烯烃的亲电加成反应(新)
- 格式:doc
- 大小:705.14 KB
- 文档页数:22
烯烃加成反应马氏规则
烯烃加成反应是有机化学中的一种重要反应,可以将两个分子中的烯烃与互补反应物加成生成新的化合物。
在这个过程中,马氏规则会起到重要的作用。
马氏规则指的是,在烯烃加成反应中,亲电试剂会优先加到具有最多氢原子的碳原子上。
这是因为在这种情况下,反应产生的中间体最为稳定,反应的能量也最低,因此具有最高的反应活性。
此外,马氏规则也可以解释为什么在一些烯烃加成反应中只会生成一种立体异构体。
这是因为在反应的过程中,亲电试剂只会加成到具有最多氢原子的碳原子上,而其他位置的碳原子则无法参与反应,因此只能生成一种立体异构体。
总之,马氏规则对于研究烯烃加成反应的机理和预测反应产物具有重要意义。
- 1 -。
烯烃加成反应一、催化加氢反应烯烃与氢作用生成烷烃的反应称为加氢反应,又称氢化反应。
加氢反应的活性能很大,即使在加热条件下也难发生,而在催化剂的作用下反应能顺利进行,故称催化加氢。
在有机化学中,加氢反应又称还原反应。
这个反应有如下特点:1.转化率接近100%,产物容易纯化,(实验室中常用来合成小量的烷烃;烯烃能定量吸收氢,用这个反应测定分子中双键的数目)。
2.加氢反应的催化剂多数是过渡金属,常把这些催化剂粉浸渍在活性碳和氢氧化铝颗粒上;不同催化剂,反应条件不一样,有的常压就能反应,有的需在压力下进行。
工业上常用多孔的骨架镍(又称Raney镍)为催化剂。
3.加氢反应难易与烯烃的结构有关。
一般情况下,双键碳原子上取代基多的烯烃不容易进行加成反应。
4.一般情况下,加氢反应产物以顺式产物为主,因此称顺式加氢。
下例反应顺式加氢产物比例为81.8%,而反式产物为18.2%。
产物顺反比例受催化剂、溶剂、反应温度等影响。
5.催化剂的作用是改变反应途径,降低反应活化能。
一般认为加氢反应是H2和烯烃同时吸附到催化剂表面上,催化剂促进H2的σ键断裂,形成两上M-H σ键,再与配位在金属表面的烯烃反应。
6.加氢反应在工业上有重要应用。
石油加工得到的粗汽油常用加氢的方法除去烯烃,得到加氢汽油,提高油品的质量。
又如,常将不饱和脂肪酸酯氢化制备人工黄油,提高食用价值。
7.加氢反应是放热反应,反应热称氢化焓,不同结构的烯烃氢化焓有差异。
例1.反应物:ΔHr/KJmol-1126.6 119.5 115.3例二.反应物:ΔHr/KJmol-1126.6 119.1 112.4各种甲基丁烯热力学能比较:每组的产物相同,吸收H2一样多,氢化焓反映了烯烃的含能量由此得出直链烯烃热力学能(E)-2-丁烯 <(Z)-2-丁烯 < 1-丁烯烯烃的热稳定性的一般规律:RCH=CHR' >RCH=CH2 > CH2=CH2R2C=CR2 > R2C=CHR > R2C=CH2 > RHC=CH2二、加卤素反应:烯烃容易与卤素发生反应,是制备邻二卤代烷的主要方法,丙烯通入液溴中即生成1,2一二溴丙烷:1.这个反应在室温下就能迅速反应,实验室用它鉴别烯烃的存在,(溴的四氯化碳溶液是红棕色,溴消耗后变成无色)。
烯烃的加成反应方程式汇总烯烃是一类含有碳-碳双键的有机化合物。
由于其双键的特殊性质,烯烃可以发生加成反应,即通过在碳-碳双键上添加原子团或官能团。
这种加成反应在有机合成中具有广泛的应用,可以用于构建碳骨架、合成药物、制备高分子材料等领域。
下面是一些常见的烯烃加成反应方程式的汇总。
1. 氢化反应(氢加成)烯烃可以与氢气发生反应,通过加成氢原子来饱和烯烃的双键,生成烃化合物。
例如,乙烯(C2H4)与氢气(H2)反应生成乙烷(C2H6):C2H4 + H2 -> C2H62. 水化反应(水加成)烯烃可以与水发生反应,通过加成水分子的氢和氢氧基团来饱和双键,生成醇化合物。
例如,乙烯与水反应生成乙醇:C2H4 + H2O -> C2H5OH3. 溴化反应(卤素加成)烯烃可以与卤素发生反应,通过加成卤素原子来饱和双键,生成卤代烷化合物。
