高等数学教学教案§5. 7 反常积分
- 格式:doc
- 大小:193.50 KB
- 文档页数:4
第十一章 反常积分1 反常积分概念一、问题提出定积分 1) 积分区间的有穷性2) 被积函数的有界性如果函数(被积函数)的积分区间为无穷区间或被积函数在积分区间上无界,应如何讨论它们的积分,这类积分称为反常积分(或广义积分,Cauchy-Riemann 积分, C-R 积分), 而上一章的定积分称为正常积分.例 1 (第二宇宙速度) 例 2 (流水时间)二、两类反常积分的定义定义1 设函数f 定义在无穷区间[,)a +∞上, 且在任何有限区间[,]a u 上可积, 如果存在极限lim()uau f x dx J →+∞=⎰, 那么称极限J 为函数f 在[,)a +∞上的无穷限反常积分(无穷积分),记作()aJ f x dx +∞=⎰,并称()af x dx +∞⎰收敛, 有时也称f 在[,)a +∞上(Cauchy-Riemann )可积; 反之,若上述极限不存在, 则称()af x dx +∞⎰发散.注 1()af x dx +∞⎰收敛的几何意义:若f 在[,)a +∞上为非负连续函数,则介于曲线()y f x =,直线x a =及x 轴之间一块向右无限延伸的区域有面积J .注 2 类似可定义()lim()aauu f x dx f x dx -∞→-∞=⎰⎰()()()aaf x dx f x dx f x dx +∞+∞-∞-∞=+⎰⎰⎰lim()lim()uaauu u f x dx f x dx →+∞→-∞=+⎰⎰例 3 1) 讨论积分211dx x +∞+⎰,0211dx x -∞+⎰,211dx x +∞-∞+⎰的敛散性.2) 计算积分20125dx x x +∞++⎰.例4 讨论下列积分的敛散性.1) 11pdx x +∞⎰; 2) 21(ln )pdx x x +∞⎰.注3 设f 在[,)a +∞上连续,F 为f 的一个原函数,则()lim ()lim ()()()()uaau u f x dx f x dx F u F a F F a +∞→+∞→+∞==-=+∞-⎰⎰例 5 讨论sin axdx +∞⎰的敛散性注 4 ()f x dx +∞-∞⎰为两个非正常积分之和,而非lim()uuu f x dx -→+∞⎰.定义 2 设函数f 定义在区间(,]a b 上,在点a 的任一右邻域内无界, 但在任意内闭区间[,](,]b a b α⊂上有界且可积. 如果存在极限lim ()bu u af x dx J +→=⎰,那么称此极限为无界函数f 在(,]a b 上的反常积分,记作()baJ f x dx =⎰,并称反常积分()baf x dx ⎰收敛,如果上述极限不存在,则称反常积分()baf x dx ⎰发散.在上述定义中函数f 在点a 的附近无界, 我们称a 为f 的瑕点, 而无界函数的反常积分()ba f x dx ⎰也称为瑕积分.注 5 1) 类似可定义瑕点为b 的瑕积分()lim ()buaau bf x dx f x dx -→=⎰⎰其中f 在b 的任一左邻域内无界,且在任何内闭区间[,][,)a a b β⊂上可积.2) 若,a b 都为f 的瑕点,且在任一内闭子区间[,](,)u v a b ⊂上可积,此时可定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()c vucu av bf x dx f x dx +-→→=+⎰⎰其中c 为(,)a b 内的任一实数,当且仅当右式两个瑕积分都收敛时,左式的瑕积分收敛.3) 若f 的瑕点(,)c a b ∈,则定义瑕积分()()()bc b aacf x dx f x dx f x dx =+⎰⎰⎰lim ()lim ()u bavu cv cf x dx f x dx +-→→=+⎰⎰其中f 在[,)(,]a c c b ⋃上有定义,在c 的任一邻域内无界, 且在任何闭子区间[,][,)a u a c ⊂, [,](,]v b c b ⊂都可积,当且仅当右边两个瑕积分收敛时, 左边的瑕积分收敛.