一元二次方程的解法(综合)
- 格式:doc
- 大小:316.50 KB
- 文档页数:9
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程的解法(一)直接开平方法例:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2总结:把一个一元二次方程“降次”,转化为两个一元一次方程.•这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.若p<0则方程无解。
练习:一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根二、填空题1.若8x2-16=0,则x的值是_________.a +b2-12b+36=0,那么ab的值是_______.2.如果a、b为实数,满足34三、综合提高题1.解关于x的方程(x+m)2=n.(二)、配方法1、解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?总结:通过配成完全平方形式来解一元二次方程的方法,叫配方法.通过配方使左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程配方法解一元二次方程的一般步骤:(1)将方程化为一般形式;(2)二次项系数化为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)2x2-2x-12=0例2.用配方法解方程:ax2+bx+c=0(a≠0)练习:一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或93.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=109二、填空题1.方程x2+4x-5=0的解是________.2.代数式2221x xx---的值为0,则x的值为________.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0 (2)x2+3=23x2.求证:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是正数(三)公式法一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=242b b ac a-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
第08讲 一元二次方程求根公式及解方程综合【知识梳理】一:一元二次方程求根公式1、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b ac x a a -+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac -≥时,22404b ac a -≥利用开平方法,得:2b x a += 即:x = ②当240b ac -<时,22404b ac a -< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b ac x a a -+=左右两边的值相等,所以原方程没有实数根.2、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac -≥时,有两个实数根:1x =,2x 这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式.3、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠);②确定a 、b 、c 的值;③求出24b ac -的值(或代数式);④若240b ac -≥,则把a 、b 、c 及24b ac -的值代入求根公式,求出1x 、2x ;若240b ac -<,则方程无解.二:一元二次方程解法综合①开平方法:形如20 (0)ax c a +=≠及2()0 (0)a x k c a ++=≠的一元二次方程,移项后直接开平方法解方程.②因式分解法:通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,从而把解一元二次方程的问题转化为解一元一次方程的问题,即:若0A B ⋅=,则0A =或0B =.③配方法:通过添项或拆项,把方程左边配成完全平方式,剩余的常数项全部移到方程右边,再通过开平方法求出方程的解 即:222222440()0()2424b b ac b b ac ax bx c a x x a a a a --++=⇒+-=⇒+=,再用开平方法求解. ④公式法:用求根公式解一元二次方程一元二次方程20 (0)ax bx c a ++=≠,当240b ac -≥时,有两个实数根:12 x x ==,【考点剖析】题型一:一元二次方程求根公式例1.求下列方程中24b ac -的值:(1)220x x -=;(2)2220x x --+=;(3)224(32)26x x x -+=-;(42+.【变式1】用公式法解下列方程:(1)2270x x -+=;(2)211042x x -=.【变式2】用公式法解下列方程:(1)2320x x +-=;(2)25610x x -++=.