概率论与数理统计
- 格式:docx
- 大小:24.69 KB
- 文档页数:12
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。
它可以帮助人们提高分析和预测能力。
可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。
一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。
2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。
3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。
4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。
5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。
6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。
7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。
二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。
2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。
3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。
4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。
5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。
6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。
7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
概率论与数理统计主要内容概率论与数理统计是数学的两个重要分支,它们研究的是随机事件和数据的规律性。
概率论研究的是随机事件发生的可能性,数理统计研究的是根据已有数据对总体特征进行推断。
概率论是研究随机事件发生的可能性的数学分支。
在日常生活中,我们经常会遇到各种概率性事件,比如天气预报、彩票中奖、交通事故发生等。
概率论通过建立数学模型,描述了随机事件发生的规律性。
在概率论中,我们可以通过概率的定义和性质,计算事件发生的可能性。
通过概率的计算,我们可以更好地理解和预测各种概率性事件。
数理统计是研究根据已有数据对总体特征进行推断的数学分支。
在日常生活中,我们经常会遇到需要根据样本数据来推断总体特征的问题,比如调查民意、产品质量抽检等。
数理统计通过收集样本数据,利用统计学原理和方法,对总体特征进行推断。
在数理统计中,我们可以通过样本的统计量,比如均值、方差等,推断总体的特征,并给出相应的可信区间和置信水平。
概率论和数理统计是密切相关的,它们共同构成了统计学的理论基础。
概率论提供了数理统计的基本概念和方法,为数理统计的推断和判断提供了数学工具。
数理统计则是概率论在实际问题中的应用,通过利用样本数据进行推断和判断,揭示了总体特征的规律性。
在概率论中,我们研究的是随机事件的概率分布和性质。
概率分布是用来描述随机事件发生可能性的函数,常见的概率分布有均匀分布、正态分布、泊松分布等。
概率论中的重要概念包括条件概率、独立性、期望、方差等,它们在实际问题中有着广泛的应用。
在数理统计中,我们研究的是样本数据的统计特征和总体特征之间的关系。
数理统计的核心问题是参数估计和假设检验。
参数估计是根据样本数据估计总体参数的值,常用的估计方法有最大似然估计、最小二乘估计等。
假设检验是对总体参数的某种假设进行推断和判断,常见的假设检验方法有t检验、F检验等。
概率论与数理统计在各个领域都有着广泛的应用。
在自然科学领域,概率论和数理统计被广泛应用于物理、化学、生物等学科中。
概率论和数理统计的关系概率论和数理统计是数学的两个重要分支,它们之间存在密切的关系。
概率论是研究随机事件发生的规律性的数学理论,而数理统计则是通过概率论的方法,对收集到的数据进行分析和推断的工具。
概率论为数理统计提供了基础理论和方法,而数理统计则是概率论在实际问题中的应用。
概率论是数理统计的基础。
概率论研究的是随机事件的发生概率以及事件之间的关系,为数理统计提供了严密的数学基础。
在数理统计中,我们通常需要对一组数据进行分析和推断,而这些数据往往受到各种随机因素的影响,因此需要用概率论的方法来描述和处理。
例如,在研究一种新药物的疗效时,我们需要收集患者的数据并进行统计分析,而这些数据往往受到患者个体差异、药物剂量等随机因素的影响,因此需要运用概率论的知识对数据进行建模和分析。