例 6 1) 计算瑕积分1⎰2) 讨论瑕积分1pdxx ⎰的敛散性(p >0)3) 讨论瑕积分0p dxx+∞⎰的敛散性(p >0) 4) 24=⎰5) 1⎰三、两类反常积分的关系设()f x 连续,b 为瑕点,则11211()()t b xbab af x dx f b dt t t=-+∞-=-⎰⎰瑕积分可转化为无穷积分设0a >,1121()()t xaadtg x dx g t t =+∞=-⎰⎰12011()a g dt t t =⎰无穷积分可转化为瑕积分由此可见,瑕积分与无穷积分可相互转化,因而它们有平行的理论和性质. 例 7 讨论下列反常积分是否收敛 1) 2x xe dx +∞--∞⎰2) cos x e xdx +∞--∞⎰3) 2⎰4) 1(1)(ln )pdxp x x >⎰5) 1⎰例 8 举例说明瑕积分()b af x dx ⎰收敛,2()baf x dx ⎰未必收敛.例 9 1) 证明:若()af x dx +∞⎰收敛,且lim ()x f x A →+∞=,则0A =;2) 举例说明: ()af x dx +∞⎰收敛,f 在[,)a +∞上连续,未必有lim ()0x f x →+∞=成立.例 10 若f 在[,)a +∞上可导,且()af x dx +∞⎰与()af x dx +∞'⎰收敛,则lim ()0x f x →+∞=.2 无穷积分的性质与收敛判别一、 无穷积分性质由()af x dx +∞⎰收敛lim ()lim()duau u F u f x dx →+∞→+∞⇔=⎰存在, 根据函数极限收敛的Cauchy 准则,我们有定理 1 (Cauchy 准则) 无穷积分()af x dx +∞⎰收敛⇔120,,,:G a u u G ε∀>∃≥∀>1221()()()u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 (线性性质) 若1()af x dx +∞⎰和2()af x dx +∞⎰都收敛, 12,k k 为任意常数, 则1122[()()]ak f x k f x dx +∞+⎰也收敛,且11221122[()()]()()aaak f x k f x dx k f x dx k f x dx +∞+∞+∞+=+⎰⎰⎰.性质2 (区间可加性) 若f 在任何有限区间[,]a u 上可积,b a >,则()af x dx +∞⎰与()bf x dx +∞⎰同敛散,且()()()b aabf x dx f x dx f x dx +∞+∞=+⎰⎰⎰.定理2 无穷积分()af x dx +∞⎰收敛0,,:()uG a u G f x dx εε+∞⇔∀>∃≥><⎰当.性质 3 (绝对收敛) 若f 在任何有限区间[,]a u 上可积,且()af x dx +∞⎰收敛,则()af x dx +∞⎰也收敛,且()()aaf x dx f x dx +∞+∞≤⎰⎰.定义1 若()af x dx +∞⎰收敛, 则称()af x dx +∞⎰绝对收敛.性质3 说明绝对收敛的无穷积分其本身一定收敛,而反之未必成立. 我们称收敛而不绝对收敛的无穷积分为条件收敛的无穷积分.性质4 (换元) 设:[,)[,)a ϕα+∞→+∞是光滑严格单调映射,且()a ϕα=,lim ()t t ϕ→+∞=+∞. 若()af x dx +∞⎰收敛,则(())()f t t dt αϕϕ+∞'⎰收敛,且()(())()af x dx f t t dt αϕϕ+∞+∞'=⎰⎰.性质5 (分部积分) 设,f g 为[,)a +∞上的光滑函数, 且lim ()()x f x g x →+∞⋅存在, 则()()af xg x dx +∞'⋅⎰与()()af xg x dx +∞'⎰同敛散,且它们收敛时有等式()()()()()()aaaf xg x dx f x g x f x g x dx +∞+∞+∞''⋅=⋅-⋅⎰⎰其中()()lim ()()()()ax f x g x f x g x f a g a +∞→+∞⋅=-.二、 无穷积分判别法1、比较判别法 (绝对收敛判别法)定理 3 (比较法则) 设定义在[,)a +∞上的两个函数f 和g 在任何有限区间[,]a u 上可积,且()()f x g x ≤,[,)x a ∈+∞. 则i) 当()ag x dx +∞⎰收敛时, 必有()af x dx +∞⎰收敛;ii) 当()af x dx +∞⎰发散时, 必有()ag x dx +∞⎰发散.