【变式3】用公式法解下列方程:(1)(24)58x x x -=-;(2)2(53)(1)(1)5x x x -+=++.【变式4】用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +-=;(2)22(3)(31)(23)1552x x x x +--+-=.【变式5】用公式法解下列方程:(1)291x +=;(220+-.【变式6】用公式法解方程:21)30x x ++-.【变式7】当x 为何值时,多项式21122x x +与220x +的值相等?题型二:一元二次方程解法综合例2.口答下列方程的根:(1)(2)0x x +=;(2)(1)(3)0x x --=;(3)(32)(4)0x x +-=;(4)()()0x m x n -+=.【变式1】用开平方法解下列方程:(1)21(3)63x +=;(2)224(1)(2)x x +=-.【变式2】用因式分解法解下列方程:(1)23)x x =;(2)2(21)(21)0x x x ---=.【变式3】用因式分解法解下列方程:(1)23250x x -+-=; (2)2184033x x ++=;(3)(1)(2)10x x -+=; (4)(31)(1)(41)(1)x x x x +-=--.【变式4】用配方法解下列方程:(1)213402x x ++=;(2)263150x x --=.【变式5】用配方法解下列关于x 的方程:(1)230x x t +-=;(2)220ax x ++=(0a ≠).【变式6】用公式法解下列方程:(1)2356x x =+;(2)2(3)(28)1025x x x +++=.【变式7】用公式法解下列方程:(120x -=;(2)210.20.3020x x -+=;(3)226(21)2x x x -++=-.【变式8】用公式法解下列关于x 的方程:(1)20x bx c --=; (2)2100.1a x a -=.【变式9】用适当方法解下列方程:(1)2(21)9x -=; (2)212455250x x --=;(3)22(31)(1)0x x --+=;(4)2(2)(2)0x x x -+-=;(5)21102x -+=; (6)20.30.50.3 2.1x x x +=+.【变式10】用因式分解法和公式法2种方法解方程:2222x -+.【变式11】如果对于任意两个实数 a b 、,定义:2a b a b =+.试解方程:2(2)210x x +=.【变式12】.已知2220x x --=,求代数式2(1)(3)(3)(3)(1)x x x x x -++-+--的值.【过关检测】一.选择题(共6小题)1.(2020秋•浦东新区校级期末)方程(x +1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .x 1=﹣4,x 2=22.(2023春•浦东新区期末)方程2x 2﹣2=0的解是( )A .x =﹣1B .x =0C .x =1D .x =±1.3.(2022春•上海期中)下列关于x 的方程一定有实数根的是( )A .ax +1=0B .ax 2+1=0C .x +a =0D .x 2+a =04.(2021秋•奉贤区校级期末)用配方法解方程x 2+5x +2=0时,下列变形正确的是( )A .B .C .D .5.(2022秋•奉贤区校级期中)要使方程ax 2+b =0有实数根,则条件是( )A .a ≠0,b >0B .a ≠0,b <0C .a ≠0,a ,b 异号或b =0D .a ≠0,b ≤06.(2020秋•杨浦区校级月考)若方程(2016x )2﹣2015•2017x ﹣1=0较大的根为m ,方程x 2+2015x ﹣2016=0较小的根为n,则m﹣n=()A.2016B.2017C.D.二.填空题(共12小题)7.(2022秋•青浦区校级期末)方程x2=3的根是.8.(2022秋•长宁区校级期中)一元二次方程x2=2x的根是.9.(2022秋•虹口区校级期中)方程(x﹣2)2=0的解是.10.(2022秋•宝山区校级期中)方程x2﹣5x=4的根是.11.(2022秋•闵行区校级期中)已知实数x,y满足(x2+y2)(x2+y2﹣7)=8,那么x2+y2=.12.(2022秋•浦东新区校级月考)若m、n为实数,且(m2+n2)(m2﹣1+n2)=30,则m2+n2=.13.(2023春•长宁区校级月考)把二次方程x2﹣2xy﹣8y2=0化成两个一次方程,那么这两个一次方程分别是和.14.(2021秋•奉贤区校级期末)方程x(3x+2)﹣6(3x+2)=0的根是.15.(2022•普陀区二模)如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是.16.(2021秋•宝山区期末)方程2(x﹣3)=x(x﹣3)的根为.17.(2022秋•静安区校级期中)对于两个不相等的实数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=x2﹣2的解为.18.(2022秋•奉贤区校级期中)方程x2+x﹣1=0的根是.三.解答题(共12小题)19.(2023春•杨浦区期中)解关于x的方程:(k2﹣4)x2﹣(5k﹣2)x+6=0.20.(2022秋•徐汇区校级期末)解方程:y+=.21.(2022秋•闵行区校级期中)解方程:x2+3x=222.(2022秋•奉贤区期中)解方程:(x﹣2)(x+4)=1.23.(2022秋•嘉定区月考)解方程:4x2﹣(x﹣2)2=11.24.(2023春•虹口区期末)解方程:x2﹣4x=9996.25.(2022秋•浦东新区期中)解方程:.26.(2022秋•虹口区校级期中)解关于x的方程:ax2+4x﹣6=0.27.(2022秋•虹口区校级期中)解关于x的方程:(a﹣b+c)x2+2ax+(a+b﹣c)=0.28.(2022秋•黄浦区校级月考)解方程:2x2+4x﹣1=0.29.(2022秋•黄浦区校级期末)用配方法解方程:x2﹣4x﹣2=0.30.(2022秋•闵行区期中)已知:a、b是实数,且满足+|b+2|=0,求关于x的一元二次方程ax2+bx+=0的根.。