数理统计是概率论的应用。
概率论研究的是随机事件的规律性,而数理统计则是通过概率论的方法对实际问题进行统计分析和推断。
数理统计可以通过收集一组样本数据来推断总体的特征和规律。
例如,在市场调研中,我们通常只能对一部分人进行调查,通过对这部分人的数据进行分析和推断,从而得出对整个市场的结论。
这种推断是基于概率论的方法,通过对样本数据的统计分析,来推断总体的特征和规律。
概率论和数理统计的关系可以用一个简单的例子来说明。
假设我们有一个罐子,里面装有黑色和白色两种颜色的球,我们想知道黑色球和白色球的比例。
我们可以通过从罐子中随机抽取一些球,然后统计黑色球和白色球的数量,进而推断总体比例。
在这个例子中,概率论研究的是在给定条件下随机事件的发生概率,而数理统计则是通过对样本数据的统计分析,推断总体的特征和规律。
在实际应用中,概率论和数理统计经常是相辅相成的。
概率论提供了概率分布、随机变量、期望和方差等概念和工具,为数理统计的推断和分析提供了理论基础。
而数理统计则通过采样、估计和假设检验等方法,将概率论的理论转化为实际问题的解决方案。
概率论和数理统计的结合使得我们能够从收集到的数据中获取更多的信息,并做出合理的推断和决策。
概率论与数理统计概率论与数理统计概率论与数理统计是研究随机现象数量规律的一门学科。
◆第一章概率论的基本概念1.1 随机试验1.2 样本空间1.3 概率和频率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性◆第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布◆第三章多维随机变量及其分布3.1 二维随机变量3.2 边缘分布3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布◆第四章随机变量的数字特征4.1 数学期望4.2 方差4.3 协方差及相关系数4.4 矩、协方差矩阵◆第五章大数定律和中心极限定理5.1 大数定律5.2 中心极限定理◆第六章数理统计的基本概念6.1 总体和样本6.2 常用的分布◆第七章参数估计7.1 参数的点估计7.2 估计量的评选标准7.3 区间估计◆第八章假设检验8.1 假设检验8.2 正态总体均值的假设检验8.3 正态总体方差的假设检验8.4 置信区间与假设检验之间的关系8.5 样本容量的选取8.6 分布拟合检验8.7 秩和检验概率论第一章概率论的基本概念关键词:样本空间随机事件频率和概率条件概率事件的独立性概率统计中研究的对象:随机现象的数量规律确定性现象:结果确定不确定性现象:结果不确定对随机现象的观察、记录、试验统称为随机试验。
它具有以下特性:可以在相同条件下重复进行事先知道可能出现的结果进行试验前并不知道哪个试验结果会发生§2 样本空间?¤随机事件(一)样本空间定义:随机试验E的所有结果构成的集合称为E的样本空间,记为S={e},称S中的元素e为基本事件或样本点.(二) 随机事件一般我们称S的子集A为E的随机事件A,当且仅当A 所包含的一个样本点发生称事件A发生。
(三)事件的关系及运算事件的关系(包含、相等)例:记A={明天天晴},B={明天无雨}记A={至少有10人候车},B={至少有5人候车}一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}事件的运算交换律:§3频率与概率(一)频率定义:记其中—A发生的次数(频数);n?a总试验次数。
称为A在这n次试验中发生的频率。
例:中国国家足球队,“冲击亚洲”共进行了n次,其中成功了一次,则在这n次试验中“冲击亚洲”这事件发生的频率为某人一共听了17次“概率统计”课,其中有15次迟到,记A={听课迟到},则# 频率反映了事件A发生的频繁程度。
** 频率的性质:且随n的增大渐趋稳定,记稳定值为p.(二) 概率定义1:的稳定值p定义为A的概率,记为P(A)=p 定义2:将概率视为测度,且满足:称P(A)为事件A的概率。
§4 等可能概型(古典概型)定义:若试验E满足:S中样本点有限(有限性)出现每一样本点的概率相等(等可能性)例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一球的可能性相等,从中随机摸一球,记A={ 摸到红球 },求P(A).例2:从上例的袋中不放回的摸两球,记A={恰是一红一黄},求P(A).解:例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒的概率相同,且各盒可放的球数不限,记A={ 恰有n个盒子各有一球 },求P(A).解:例5:一单位有5个员工,一星期共七天,老板让每位员工独立地挑一天休息,求不出现至少有2人在同一天休息的概率。
