中学2013届高三上学期期中考试数学(理)试题)如图,已知四棱锥ABCDP -中,⊥PA 平面ABCD ,底面ABCD 是直角梯形,90DAB ABC ∠=∠=︒,E 是线段PC 上一点,PC ⊥平面BDE . (Ⅰ)求证:BD ⊥平面PAC(Ⅱ)若4PA =,2AB =,1BC =,求直线AC 与平面PCD 所成角的正弦值.。
立体几何坐标法:一:一般的公式:1、空间角(1)(线线)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)(线面)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. (3)(面面)求二面角的大小(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.2、距离(1)点面距的求法:设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距(3)两异面直线的距离求法:d =|AB →·n ||n |.(AB 是异面直线上任意两点)二:如何选择建系:8、在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角.11年重庆 19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB BC ⊥,AD CD =,CAD ∠=30︒.(Ⅰ)若AD =2,AB BC =2,求四面体ABCD 的体积;(Ⅱ)若二面角C AB D --为60︒,求异面直线AD 与BC 所成角的余弦值.28.【2012高考四川文19】(本小题满分12分)如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点PEDCM AB在平面ABC 内的射影O 在AB 上。
O ab 600 第二十四、二十五讲 空间角与距离★★★高考在考什么 【考题回放】1.如图,直线a 、b 相交与点O 且a 、b 成600,过点O 与a 、b 都成600角的直线有( C )A .1 条B .2条C .3条D .4条 2.(江苏•理)正三棱锥P-ABC 高为2,侧棱与底面所成角为45,则点A 到侧面PBC 的距离是( B )A .54B .56C .6D .64 3.(全国Ⅰ•理)如图,正四棱柱1111D C B A ABCD -中,ABAA 21=,则异面直线11AD B A 与所成角的余弦值为( D )A .51B .52C .53D .544.已知正四棱锥的体积为12,底面对角线的长为则侧面与底面所成的二面角等于3π.5.(四川•理)如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 6π.6.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点,(1) 求直线A 1C 与DE 所成的角;(2) 求直线AD 与平面B 1EDF 所成的角; (3) 求面B 1EDF 与 面ABCD 所成的角。
【专家解答】(1)如图,在平面ABCD 内,过C 作CP//DE 交直 线AD 于P ,则CP A 1∠(或补角)为异面直线A 1C 与 DE 所成的角。
在ΔCP A 1中,易得a P A a DE CP a C A 213,25,311====,由余弦定理得1515cos 1=∠CP A 。
故异面直线A 1C 与DE 所成的角为1515arccos。
(2)ADF ADE ∠=∠ ,∴AD 在面B 1EDF 内的射影在∠EDF 的平分线上。
而B 1EDF 是菱形,∴DB 1为∠EDF 的平分线。
故直线AD 与面B 1EDF 所成的角为∠ADB 1.在Rt ΔB 1AD 中,,3,2,11a D B a AB a AD ===则33cos 1=∠ADB 。
故直线AD 与平面B 1EDF 所成的角为33arccos 。
(3)连结EF 、B 1D ,交于点O ,显然O 为B 1D 的中点,从而O 为正方体ABCD —A 1B 1C 1D 1的中心,作OH⊥平面ABCD ,则H 为正方形ABCD 的中心。
再作HM⊥DE,垂足为M ,连结OM ,则OM⊥DE(三垂线定理),故∠OMH 为二面角B 1-DE-A 的平面角。
在Rt ΔDOE 中,23,22a OD a OE ==a DE 25=,则由面积关系得a DE OE OD OM 1030=⋅=。
在Rt ΔOHM 中630sin ==∠OMOH OMH 。
O故面B 1EDF 与 面ABCD 所成的角为630arcsin★★★高考考什么【考点透视】异面直线所成角,直线与平面所成角,求二面角每年必考,作为解答题可能性最大. 【热点透析】 1.转化思想:① ⇔⇔⊥⇔⊥⇔⊥线线平行线面平行面面平行,线线线面面面 ② 将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证3.二面角的平面角的主要作法:①定义 ②三垂线定义 ③ 垂面法 距离【考点透视】判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。
【热点透析】 转化思想:① ⇔⇔⊥⇔⊥⇔⊥线线平行线面平行面面平行,线线线面面面 ; ② 异面直线间的距离转化为平行线面之间的距离, 平行线面、平行面面之间的距离转化为点与面的距离。
2.空间距离则主要是求点到面的距离主要方法: ①体积法; ②直接法,找出点在平面内的射影★★★高考将考什么【范例1】如图,在R t A O B △中,π6O A B ∠=,斜边4A B =.R t A O C △可以通过R t A O B △以直线A O 为轴旋转得到,且二面角B A O C --是直二面角.动点D 的斜边A B 上.(I )求证:平面C O D ⊥平面AO B ;(II )当D 为A B的中点时,求异面直线A O 与C D 所成角的大小;(III )求C D 与平面AO B 所成角的最大值.解法一:(I )由题意,C O A O ⊥,B O A O ⊥,B OC ∴∠是二面角B A O C --是直二面角, 又 二面角B A O C --是直二面角, C O B O ∴⊥,又AO BO O = , C O ∴⊥平面AO B ,又C O ⊂平面C O D .∴平面C O D ⊥平面AO B .