例如,乙烯与溴反应生成1,2-二溴乙烷:C2H4 + Br2 -> CH2BrCH2Br4. 硝基化反应(亲电加成)烯烃可以与亲电试剂发生反应,通过加成正离子或正离子性片段来饱和双键,并引入新官能团。
例如,乙烯与亚硝酸钠反应生成硝基乙烷:C2H4 + NaNO2 -> CH3CH2NO25. 羰基化反应(亲核加成)烯烃可以与亲核试剂发生反应,通过加成亲核试剂的负离子或配位基团来饱和双键,生成含有羰基的化合物。
例如,乙烯与甲醛反应生成乙醇醛:C2H4 + CH2O -> CH3CHO6. 二元酸酐环化反应某些烯烃可以与二元酸酐发生反应,通过加成酐的羰基和羰基上的氧原子来饱和双键,生成环丙基酮化合物。
例如,1,3-丁二烯与醋酸酐反应生成环丙基丙酮:CH2=CH-CH=CH2 + (CH3CO)2O -> CH2=C(CH3)-C(CH3)=CH2O 以上,便是烯烃常见的加成反应方程式汇总。
这些加成反应不仅在有机化学研究中有重要应用,也在工业化学合成和药物生产中发挥着关键作用。
大学有机化学反应方程式总结烯烃的加成反应与芳香化反应大学有机化学反应方程式总结:烯烃的加成反应与芳香化反应有机化学是研究有机化合物及其反应性质的科学。
在有机化学的学习过程中,烯烃的加成反应和芳香化反应是两个重要的反应类型。
本文将总结并简要介绍这两类反应的方程式及其反应机理。
一、烯烃的加成反应烯烃是含有碳碳双键的有机化合物。
加成反应是指在双键上发生新的化学键形成反应。
烯烃的加成反应可以分为电子亲攻和碳碳自由基加成两种类型。
1. 电子亲攻加成反应电子亲攻加成反应的特点是有亲电试剂与烯烃之间的化学键形成,生成新的化合物。
常见的电子亲攻剂包括卤素、酸和氢等。
举例来说,苯乙烯和卤素(如溴)发生加成反应,生成1,2-二溴乙烷:C6H5CH=CH2 + Br2 → C6H5CHBrCH2Br2. 碳碳自由基加成反应碳碳自由基加成反应的特点是由自由基试剂与烯烃之间的化学键形成,生成新的化合物。
常见的自由基试剂包括过氧化氢、过氧化苯和遇光照射的溴代烷等。
举例来说,乙烯和过氧化氢反应,生成乙醇:CH2=CH2 + H2O2 → CH3CH2OH二、芳香化反应芳香化反应是指芳香烃或强碱和芳香醛酮之间发生的反应。
该反应可以改变芳香环的数目、位置和取代基等,形成新的芳香化合物。
芳香化反应的机理分为电子亲电试剂和电子亲碱试剂两种类型。
1. 电子亲电试剂芳香化反应电子亲电试剂芳香化反应的特点是在芳香化合物中引入新的基团,如卤素、硝基、醛基等。
举例来说,苯和溴发生芳香化反应,生成溴苯:C6H6 + Br2 → C6H5Br + HBr2. 电子亲碱试剂芳香化反应电子亲碱试剂芳香化反应的特点是在芳香化合物中引入新的基团,如乙酰基、烷基等。
举例来说,苯和醋酐反应,生成苯乙酮:C6H6 + CH3CO2H → C6H5COCH3 + H2O总结:通过以上的介绍,我们可以看到,烯烃的加成反应和芳香化反应是有机化学中两类重要的反应类型。
烯烃可与卤素进行加成反应,生成邻二卤代烷。
该反应可用于制备邻二卤化物.烯烃可与卤化氢加成生成相应的卤代烷。
通常是将干燥的卤化氢气体直接与烯烃混合进行反应,有时也使用某些中等极性的化合物如醋酸等作溶剂,一般不使用卤化氢水溶液,因为使用卤化氢水溶液有可能导致水与烯烃加成这一副反应发生。
实验结果表明,不同卤化氢在这一反应中的活性次序是:HI>HBr>HCl,这与其酸性强度次序相符合。
卤化氢是一不对称试剂,当它与乙烯这样结构对称的烯烃加成时,只能生成一种加成产物:但遇到像丙烯这样的不对称烯烃时,则有可能生成两种不同的加成产物:实验结果表明,卤化氢与不对称烯烃的加成具有择向性,即在这一离子型加成反应中,卤化氢中的氢总是加到不对称烯烃中含氢较多的双键碳上。
这一规律是俄国化学家马尔柯夫尼可夫(V·Markovnikov)1869年提出的,称为马尔柯夫尼可夫定则,简称马氏定则。
