紫外可见吸收光谱、漫反射光谱和荧光光谱及其应用
- 格式:pdf
- 大小:6.37 MB
- 文档页数:51
现代科学分析方法重点及及解答1.紫外光谱,荧光光谱在材料研究中的应用(1)分子内的电子跃迁有哪几种,吸收最强的跃迁是什么跃迁?形成单键的σ电子;形成双键的π电子;未成对的孤对电子n电子。
成键轨道σ、π;反键轨道σ*、π* ;非键轨道n 。
1)、ς-ς* 跃迁它需要的能量较高,一般发生在真空紫外光区。
在200 nm左右,其特征是摩尔吸光系数大,为强吸收带。
2)、n-ς*跃迁实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区3)、π→π*跃迁π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁差不多。
200nm左右,吸收强度大,强吸收。
4)、n→π*跃迁n电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量较小,吸收峰在200 ~ 400 nm左右,吸收强度小,弱吸收吸收最强的跃迁是:π→π*跃迁(2)紫外可见吸收光谱在胶体的研究中有重要作用,请举出三个例子来说明,并结合散射现象来讨论二氧化钛胶体和粉末漫反射光谱的差异。
举例:1)、胶体的稳定性,尤其是稀释后的稳定性;2)、胶粒对可见光的散射;3)、测定消光(包括吸收、散射、漫反射等对光强度造成的损失)稀释条件下,胶粒尺寸小于光波长的1/20,瑞利散射可忽略。
4)、估算晶粒的大小。
5)、尺寸效应,会发生吸收边的蓝移或是红移,可以用来像是CdS和CdSe的量子点。
差异:当测定二氧化钛的溶胶时,按晶粒尺寸的不同,分为两种情况:1)当d<λ/20时,瑞利散射可以忽略。
2)当d>λ/20时,散射就会十分明显,这样获得是一个消光光谱,而不是吸收光谱,无法测得λonset。
用粉末漫反射光谱可以克服上述缺点,得到一个较好的吸收光谱。
(3)什么是荧光、磷光、光致发光和化学发光?对应的英文名称分别是什么?荧光(Fluorescence):从激发态的最低振动能级返回到基态,不通过内部转换而是光辐射失活,则称为荧光。
紫外可见吸收光谱及荧光光谱分析公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]1. 简述荧光光谱法与紫外-可见光吸收光谱法的原理及两种方法的异同点。
①荧光光谱法原理:原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂KBH4反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。
特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。
②紫外-可见光吸收光谱法的原理:紫外-可见吸收光谱法是利用某些物质的分子吸收190-750nm的辐射来进行分析测定的方法,是基于分子内电子跃迁产生的吸收光谱。
在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。
当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道而这种电子跃迁同内部的结构有密切的关系。
在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种跃迁类型所需要的能量依下列次序减小:σ→σ*>n→σ*>π→π*>n→π*。
当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。
这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态:M(基态)+hv------M*(激发态)由于物质的能量是不连续的,即能量上一量子化的。
只有当入射光的能量(hv)与物质分子的激发态和基态的能量差相等时才能发生吸收:△E=E2-E1= hv=hc/λ而不同的物质分子因其结构的不同而具有不同的量子化能级,即△E 不同,故对光的吸收也不同。
紫外可见漫反射光谱和紫外可见吸收光谱的异同点
紫外可见漫反射光谱和紫外可见吸收光谱是两种常用的光谱分
析技术,它们都可以用于分析物质的结构和性质。
虽然它们都是利用物质对紫外可见光的吸收或反射,但它们之间还存在一些明显的区别。
首先,紫外可见漫反射光谱和紫外可见吸收光谱的测量方式不同。
紫外可见漫反射光谱是以固体或液体样品表面反射出的光为信号,而紫外可见吸收光谱则是以经过样品之后剩余的光为信号。