例 1 判断积分22sin(1)5x dx x+∞++⎰的敛散性.1) Cauchy 判别法推论1 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,则有i) 当1(),[,)1p f x x a p x≤∈+∞>且时,()a f x dx +∞⎰收敛. ii) 当1(),[,)1p f x x a p x≥∈+∞≤且时,()a f x dx +∞⎰发散.2) 比较原则的极限形式推论 2 设f 和g 都在任何区间[,]a u 上可积, ()0g x >, 且()lim ()x f x c g x →+∞=. i) 当0c <<+∞时,()af x dx +∞⎰与()ag x dx +∞⎰同敛散;ii) 当0c =时,若()ag x dx +∞⎰收敛,则()af x dx +∞⎰收敛;iii) 当c =+∞时,若()ag x dx +∞⎰发散,则()af x dx +∞⎰发散.推论 3 设f 定义在[,)(0)a a +∞>上,且在任何有限区间[,]a u 上可积,且lim ()p x x f x λ→+∞=,则有i) 当1p >,0λ≤<+∞时,()af x dx +∞⎰收敛; ii) 当1p ≤,0λ<≤+∞时,()af x dx +∞⎰发散.例 2 讨论下列无穷积分的敛散性:1) 1x x e dx α-⎰2)21+∞⎰2、 Dirichlet 和Abel 判别法定理4 (Dirichlet ) 若()()ua F u f x dx =⎰在[,)a +∞上有界, ()g x 在[,)a +∞上x →+∞时单调趋于0, 则()()a f x g x dx +∞⋅⎰收敛.定理5 (Abel ) 若()af x dx +∞⎰收敛, ()g x 在[,)a +∞上单调有界, 则()()af xg x dx +∞⋅⎰收敛.定理6 (Dirichlet- Abel ) 设无穷积分()()()aaf x dx u x dv x +∞+∞=⎰⎰, 其中()u x单调, 且(),()u x v x 中一个有界, 另一个在x →+∞时趋于0, 则()af x dx +∞⎰收敛.例 3 讨论无穷积分1sin p xdx x +∞⎰与1cos (0)px dx p x +∞>⎰的敛散性.例 4 证明下列积分条件收敛.1) 21sin x dx +∞⎰,21cos x dx +∞⎰;2) 41sin x x dx +∞⋅⎰;3)1+∞⎰. 例 5 若()af x dx +∞⎰绝对收敛. 且lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.例6 设,,f g h 为[,)a +∞上三个连续函数,且()()()h x f x g x ≤≤. 证明:如果()ah x dx +∞⎰,()ag x dx +∞⎰收敛,那么()af x dx +∞⎰亦收敛.例 7 证明: 若f 在[,)a +∞上一致连续,且()af x dx +∞⎰收敛,则lim ()0x f x →+∞=.例 8 讨论下列无穷积分的敛散性1) 1ln n xdx x+∞⎰2) 31arctan 1x xdx x +∞+⎰3)21x edx +∞-⎰4) 1ln(1)px dx x +∞+⎰5) 0ln(1)px dx p x+∞+ (>0)⎰6) 0xdx ⎰7)21cos x e xdx +∞-⎰8) 0sin arctan xxdx x+∞⎰例9 证明:若f 是[,)a +∞上的单调函数,()af x dx +∞⎰收敛,则lim ()0x f x →+∞=, 且1()()f x o x x= , →+∞.注: 由()lim 1()x f x g x →+∞=, ()ag x dx +∞⎰收敛, 推不出()af x dx +∞⎰收敛.3 瑕积分的性质与判别法一、 瑕积分的性质 (瑕点为x a =)定理1 瑕积分()ba f x dx ⎰收敛0,0,εδ⇔∀>∃>当12,(,)u u a a δ∈+时,2121()()()bbu u u u f x dx f x dx f x dx ε-=<⎰⎰⎰.性质1 设函数1f , 2f 的瑕点同为a ,1k ,2k 为常数,则当瑕积分1()baf x dx ⎰,2()baf x dx ⎰都收敛时,瑕积分1122[()()]bak f x k f x dx +⎰必收敛,且11221122[()()]()()bb baaak f x k f x dx k f x dx k f x dx +=+⎰⎰⎰.