一元二次方程解法,易错,综合题型一、类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1-2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝ ⎛⎭⎪⎫t -742=8116D .3x 2-4x -2=0化为⎝ ⎛⎭⎪⎫x -232=1093.利用配方法解下列方程:(1)(淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二配方法求最值或证明4.代数式x2-4x+5的最小值是()A.-1 B.1 C.2 D.55.下列关于多项式-2x2+8x+5的说法正确的是()A.有最大值13 B.有最小值-3C.有最大值37 D.有最小值16.(夏津县月考)求证:代数式3x2-6x+9的值恒为正数.7.若M=10a2+2b2-7a+6,N=a2+2b2+5a+1,试说明无论a,b为何值,总有M>N.◆类型三完全平方式中的配方8.如果多项式x2-2mx+1是完全平方式,则m的值为()A.-1 B.1 C.±1 D.±29.若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()A.-9或11 B.-7或8C.-8或9 D.-6或7◆类型四利用配方构成非负数求值10.已知m2+n2+2m-6n+10=0,则m+n的值为()A.3 B.-1 C.2 D.-211.已知x2+y2-4x+6y+13=0,求(x+y)2016的值.二、类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法一、十字相乘法方法点拨:例如:解方程:x2+3x-4=0.第1种拆法:4x-x=3x(正确),第2种拆法:2x-2x=0(错误),所以x2+3x-4=(x+4)(x-1)=0,即x+4=0或x-1=0,所以x1=-4,x2=1.2.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程:(1)x2-5x-6=0;(2)x2+9x-36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_______.5.解方程:(x2+5x+1)(x2+5x+7)=7.三、易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(江都区期中)若关于x 的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或03.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值;(2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三利用根与系数关系求值时,忽略“Δ≥0”7.(朝阳中考)关于x的一元二次方程x2+kx+k+1=0的两根分别为x1,x2,且x21+x22=1,则k的值为_______.【易错2】8.已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m的值.【易错2】◆类型四与三角形结合时忘记取舍9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的根,则这个三角形的周长为()A.11 B.17C.17或19 D.1910.在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.四、考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二 一元二次方程与一次函数的 综合8.(泸州中考)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是( )9.(安顺中考)若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过( )A .第四象限B .第三象限C .第二象限D .第一象限10.(葫芦岛中考)已知k 、b 是一元二次方程(2x +1)(3x -1)=0的两个根,且k >b ,则函数y =kx +b 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是______.◆类型三 一元二次方程与二次根式的综合12.