因此,两种光谱在实验装置和数据处理上有所不同。
其次,紫外可见漫反射光谱和紫外可见吸收光谱的信息含量也不同。
紫外可见漫反射光谱可以得到样品表面的反射率,从而了解样品表面的形态结构和物理性质,如晶体形态、表面粗糙度、透明度等。
而紫外可见吸收光谱则可以得到样品中某些特定的化学键吸收光的
信息,从而了解样品的化学结构和化学性质,如含氧官能团、芳香性结构等。
最后,紫外可见漫反射光谱和紫外可见吸收光谱的实验条件和分析对象也有所不同。
紫外可见漫反射光谱通常适用于固体或液体的表面分析,而紫外可见吸收光谱则适用于固体、液体和气体中的化合物分析。
综上所述,紫外可见漫反射光谱和紫外可见吸收光谱虽然都是利用紫外可见光进行分析,但它们的测量方式、信息含量和适用范围都存在差异。
因此,在使用这两种光谱技术时需要根据具体实验目的和分析对象来选择合适的方法。
紫外光谱与荧光光谱的区别与联系嘿,朋友们!今天咱来唠唠紫外光谱和荧光光谱这俩玩意儿。
你说这紫外光谱啊,就像是个神秘的侦探,能通过对物质吸收紫外线的情况来探究它的秘密。
它能告诉我们物质里都有些啥成分,是不是挺厉害的?就好比你去参加一个聚会,紫外光谱能帮你一眼看穿每个人的独特之处。
那荧光光谱呢,就像是夜晚的萤火虫,闪闪发光,特别显眼。
它能让那些会发光的物质现出原形。
你可以想象一下,在一个黑黑的屋子里,只有那些有荧光特性的东西在那里亮闪闪的,多有意思呀!它们俩有啥区别呢?首先啊,紫外光谱关注的是吸收,而荧光光谱关注的是发射呀。
一个是看物质吸收了啥紫外线,一个是看物质发出了啥光。
这就好像一个人擅长倾听别人说话,另一个人擅长自己表达一样,各有各的本事呢!再说说它们的联系吧,它们就像是一对好兄弟,经常一起出现呢。
有时候知道了紫外光谱的情况,就能猜到荧光光谱大概会是啥样;反过来也一样。
就跟你知道了一个人的性格,大概也能猜到他在某些事情上的反应差不多。
你看啊,在化学研究里,要是没有这俩家伙帮忙,那得有多难啊!就好像你在黑暗中摸索,没有一点亮光。
它们能让我们更清楚地了解物质的性质和结构,为我们打开一扇又一扇科学的大门。
而且啊,在实际应用中,它们的作用可大了去了。
比如在医学上,可以用它们来检测疾病;在环境监测上,能帮我们发现那些有害的物质。
这不就像是我们生活中的好帮手吗?总之啊,紫外光谱和荧光光谱,一个像侦探,一个像萤火虫,它们各有特点,又紧密相连。
它们是科学世界里的宝贝,为我们的探索和发现提供了强大的助力。
没有它们,我们的科学研究可就没那么精彩啦!所以说,我们可得好好珍惜它们,让它们发挥出更大的作用呀!。
简述五种光谱法的原理光谱法是一种常用的分析技术,常常应用于化学、物理和生物学等领域。
根据不同原理和应用领域的不同,可将光谱法分为多种类型。
下面就详细介绍五种常见的光谱法及其原理。
一、紫外-可见吸收光谱紫外-可见吸收光谱是一种测量样品在可见光和紫外光区域吸收的技术。
在该技术中,用一束具有连续波长的光照射样品,然后检测透射光,通过计算样品吸收的光量,可以推断出样品分子的化学结构。
紫外-可见吸收光谱利用的原理是,当样品中的分子吸收可见光或紫外光时,其电子能级会发生跃迁,这个跃迁与分子的化学成分有关,因此,可以通过测量样品吸收的光谱来推断其化学成分。
二、荧光光谱荧光光谱是一种利用样品在受到特定波长激发后发出荧光的技术。
在该技术中,样品收到特定波长的激发光后,会发生电子从基态跃迁到激发态,然后再跃迁回原来的基态时发出荧光。
样品发出的荧光光谱与其分子结构有关,可以用来分析样品的成分和活性。
荧光光谱利用的原理是,荧光发生的条件是样品中存在能级差异,当分子处于激发态时,电子具有更高的能量,可以通过荧光现象发射短波长的光,从而生成荧光光谱。
三、原子吸收光谱原子吸收光谱是一种测量样品中金属和金属离子浓度的技术。
在该技术中,根据不同原子的能级结构,通过特定波长的光激发分子中的特定原子,然后测量样品透射光的强度,从而推断样品中特定原子的浓度。
原子吸收光谱利用的原理是,输入特定波长的光激发样品中的原子,当样品中的特定原子吸收更多的光时,其原子的能级结构会发生变化,从而改变吸收光的强度,因此可以通过测量吸收光的强度来推断样品中特定原子的浓度。
四、红外光谱红外光谱是一种基于样品吸收红外光的技术。
在该技术中,样品收到具有一定波长的红外光后,吸收光的振动能量与样品中的官能团的振动能量有关。
从而,可以通过分析样品吸收红外光的振动频率,推断出样品中所包含的官能团。
红外光谱利用的原理是,各种原子或原子团具有强烈的吸收红外辐射的振动能力,这种振动能力取决于其分子结构的特定配置,因此可以通过测量样品吸收的红外辐射的振动频率和强度来推断样品中的分子结构。