性质2 设函数f 的瑕点为x a =,(,)c a b ∈, 则瑕积分()baf x dx ⎰与()caf x dx ⎰同敛散且()()()b c b aacf x dx f x dx f x dx =+⎰⎰⎰, 其中()bcf x dx ⎰为定积分.性质3 若f 的瑕点为a , f 在(,]a b 的任一闭子区间[,]u b 上可积, 则当()baf x dx ⎰收敛时,()baf x dx ⎰必收敛且()()bbaaf x dx f x dx ≤⎰⎰.当()baf x dx ⎰收敛时,称()baf x dx ⎰为绝对收敛; 而称本身收敛但不绝对收敛的瑕积分为条件收敛的瑕积分.二、瑕积分判别法定理2 (比较原则) 定义在(,]a b 上的两个函数,f g , 瑕点同为a , 在任闭子区间[,](,]u b a b ⊂上可积,且()()(,]f x g x x a b ≤ ∈,则i) 当()bag x dx ⎰收敛时,()baf x dx ⎰必收敛 (从而()baf x dx ⎰也收敛) ;ii) 当()baf x dx ⎰发散时,()bag x dx ⎰发散.推论1 设f 定义在(,]a b 上,瑕点为a ,且在任何闭子区间[,](,]u b a b ⊂上可积,则 i) 当1()01()pf x p x a ≤, <<-时, ()baf x dx ⎰收敛;ii) 当1()1()pf x p x a ≥, ≥-时, ()baf x dx ⎰发散.推论2 若()0g x >,且()lim ()x af x cg x +→=, 则 i) 当0c <<+∞时,()b af x dx ⎰与()bag x dx ⎰同敛散;ii) 当0c =,()b ag x dx ⎰收敛时,()baf x dx ⎰收敛;iii) 当c =+∞,()b ag x dx ⎰发散时, ()b af x dx ⎰发散.推论3 在推论2的条件下,若lim()()p x ax a f x λ+→-=, 则 i) 01,0p λ<<≤<+∞时, ()baf x dx ⎰收敛;ii) 1,0p λ≥<≤+∞时, ()baf x dx ⎰发散.定理 3 (Dirichlet- Abel ) 设瑕积分()()()b baaf x dx u x dv x =⎰⎰有唯一奇点a ,其中()u x 单调, 且(),()u x v x 中一个有界, 另一个在x a +→时趋于0, 则()baf x dx ⎰收敛.例 1 讨论下列瑕积分的敛散性.1) 10⎰2) 21ln dx x⎰3) 130arctan 1xdx x -⎰4) 201cos mxdx xπ-⎰5) 1⎰6) 10⎰7) 20(,0)sin cos p q dxp q x xπ>⎰例 2 讨论反常积分1()1x x dx xα-+∞Φ=+⎰的敛散性.例 3 证明瑕积分20ln(sin )J x dx π=⎰收敛,且ln 22J π=-,同时利用上述结果证明:1) 2ln(sin )ln 22d ππθθθ=-⎰2) 0sin 2ln 21cos d πθθθπθ=-⎰三、反常积分与正常积分的区别1、 Riemann 积分 f 在[,]a b 上可积,则f 在[,]a b 上有界. 无穷积分 f 在[,)a +∞上可积(()af x dx +∞⎰收敛) f ⇒在[,)a +∞上有界.如4()sin f x x x =⋅ 或者 ,()0,n x nf x x n =⎧=⎨≠⎩.2、Riemann 积分 f 在[,]a b 上可积⇒()f x 在[,]a b 上可积,但反之未必, 故Riemann 积分是绝对型积分,而无穷积分 ()f x 在[,)a +∞上可积⇒f 在[,)a +∞上可积,但反之未必, 故Cauchy-Reimann 积分是非绝对型积分, 如sin (),[1,)xf x x x=∈+∞.3、Riemann 积分 ,f g 在[,]a b 上可积⇒f g ⋅在[,]a b 上可积, 而无穷积分 ,f g 在[,)a +∞上可积⇒f g ⋅在[,)a +∞上可积.