例如:应用马氏定则,可以对许多这类反应的产物进行预测,并指导我们正确地利用这一反应来制备卤代烷。
当然,某些双键碳上连有强吸电子基的烯烃衍生物在卤化氢加成时,从形式上看就表现出反马氏定则的特性。
但从实质上看并不矛盾,因为亲电加成时,亲电试剂的正性部分总是首先加在电子云密度大的双键碳上,只不过大多数情况下,电子云密度大的双键碳上含氢原子多的缘故。
例如:此外,烯烃与溴化氢的加成当有过氧化物存在时,则真正表现出反马氏定则的特征。
例如:这种因过氧化物存在而导致加成反应取向发生改变的现象称为过氧化物效应。
在烯烃的亲电加成反应中,只有溴化氢对双键的加成有过氧化物效应,其他亲电试剂对双键的加成则不受过氧化物存在与否的影响。
因为过氧化物效应不按亲电加成反应机制进行,而是按自由基反应机制进行(见后)。
烯烃与硫酸加成生成硫酸氢酯,该酯经过水解便得到醇。
例如:利用这一过程可由烯烃制得醇,称为烯烃的间接水合法。
由于生成的硫酸氢酯可溶于浓硫酸,故实验中也常利用这一性质以硫酸除去烷烃等某些不活泼有机化合物中少量的烯烃杂质。
烯烃的亲电加成反应烯烃的亲电加成反应与烯烃发生亲电加成的试剂,常见的有下列几种:卤素(Br2,Cl2)、无机酸(H2SO4,HCl,HBr,HI,HOCl,HOBr)及有机酸等。
1.与卤素加成主要是溴和氯对烯烃加成。
氟太活泼,反应非常激烈,放出大量的热,使烯烃分解,所以反应需在特殊条件下进行。
碘与烯烃不进行离子型加成。
(1)加溴:在实验室中常用溴与烯烃的加成反应对烯烃进行定性和定量分析,如用5%溴的四氯化碳溶液和烯烃反应,当在烯烃中滴入溴溶液后,红棕色马上消失,表明发生了加成反应,一般双键均可进行此反应。
CH2=CH2+Br2→BrCH2CH2Br卤素与烯烃的加成反应是亲电加成,反应机制是二步的,是通过环正离子过渡态的反式加成,主要根据以下实验事实:(a)反应是亲电加成:是通过溴与一些典型的烯烃加成的相对反应速率了解的:可以看到,双键碳上烷基增加,反应速率加快,因此反应速率与空间效应关系不大,与电子效应有关,烷基有给电子的诱导效应与超共轭效应,使双键电子云密度增大,烷基取代越多,反应速率越快,因此这个反应是亲电加成反应。
当双键与苯环相连时,苯环通过共轭体系,起了给电子效应,因此加成速率比乙烯快。
当双键与溴相连时,溴的吸电子诱导效应超过给电子共轭效应,总的结果起了吸电子的作用,因此加成速率大大降低。
(b)反应是分二步的:如用烯烃与溴在不同介质中进行反应,可得如下结果:上述三个反应,反应速率相同,但产物的比例不同,而且每一个反应中均有BrCH2CH2Br产生,说明反应的第一步均为Br+与CH2=CH2的加成,同时这是决定反应速率的一步;第二步是反应体系中各种负离子进行加成,是快的一步。
(上述三个反应,如溴的浓度较稀,主要产物为溴乙醇和醚。
)(c)反应是通过环正离子过渡态的反式加成,而且是立体选择性的反应(stereoselectivereaction)。
所谓环正离子过渡态,是试剂带正电荷或带部分正电荷部位与烯烃接近,与烯烃形成碳正离子,与烯烃结合的试剂上的孤电子对所占轨道,与碳正离子轨道,可以重叠形成环正离子,如形成活性中间体环正离子,这是决定反应速率的一步。
所谓反式加成,是试剂带负电荷部分从环正离子背后进攻碳,发生 SN2反应,总的结果是试剂的二个部分在烯烃平面的两边发生反应,得到反式加成的产物。
如下所示:所谓立体选择性反应是指一个反应可能产生几个立体异构式(如顺式加成产物与反式加成产物),优先(但不是百分之一百)得到其中一个立体异构体(或一对对映体),这种反应称立体选择性反应(参看3.21,5)。
上述溴与烯烃的加成,是立体选择的反式加成反应。
以上结果是通过很多实验事实总结得到的。
如溴与(Z)-2-丁烯加成,得到>99%的一对苏型外消旋体:如反应是顺式加成则得到以下产物:实验结果,顺式加成得到的赤型产物<1%。