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( ) A .m >52 B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠213.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是______.一、类比归纳专题:配方法的应用答案:二、类比归纳专题:一元二次方程的解法参考答案1.解:(1)移项,得⎝⎛⎭⎫x -522=14,两边开平方,得x -52=±14,即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2,∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24;|(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0,∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0,∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3.4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x=0或x+5=0,∴x1=0,x2=-5;当t=-7时,x2+5x+1=-7,x2+5x+8=0,∴b2-4ac=52-4×1×8<0,此时方程无实数根.∴原方程的解为x1=0,x2=-5.三、易错易混专题:一元二次方程中的易错问题参考答案四、考点综合专题:一元二次方程与其他知识的综合答案:12.B 13.。
一元二次方程解法【知识梳理】1. 对一元二次方程的概念及根的考察;2. 一元二次方程的求解;一元二次方程的解法一元二次方程的求解的最根本的思路是“降次”.(1)直接开方法:()m x m m x ±=⇒≥=,02(2)配方法:02=++c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ (3)求根公式法:条件()04,02≥-≠ac b a 且 aac b b x 242-±-= (4)因式分解法:()()021=--x x x x一元二次方程的求解直接开方法:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±p 转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=±p ,达到降次转化之目的.若p <0则方程无解。
(注:两边同时开平方的时候记得不要忘记加上±号,两根相等时记得要写成x 1=x 2=…;而不是x= ) 例1:直接开方解方程:2x 2-8=0 3592=-x ()0962=-+x配方法:1)现将已知方程化为一般形式;2)化二次项系数为1;3)常数项移到右边;4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±q ;如果q <0,方程无实根. 例1:配方法解方程0462=++x x 03422=-+x x 0142=++x x例2. 试说明:无论x 取何值,代数式542+-x x 的值总大于0,再求出当x 取何值时,代数式542+-x x 的值最小?最小值是多少?公式法(用公式法解一元二次方程是记得要先把方程化成一般式)要点:找出a,b,c 判断:ac b 42-=∆ 应用:aac b b x 242-±-= 例1、用公式法解下列方程(1)解方程x 2-2x-1=0 (2)解方程:-x 2+3x-2=0;变式:用公式法解下列方程(1)3x 2+2x-5=0 (2) x 222-x+1=0.不解方程说明方程根的情况(1) x 2+x-3=0 (2)x (x+8)=16.因式分解的方法:提公因式法、公式法和十字相乘法.1.乘法公式:(1)平方差公式:22()()a b a b a b +-=-;(2)完全平方公式:222()2a b a ab b +=++;222()2a b a ab b -=-+.2.十字相乘法:(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成:()()()b x a x ab x b a x q px x ++=+++=++22. 题型一:因式分解【例1】(1))()(3x 3x x +=+; (2) 016x 2=— (3)09a 1242=++a ;题型二:十字相乘法分解因式【例1】(1)232x x ++=0; (2)212x x --=0; (3)2215x x +-=0.题型三:解一元二次方程【例1】用适当的方法解下列方程:(1)2410x x ++=; (2)210x x +-=; (3)22310x x -+=.【变式练习1】解下列一元二次方程:(1)21304x x ++=; (2)2420x x -+=;(3)2200x x --=; (4)24920x x -+=.【作业布置】(时间:20分;总分:60)用合适的方法解下列方程.(1)3y 2-6y=0 (2)x 2+2x-3=0.(3)x 2+35=12x (4)(x-3)2+9(x-3)=0(5)220x x -=; (6)2430x x +-=;(7) 22)3(4)23(-=+x x (8) )2(5)2(3+=+x x x。
一元二次方程的解法汇总一元二次方程是一个常见的数学问题,它的解法有多种方法。