例4 证明:1) 11111p p x x dx dx x x --+∞=++⎰⎰2) 12π<<⎰3) 设f 在[,)a +∞上连续0a b <<,若lim ()x f x k →+∞=,则()()((0))ln f ax f bx adx f k x b+∞-=-⎰例5 证明: 1) 设f 在[,)a +∞上非负连续, 若0()xf x dx +∞⎰收敛, 则0()f x dx +∞⎰也收敛.2) 设f 在[,)a +∞上连续可微且当x →+∞时,()f x 递减趋于0, 则()f x dx +∞⎰收敛⇔0()xf x dx +∞'⎰收敛.习 题 课例 1 论述题:1) 设f 在(,)-∞+∞上连续,且()f x dx +∞-∞⎰收敛,则()(),()()x x d d f t dt f x f t dt f x dx dx +∞-∞==-⎰⎰. 2) 积分0()f x dx +∞⎰收敛,则lim ()0x f x →+∞=.3) 积分()baf x dx ⎰收敛,则此积分可用和式公式01lim ()ni i T i f x ξ→=∑来计算.4) 若lim ()x f x A →+∞=存在,()af x dx +∞⎰收敛,则0A =.5) 若0()f x dx +∞⎰收敛,lim ()0x f x →+∞=,则2()af x dx +∞⎰必收敛.6) 若()af x dx A +∞=⎰,则lim()nan f x dx A →+∞=⎰,但反之不成立.7) 若()af x dx +∞⎰收敛,g 有界, 则()()af xg x dx +∞⎰收敛.8) 若lim ()AAA f x dx -→+∞⎰存在,则()f x dx +∞-∞⎰收敛.例 2 计算下列无穷积分: 1) 0()x n n I e x dx n N +∞-=∈⎰2) 21dxx x+∞++⎰3) (1)(ln )padxa x x +∞>⎰4) 24011x dx x +∞++⎰5) 31⎰6)1+∞⎰例 3 1) 设1()(2)x x x x ϕ+=-,求321()1()x dx x ϕϕ'+⎰;2) 已知01()cos x x dt tϕ=⎰,求(0)ϕ'.例 4 证明: 0cos 1xdx x+∞+⎰收敛, 且0cos 11xdx x+∞≤+⎰.例 5 讨论下列积分收敛性 1)2301dx x x x +∞+++⎰2)0cos (0)kx e xdx k +∞->⎰3)0ln(1)m x dx x +∞+⎰4)1+∞⎰5)20sin mx dx x +∞⎰6) 01m n x dx x +∞+⎰ 7) 10p x x e dx +∞--⎰ 8) 0cos (0)1n ax dx n x+∞≥+⎰。
无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。
让学生反常积分在一些实际问题中的应运。
二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。
但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。
由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。
三、学习内容分析1.本节的作用和地位通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。
例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。
2.本节主要内容1. 无穷限反常积分的定义与计算方法2. 无穷限反常积分的性质3. 无穷限反常积分的比较审敛法则4. 条件收敛与绝对收敛 3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则; 教学难点:无穷限反常积分的比较审敛法则。
4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。
五、教学策略在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。
六.教学环境网络环境下的多媒体教室与课堂互动。