因此溴与(Z)-2-丁烯的加成是通过环正离子过渡态的反式加成。
习题5-4写出溴与(E)-2-丁烯加成的反应机制、主要产物,并用费歇尔投影式表示,主要产物是苏型的还是赤型的?下面列举溴与环己烯体系的加成反应:溴与环己烯反应如下:在环己烯(i)中,双键及其两个邻接的碳原子C-6,C-1,C-2,C-3在一个平面上,因此C-4,C-5在环平面的上面和下面,如(ii)所示。
在加成反应中,为了易于表达,常把它写成半椅型构象如(iii)或(vii),(iii)加成,首先得(iv),Br-从离去基团背后与(vii)达成平衡。
(iii)与Br2进攻C-1,得反式加成产物即具有双直键的二溴化物(v)(Br-C-C-Br四个原子排列是反式共平面),Br-与(iv)中的C-1结合,是使构象最小的改变,即C-3,C-4,C-5,C-6的碳架改变最小,维持原来的椅型构象;如与C-2结合,要转变成另一椅型构象如(ix),这时需要能量较大。
加成的最初产物是双直键的二溴化物(v),一旦生成后,很快地发生椅型-椅型的构象体互相转换,形成双平键的二溴化物(vi),(v)与(vi)达成平衡。
一般化合物双平键构象稳定,占优势,但(v)与(vi)两种构象几乎相等,因为双直键的二溴化物有1,3-双直键的相互作用,但双平键的二溴化物中Br-C-C-Br为邻交叉型,有偶极-偶极的排斥作用,以上两种作用力能量几乎相等,互相抵消。
(vii)同样也能发生加成反应得(ix),(ix)与(x)达成平衡。
(iii)与(vii)能量是相等的,反应机会也是均等的,因此(v)与(ix)是等量的,(v)与(ix)均有光活性,总的结果,得到一对外消旋体。
从这里可以了解:原料无光活性,反应产物也无光活性,即使产物有手性,但因得外消旋体而无光活性。
如溴与具有光活性的4-甲基环己烯进行加成反应结果如下:(i)有光活性,它的半椅型构象(ii)与(iii),由于(ii)中甲基类似平键,(iii)中甲基类似直键,因此平衡有利于(ii),主要由(ii)进行反应,经(iv),得有光活性的(v),(iii)反应仅得少量(vi),因此有光活性的反应物,可得有光活性的产物。
(vii)也有光活性,主要构象为(viii),与Br反应经(x)得有光活2性的(xi),也得少量(xii)。
如果用(RS)-4-甲基环己烯反应,主要得到一对由(v)与(xi)组成的外消旋体及少量由(vi)与(xii)组成的外消旋体。
因此消旋的反应物,得到消旋的产物。
由于(i)、(vii)有光活性,反应后产生了新的手性碳,得到了不等量的非对映体,如(i)产生(v)与(vi),(vii)产生(xi)与(xii)。
这种在手性因素制约下的化合物,被试剂作用产生新的手性碳原子所组成的不等量的两个光活异构体——非对映体,这是不对称合成,或称手性诱导合成的又一例子。
这在3.21,5节中已进行了介绍。
习题5-5写出下列化合物与溴的加成产物。
习题5-6苯乙烯()在甲醇溶液中溴化,得到1-苯基-1,2-二溴乙烷及1-苯基-1-甲氧基-2-溴乙烷,用反应机制说明。
习题5-7 4-三级丁基环己烯在甲醇中溴化,得45∶55比例的两种化合物的混合物,分子式都是C11H21BrO,预言这两个产物的立体结构,并提出理由。
(2)加氯:氯对烯烃的加成反应,与溴一样,是亲电的、二步的、通过环正离子过渡态的反式加成。
但有少数例外,如与1-苯丙烯的加成反应,得如下结果:可以看出,上述加成反应,溴以反式为主,而氯以顺式为主,不同的加成产物是与不同的反应机制有关。
溴对1-苯丙烯的加成,主要通过环正离子过渡态,而氯对1-苯丙烯的加成,主要通过离子对过渡态或碳正离子过渡态。