在本文中,我将汇总一些常用的解法,并对其进行详细介绍。
一、因式分解法一元二次方程的一种解法是因式分解法。
通过将方程进行因式分解,可以得到方程的解。
首先,将一元二次方程转化为标准形式ax^2+bx+c=0,其中a、b、c为常数。
然后,通过因式分解的方法将方程进行分解,得到方程的解。
二、配方法配方法是解一元二次方程的另一种常用方法。
通过将方程进行配方,可以得到一个完全平方。
首先,将一元二次方程转化为标准形式ax^2+bx+c=0,其中a、b、c为常数。
然后,通过配方的方法将方程进行变形,得到一个完全平方。
最后,通过求解完全平方,可以得到方程的解。
三、求根公式求根公式是解一元二次方程的一种常用方法。
通过求根公式,可以直接计算出方程的解。
一元二次方程的求根公式为x=(-b±√(b^2-4ac))/(2a)。
其中,a、b、c为方程的系数。
将方程的系数代入求根公式中,即可得到方程的解。
四、图像法图像法是解一元二次方程的一种直观方法。
通过绘制方程的图像,可以直观地找到方程的解。
首先,将一元二次方程转化为标准形式ax^2+bx+c=0,其中a、b、c为常数。
然后,通过绘制方程的图像,可以观察到方程的解在坐标系中的位置。
最后,根据图像的形状和位置,可以确定方程的解。
五、完全平方公式完全平方公式是解一元二次方程的一种简便方法。
通过将方程转化为完全平方的形式,可以直接得到方程的解。
一元二次方程的完全平方公式为(a±√b)^2=a^2±2a√b+b。
将方程进行变形,使其符合完全平方的形式,然后根据完全平方公式,可以直接得到方程的解。
六、求解方法的选择在解一元二次方程时,根据具体的情况选择合适的解法非常重要。
因式分解法适用于方程可以进行因式分解的情况;配方法适用于方程可以通过配方得到完全平方的情况;求根公式适用于一般的一元二次方程;图像法适用于通过观察图像找到方程解的情况;完全平方公式适用于方程可以转化为完全平方的情况。
一元二次方程的解和解法:一、使方程两边相等的未知数的值,就是方程的解。
例如x=2能使方程x 2+5x=16-x 的等号两边的值相等,那么x=2就是x 2+5x=16-x 的解。
二、一元二次方程的解法:(1)直接开方法,适用于能化为)((2)0x a b b +=≥ 的一元二次方程。
例如:x 2=9可用直接开方法得出:x=±3(X+2)2=16可用直接开方法解:X+2=±4 则x=2或者x=-6(2)因式分解法,即把一元二次方程变形为(x+a )(x+b )=0的形式,则(x+a )=0或(x+b )=0例如:x 2+3x+2=0可变形为(x+1)(x+2)=0 则它的解是:(3)配方 法,即把一元二次方程配成)((2)0x a b b +=≥形式,再用直接开方法。
(4)公式法,其中求根公式是242b b ac x a-±-= (b 2-4ac ≥0)三、根的判别式、根与系数的关系:当b 2-4ac >0时,方程有两个不相等的实数根。
当b 2-4ac=0时,方程有两个相等的实数根。
当b 2-4ac <0时,方程有没有的实数根。
如果一元二次方程20(0)ax bx c a ++=≠有两根12,x x 则有1212,b c x x x x a a+=-= 练习:(2012湖北荆州)用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16解方程:1、x²-4x+2=0 2、 3 (2X+2)2=48 (直接开方法)一元二次方程0322=--x x 的解为____________;。
一元二次方程的解法综合1. 什么是一元二次方程一元二次方程,听起来是不是有点高大上?其实,简单来说,就是一种数学方程,形如 ( ax^2 + bx + c = 0 ) 的式子。
这里的 ( a )、( b ) 和 ( c ) 是常数,而 ( x ) 是我们要找的“神秘数字”。
说白了,它就像是数学界的小侦探,帮我们找出那些隐藏的数值。
你可能会想,为什么要学这个呢?没错,这个问题绝对是个好问题。
其实,这个方程在我们生活中无处不在。
无论是计算抛物线的轨迹,还是设计一座桥,甚至在你买彩票的时候,都有可能会用到一元二次方程的知识哦。
数学就是这么神奇!2. 解法大揭秘2.1 求根公式法要解这个方程,最常见的方法就是求根公式啦。
公式是这样的:( x = frac{b pmsqrt{b^2 4ac{2a )。
听起来很复杂,但其实就像吃饺子,分步骤来就行!首先,计算( b^2 4ac )。
如果这个结果大于零,那就说明方程有两个不同的实数解;如果等于零,那就是一个解;如果小于零,那就只能和虚数打交道了。
想象一下,你在做一道美味的蛋糕,面粉、糖、鸡蛋混合在一起,如果你搭配得当,肯定能做出一个大大的成功!同样,合理运用求根公式,也能找到理想的解。
2.2 配方完全平方法除了求根公式,还有一种方法叫配方完全平方法,听起来是不是更酷炫?这就像是把一个大块头的蛋糕切成两半,再慢慢调整,最后拼凑成一个完美的形状。
具体步骤是,先把方程整理成 ( (x + p)^2 = q ) 的形式,然后开方就能找到 ( x ) 的值。
这个方法特别适合那些对公式没有感觉的朋友们。
配方法就像是数学中的魔术,让复杂的方程变得简单明了,轻松上手!3. 应用实例3.1 实际问题想象一下,小明在操场上抛球。
他把球抛出后,球的高度 ( h ) 和时间 ( t ) 的关系可以用一元二次方程来描述。
假设这个方程是 ( 4.9t^2 + 10t + 1 = 0 )。