七、教学过程一、无穷限反常积分的定义定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限 则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作dx x f J a⎰+∞=)(,并称dxx f a ⎰+∞)(收敛.如果极限J dx x f uau =⎰+∞→)(lim不存在,亦称dx x f a ⎰+∞)(发散.类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim )(dx x f dx x f buu b⎰⎰-∞→∞-=对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义:,)()()(dx x f dx x f dx x f a a ⎰⎰⎰+∞∞-∞-+∞+=其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注: dx x f a⎰+∞)(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线)(x f y =,直线ax =以及x 轴之间那一块向右无限延伸的阴影区域有面积J .例1 讨论无穷积分.1)102⎰+∞+x dx ,.1)22⎰∞+∞-+xdx ,.)302⎰+∞-dx xe x 的收敛性. 例2 讨论下列无穷积分的收敛性:⎰+∞1)1p xdx, ;)(ln )22⎰+∞p x x dx 二、无穷积分的性质由定义知道,无穷积分⎰+∞adx x f )(收敛与否,取决于积分上限函数=)(u F ⎰uadx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则. 定理11.1 无穷积分⎰+∞adx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要G u u >21,,便有ε<=-⎰⎰⎰2121)()()(u u u au adx x f dx x f dx x f .此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质1 若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞都收敛,1k ,2k 为任意常数,则[]dx x f k x f k a⎰+∞+)()(2211也收敛,且[]dx x f k dx x f k dx x f k x f k aaa )()()()(22112211⎰⎰⎰+∞+∞+∞+=+.性 质 2 若f 在任何有限区间[u a ,)上可积,且有⎰+∞adx x f )(收敛,则⎰+∞adx x f )(亦必收敛,并有⎰⎰+∞+∞≤aadx x f dx x f )()(.证:⎰+∞adx x f )( 由收敛,根据柯西准则(必要性),任给0>ε,存在G ≥a ,当G u u >>12时,总有⎰⎰≤2121)()(u u u u dx x f dx x f . 利用定积分的绝对值不等式,又有⎰21)(u u dx x f ≤ε<⎰21)(u u dx x f .再由柯西准则(充分性),证得⎰+∞adx x f )(收敛又因⎰uadx x f )(≤⎰uadx x f )(,令+∞→u 取极限,立刻得到不等式.当⎰+∞adx x f )(收敛时,称⎰+∞adx x f )(为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3 若f 在任何有限区间[u a ,]上可积,b a <,则⎰+∞adx x f )(与⎰+∞bdx x f )(同敛态(即同时收敛或同时发散),且有⎰+∞adx x f )(=⎰b adx x f )(+⎰+∞bdx x f )(,性质2相当于定积分的积分区间可加性,由它又可导出⎰+∞adx x f )(收敛的另一充要条件:任给ε>0,存在0≥G ,当u >G 时,总有.)(ε<⎰+∞adx x f .事实上,这可由⎰⎰⎰+∞+∞+=uaudx x f dx x f dx x f )()()(结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于⎰uadx x f )(关于上限u 是单调递增的,因此⎰+∞adx x f )(收敛的充要条件是⎰uadx x f )(存在上界.