所谓离子对过渡态,即试剂与烯烃加成,烯烃的π键断裂形成碳正离子,试剂形成负离子,这两者形成离子对,这是决定反应速率的一步,π键断裂后,带正电荷的C——C键来不及绕轴旋转,与带负电荷的试剂同面结合,得到顺式加成产物:所谓碳正离子过渡态,试剂首先离解成离子,正离子与烯烃反应成碳正离子,这是决定反应速率的一步,π键断裂后,C——C键可以自由旋转,然后与带负电荷的离子结合,这时结合就有两种可能,即生成顺式加成与反式加成两种产物:那末为什么溴与1-苯丙烯加成,以反式为主,而氯与1-苯丙烯的加成以顺式为主,原因主要是通过不同的反应机制进行的,而根据哪一种反应机制反应,与试剂、底物的结构及溶剂均有关,与过渡态的势能即活性中间体的稳定性有关。
中间体环正离子是由卤原子上孤电子对轨道与碳正离子轨道重叠形成的(参看5.4,1,(1)),环卤鎓离子具有弯曲键的三元环结构,且所带正电荷又在电负性较大的卤原子上,比较不稳定;但由于形成一个C——X共价键,且成环原子均为8电子构型,因此增加了环卤鎓离子的稳定性,故溴与氯对烯烃的加成一般均通过环正离子过渡态。
但如果卤原子与碳正离子轨道重叠形成弱的C——X键,如下所示:环正离子较不稳定,这时反应可以按离子对过渡态或碳正离子过渡态进行,其产物的比例也与相应活性中间体的稳定性有关。
溴原子比氯原子电负性小,体积大,溴原子的孤电子对轨道容易与碳正离子的p轨道重叠形成环正离子:然后Br-在离去基团的背后进攻C-1,以反式产物为主。
而氯原子电负性较大,提供孤电子对与碳正离子成键不如溴原子容易,在1-苯丙烯类化合物中,碳正离子的p轨道正好与苯环相邻,可以共轭,使正电荷分散而稳定,在此情况下,氯对烯烃的加成主要通过离子对过渡态及碳正离子过渡态,故产物以顺式为主:此外,溶剂对产物比例也有影响,如溶剂的极性等等。
总之,在一般条件下,溴、氯对烯烃的加成反应是通过环正离子过渡态的反式加成,只有在特定条件下,如底物为1-苯丙烯类化合物,溴加成仍以反式为主,而氯加成却以顺式为主。
碘与烯烃一般不发生反应,但氯化碘(ICI)或溴化碘(IBr)比较活泼,可定量地与碳碳双键发生反应,因此,利用这个反应,可以测定石油或脂肪中不饱和化合物的含量。
不饱和程度一般用碘值来表示的。
碘值的定义是:100g 汽油或脂肪所吸收的碘量(克)。
2.与酸的加成无机酸和强的有机酸都较易和烯烃发生加成反应,而弱的有机酸如醋酸、水、醇等只有在强酸催化下,才能发生加成反应。
(1)加卤化氢:一般用中等极性的溶剂如醋酸,它既可溶解烯烃,又可溶解卤化氢。
体系中要避免有水,因水与烯烃在酸性条件下也能发生加成反应。
卤化氢的反应性:HI>HBr>HCl。
加成反应如下所示:CH2=CH2+HI→CH3CH2ICH2=CH2+HBr→CH3CH2BrCH2=CH2+HCl→CH3CH2Cl(a)反应有立体选择性:加成反应一般得到以反式加成为主的产物:(b)反应有区域选择性:卤化氢与不对称烯烃加成时,产物有两种可能:(i)符合马尔可夫尼可夫(Markovnikov,V.V.,1868)规则;以后简称马氏规则,(ii)反马氏规则。
从实验得知,产物符合马氏规则。
所谓马氏规则,“即卤化氢等极性试剂与不对称烯烃的离子型加成反应,酸中的氢原子加在含氢较多的双键碳原子上,卤素或其它原子及基团加在含氢较少的双键碳原子上”。
因此这个加成反应是区域选择性的反应(regiospecificreaction)。
所谓区域选择性,是指当反应的取向有可能产生几个异构体时,只生成或主要生成一个产物的反应。
上述反应主要得到(i)。
根据马氏规则,卤化氢与乙烯加成得一级卤代烷外,其它烯烃均得二级、三级卤代烷。
马氏规则是总结了很多实验事实后提出的经验规则,现在可以用电子效应来解释,即酸与烯烃加成的位置与形成的碳正离子的稳定性有关,如按(i)式加成,活性中间体为二级碳正离子(iii),如下所示,(iii)上有两个甲基的给电子诱导效应与超共轭效应;如按(ii)式反应,活性中间体为一级碳正离子(iv),只有一个乙基有给电子的诱导效应与超共轭效应:由于(iii)比(iv)稳定,因此过渡态的势能低,活化能低,反应速率快,故按(i)进行反应。