(II )作D E O B ⊥,垂足为E ,连结C E (如图),则D E A O ∥,C D E ∴∠是异面直线A O 与C D 所成的角.在R t C O E △中,2C O BO ==,112O E B O ==,CE ∴==又12D E A O ==. ∴在R t C D E △中,tan 3C E CDE D E===.OCA DBE∴异面直线A O 与C D 所成角的大小为arctan3.(III )由(I )知,C O ⊥平面AO B ,C D O ∴∠是C D 与平面AO B 所成的角,且2tan O C C D O ODO D ==.当O D 最小时,C D O ∠最大,这时,O D AB ⊥,垂足为D ,O A O B O D A B== ,tan 3C D O =,C D ∴与平面AO B 所成角的最大值为arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,(01D ,(00O A ∴= ,,(21C D =- , cos O A C DO A C D O AC D ∴<>=,4==. ∴异面直线A O 与C D 所成角的大小为arccos4.(III )同解法一【点晴】本题源于课本,高于课本,不难不繁,体现了通过平移求线线、通过射影求线面角的基本方法。
【变式】如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2.E 、F 分别是线段AB 、BC 上的点,且EB= FB=1.(1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值.解:(I )以A 为原点,1,,AA AD AB 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则有D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2),故)2,2,4(),2,3,1(),0,3,3(11-==-=FD EC DE 设向量),,(z y x n =与平面C 1DE 垂直,则有22tan 36400411220101cos ,)2,0,0(,),2,1,1(0),2,1,1(2),2,2(21023033101011011001=∴=++⨯++⨯+⨯-⨯-==--∴=--=>--=--=∴-==⇒⎭⎬⎫=++=-⇒⎪⎭⎪⎬⎫⊥⊥θθθC DE C AA n CDE AA DE C n n z z z z z n z y x z y x y x EC n DE n 的平面角为二面角所成的角与垂直与平面向量垂直的向量是一个与平面则取其中(II )设EC 1与FD 1所成角为β,则x142122)4(2312223)4(1cos 2222221111=++-⨯++⨯+⨯+-⨯==β【点晴】空间向量在解决含有三维直角的立体几何题中更能体现出它的优点,但必须注意其程序化的过程及计算的公式,本题使用纯几何方法也不难,同学不妨一试。
【范例2】如图,正三棱柱ABC -A1B1C1的所有棱长都为2,D 为CC1中点。
(Ⅰ)求证:AB 1⊥面A 1BD ;(Ⅱ)求二面角A -A1D -B 的大小;分析:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.解答:解法一:(Ⅰ)取B C 中点O ,连结A O .A B C △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B , A O ∴⊥平面11BCC B .连结1B O,在正方形11BB C C中,O D ,分别为1BC C C ,的中点,1B O BD ∴⊥, 1AB BD∴⊥.在正方形11ABB A 中,11AB A B⊥,1AB ∴⊥平面1A B D.(Ⅱ)设1A B 与1A B交于点G ,在平面1A B D中,作1G F A D ⊥于F ,连结A F ,由(Ⅰ)得1AB ⊥平面1A B D .1AF A D∴⊥,A F G ∴∠为二面角1A A DB --的平面角.在1AA D△中,由等面积法可求得5AF =,又112A G AB ==,sin 45AG AFG AF∴===∠.所以二面角1A A D B--的大小为arcsin4.(Ⅲ)1A BD△中,111A BD BD A D A B S ===∴=△1BC D S =△.在正三棱柱中,1A 到平面11BCC B设点C 到平面1A B D的距离为d .由11A BC D C A BDV V --=得11133B C D A B D S S d=△△,12BCD A BDd S ∴==△△.∴点C 到平面1A B D的距离为2.解法二:(Ⅰ)取B C 中点O ,连结A O . A B C △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B , A D ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1O O ,O A 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,,1(120)B ,,,ABC D1A1C1BO F1(12AB ∴=- ,,,(210)BD =- ,,,1(12BA =- ,. 12200AB BD =-++= ,111430AB BA =-+-= ,1AB BD ∴ ⊥,11AB BA⊥. 1AB ∴⊥平面1A B D .(Ⅱ)设平面1A A D的法向量为()x y z =,,n .(11A D =--,,,1(020)AA =,,.AD⊥n ,1A A ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩ ,,nn 020x y y ⎧-+-=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,.令1z =得(1)=,n 为平面1A A D 的一个法向量.由(Ⅰ)知1AB ⊥平面1A B D , 1A B ∴为平面1A B D的法向量.cos <n,1114A B A B A B >===-n n .∴二面角1A A D B --的大小为arccos4.【点晴】由线线、线面、面面的位置寻找满足某些条件的点的位置,它能考查学生分析问题、解决问题的能力,两种方法各有优缺点,在向量方法中注意动点的设法,在方法二中注意用分析法寻找思路。