根据这一分析,便立即导出下述比较判别法:定理11.2 (比较法则) 设定义在[+∞,a )上的两个函数f 和g 都在任何有限区间[u a ,]上可积,且满足 则当⎰+∞adx x g )(收敛时dx x f a⎰+∞)(必收敛(或当dx x f a⎰+∞)(发散时,⎰+∞adx x g )(必发散).例3 讨论dx x x⎰+∞+021sin 的收敛性. 解:由于],0[,111sin 22+∞∈+≤+x x x x ,而2102π=+⎰+∞x dx 为收敛,故dx xx ⎰+∞+021sin 为绝对收敛. 当选用⎰+∞1p xdx作为比较对象⎰+∞a dx x g )(时,比较判别法有如下两个推论(称为柯西判别法). 推论1 设f 定义于[+∞,a ] (0>a ),且在任何有限区间[u a ,]上可积,则有:(i)当 ),[,1)(+∞∈≤a x xx f p ,且1>p 时, dx x f a ⎰+∞)(收敛; (ii)当),[,1)(+∞∈≥a x xx f p 且1≥p 时, dx x f a ⎰+∞)(发散.推论2 设定义于[+∞,a ),在任何有限区间[u a ,.]上可积,且λ=+∞→)(lim x f xpx .则有:(i)当 +∞<≤>λ0,1p 时, dx x f a⎰+∞)(收敛; (ii)当 +∞≤<≤λ0,1p 时,dx x f a⎰+∞)(发散.推论3 若f 和g 都在任何[u a ,)上可积,0)(>x g ,且,)()(lim c x g x f x =+∞→则有(i)当+∞<≤c 0时,由⎰+∞adx x g )(收敛可推知dx x f a ⎰+∞)(也收敛; (ii)当+∞≤<c 0时,由⎰+∞adx x g )(发散可推知dx x f a⎰+∞)(也发散.四、狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法. 定理11.3 (狄利克雷判别法) 若⎰=uadx x f u F )()(在[+∞,a )上有界,)(x g 在[+∞,a )上当+∞→x 时单调趋于0,则无穷积分⎰+∞adx x g x f )()(收敛.定理11.4 (阿贝尔(Abel)判别法) 若⎰+∞adx x f )(收敛,)(x g 在[+∞,a )上单调有界,则无穷积分⎰+∞adx x g x f )()(收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法. 例5 讨论dx x xp ⎰+∞1sin 与)0(cos 1>⎰+∞p dx xx p 的收敛性. 解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论: (i)当p >1时dx x xp ⎰+∞1sin 绝对收敛.这是因为),,[,1sin +∞∈≤a x x x x p p 而⎰+∞1p xdx 当p >1时收敛,故由比较法则推知dx x xp⎰∞+1sin 收敛. (ii)当10≤<p 时dx x x p ⎰+∞1sin 条件收敛.这是因为对任意u ≥1,有2co s 1co s si n 1≤-=⎰u x d x u ,而p x 1当0>p 时单调趋于)(0+∞→x ,故由狄利克雷判别法推知dx x xp ⎰+∞1sin 工当0>p 时总是收敛的. 另一方面,由于),1[,22cos 21sin sin 2+∞∈-=≥x x x x x x x x p ,其中dt ttdx x x ⎰⎰+∞+∞=21cos 2122cos 是收敛的,而⎰+∞12xdx是发散的,因此当10≤<p 时该无穷积分不是绝对收敛的.所以它是条件收敛的. 例6 证明下列无穷积分都是条件收敛的.,sin 12⎰+∞dx x ,cos 12⎰+∞dx xdx x x ⎰+∞14sin证:前两个无穷积分经换元2x t =得到,2sin sin 112dt tt dx x ⎰⎰+∞+∞=.2cos cos 112dt tt dx x ⎰⎰+∞+∞=由例5知它们是条件收敛的.对于第三个无穷积分,经换元2x t =而得⎰⎰+∞+∞=1214sin 21sin dt t dx x x ,它也是条件收敛的.从例6中三个无穷积分的收敛性可以看到,当+∞→x 时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.八、学习评价本节成功向学生讲解了两种定积分的推广即反常积分,尤其对无穷反常积分进行介绍,并对其敛散性及审敛性附带介绍。
第十一章反常积分教学目的:1.深刻理解反常积分的概念及其敛散性的含义;2.熟练掌握无穷积分和瑕积分的性质与敛散性的判别。
教学重点难点:本章的重点是反常积分的含义与性质;难点是反常积分敛散性的判别。
教学时数:8学时§ 1 反常积分概念(2学时)教学目的:深刻理解反常积分的概念。
教学重点难点:反常积分的含义与性质一问题的提出:例(P264).二两类反常积分的定义定义1. 设函数定义在无穷区间上,且在任何有限区间上可积,如果存在极限(1)则称此极限J为函数在上的无穷限反常积分(简称无穷积分),记作,并称收敛.如果极限(1)不存在,为方便起见,亦称发散.定义2. 设函数定义在上,在点的任一右邻域内无界,但在任何内闭区间上有界且可积,如果存在极则称此极限为无界函数在上的反常积分,记作并称反常积分收敛,如果极限不存在,这时也说反常积分发散.例1 ⑴讨论积分 , , 的敛散性 .⑵计算积分.例 2 讨论以下积分的敛散性 :⑴; ⑵.例3 讨论积分的敛散性 .例4判断积分的敛散性 .例5 讨论瑕积分的敛散性 ,并讨论积分的敛散性 .三瑕积分与无穷积分的关系: 设函数连续 , 为瑕点. 有, 把瑕积分化成了无穷积分;设, 有,把无穷积分化成了瑕积分.可见 , 瑕积分与无穷积分可以互化. 因此 ,它们有平行的理论和结果 .§2. 无穷积分的性质与收敛判定(2学时)教学目的:深刻理解反常积分敛散性的含义。
教学重点难点:反常积分敛散性的判别。
一无穷积分的性质⑴在区间上可积 , — Const , 则函数在区间上可积,且.⑵和在区间上可积 , 在区间上可积 , 且.⑶无穷积分收敛的Cauchy准则:Th 积分收敛 .⑷绝对收敛与条件收敛: 定义概念.绝对收敛收敛, ( 证 )但反之不确.绝对型积分与非绝对型积分 .二比较判别法非负函数无穷积分判敛法: 对非负函数,有↗. 非负函数无穷积分敛散性记法.⑴比较判敛法: 设在区间上函数和非负且,又对任何>, 和在区间上可积 . 则 < , < ;, .例6判断积分的敛散性.推论1 (比较原则的极限形式) : 设在区间上函数,. 则ⅰ> < < , 与共敛散 : ⅱ> , < 时, < ;ⅲ> , 时, . ( 证 )推论2 (Cauchy判敛法): (以为比较对象, 即取.以下> 0 )设对任何>, , 且, < ;若且, .Cauchy判敛法的极限形式 : 设是在任何有限区间可积的正值函数. 且. 则ⅰ> < ;ⅱ> . ( 证 )例7讨论以下无穷积分的敛散性 :ⅰ> ⅱ>三狄利克雷判别法与阿贝尔判别法:1.Abel判敛法: 若在区间上可积 , 单调有界 , 则积分收敛.2.Dirichlet判敛法: 设在区间上有界,在上单调,且当时,.则积分收敛.例8 讨论无穷积分与的敛散性.例9 证明下列无穷积分收敛 , 且为条件收敛 :, , .例10 ( 乘积不可积的例 ) 设, 。
高中数学反常积分教案设计
教学内容:反常积分
教学目标:
1. 了解反常积分的定义和性质。
2. 掌握计算反常积分的方法。
3. 能够应用反常积分解决实际问题。
教学重点和难点:
重点:反常积分的概念和计算方法。
难点:对反常积分的理解和应用。
教学准备:
1. PowerPoint幻灯片和教学课件。
2. 反常积分的相关教材和习题。
3. 计算机和投影仪。
教学过程:
一、导入(5分钟)
教师通过举例子引入反常积分的概念,让学生对反常积分有一个初步的了解。
二、讲解(15分钟)
1. 介绍反常积分的定义和性质。
2. 讲解计算反常积分的方法和步骤。
3. 演示如何计算某些常见函数的反常积分。
三、练习(20分钟)
1. 让学生在课堂上尝试计算一些简单的反常积分。
2. 分组讨论解决一些较复杂的反常积分问题。
四、拓展(10分钟)
教师带领学生讨论一些与反常积分相关的实际问题,让学生学会应用反常积分解决实际问题。
五、总结(5分钟)
1. 教师对本节课的内容进行总结,并强调反常积分的重要性。
2. 鼓励学生继续学习和实践反常积分的知识。
作业布置:
1. 完成课堂上未完成的练习题。
2. 阅读相关教材,复习本节课内容。
3. 准备下节课的学习任务。
教学反思:
通过本节课的设计,让学生初步了解反常积分的概念和方法,为后续学习奠定基础。
希望学生能够继续努力学习,掌握更多的数学知识。