解:将5为员工看成5个不同的球,7天看成7个不同的盒子,记A={ 无2人在同一天休息},则由上例知:例6: (抽签问题)一袋中有a个红球,b个白球,记a+b=n.设每次摸到各球的概率相等,每次从袋中摸一球,不放回地摸n次。
设 { 第k次摸到红球 },k=1,2,?-,n.求解1:解3:将第k次摸到的球号作为一样本点:解:假设接待站的接待时间没有规定,而各来访者在一周的任一天中去接待站是等可能的,那么,12次接待来访者都是在周二、周四的概率为212/712 =0.000 000 3.§5 条件概率例:有一批产品,其合格率为90%,合格品中有95%为优质品,从中任取一件,记A={取到一件合格品},B={取到一件优质品}。
则 P(A)=90% 而P(B)=85.5%记:P(B|A)=95%P(A)=0.90 是将整批产品记作1时A的测度P(B|A)=0.95 是将合格品记作1时B的测度由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率分析:一、条件概率定义:设A,B是两个事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率。
二、乘法定理例:某厂生产的产品能直接出厂的概率为70%,余下的30%的产品要调试后再定,已知调试后有80% 的产品可以出厂,20%的产品要报废。
求该厂产品的报废率。
例:某行业进行专业劳动技能考核,一个月安排一次,每人最多参加3次;某人第一次参加能通过的概率为60%;如果第一次未通过就去参加第二次,这时能通过的概率为80%;如果第二次再未通过,则去参加第三次,此时能通过的概率为90%。
求这人能通过考核的概率。
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放回抽样,求恰是?°一红一黑?±的概率。
三、全概率公式与Bayes公式定义:设S为试验E的样本空间,B1,B2,?-,B n 为E的一组事件。
若:则称B1,B2,?-,B n为S的一个划分,或称为一组完备事件组。
定理:设试验E的样本空间为S,A为E的事件。
B1,B2,?-,Bn为S的一个划分,P(Bi)>0,i=1,2,?-,n;则称:* 全概率公式可由以下框图表示:设 P(B j)=p j, P(A|B j)=q j, j=1,2,?-,n易知:例:一单位有甲、乙两人,已知甲近期出差的概率为80%,若甲出差,则乙出差的概率为20%;若甲不出差,则乙出差的概率为90%。
(1)求近期乙出差的概率;(2)若已知乙近期出差在外,求甲出差的概率。
例:根据以往的临床记录,某种诊断癌症的试验具有5%的假阳性及5%的假阴性:若设A={试验反应是阳性},C={被诊断患有癌症}则有:已知某一群体P(C)=0.005,问这种方法能否用于普查?§6 独立性例:有10件产品,其中8件为正品,2件为次品。
从中取2 次,每次取1件,设A={第i次取到正品},i=1,2i注意:例:甲、乙两人同时向一目标射击,甲击中率为0.8,乙击中率为0.7,求目标被击中的概率。
例:有4个独立元件构成的系统(如图),设每个元件能正常运行的概率为p,求系统正常运行的概率。
:复习思考题 11.?°事件A不发生,则A=Ф?±,对吗?试举例证明之。
2.?°两事件A和B为互不相容,即AB=Ф,则A和B互逆?±,对吗?反之成立吗?试举例说明之。
4. 甲、乙两人同时猜一谜,设A={甲猜中},B={乙猜中},则A∪B={甲、乙两人至少有1人猜中}。
若P(A)=0.7,P(B)=0.8, 则?°P(A∪B)=0.7+0.8=1.5?±对吗?5. 满足什么条件的试验问题称为古典概型问题?7.如何理解样本点是两两互不相容的?8.设A和B为两随机事件,试举例说明P(AB)=P(B|A)表示不同的意义。
10.什么条件下称两事件A和B相互独立?什么条件下称n个事件A1,A2,?-,A n相互独立?11.设A和B为两事件,且P(A)≠0,P(B)≠0,问A和B相互独立、A和B互不相容能否同时成立?试举例说明之。
12.设A和B为两事件,且P(A)=a,P(B)=b,问:(1) 当A和B独立时,P(A∪B)为何值?(2) 当A和B互不相容时, P(A∪B)为何值?13.当满足什么条件时称事件组A1,A2,?-,A n为样为本空间的一个划分?14.设A,B,C为三随机事件,当A≠B,且P(A)≠0, P(B)≠0时,P(C|A)+P(C|B)有意义吗?试举例说明。
15.设A,B,C为三随机事件,且P(C)≠0,问P(A∪B|C)=P(A|C)+P(B|C)-P(AB|C)是否成立?若成立,与概率的加法公式比较之。
第二章随机变量及其分布关键词:随机变量概率分布函数离散型随机变量连续型随机变量随机变量的函数§1 随机变量*常见的两类试验结果:*常见的两类随机变量§2 ?散型?机?量及其分布定义:取值可数(有限个或者可列无限个)的随机变量为离散量§2 离散型随机变量及其分布离散量的概率分布(分布律)例:某人骑自行车从学校到火车站,一路上要经过3个独立的交通灯,设各灯工作独立,且设各灯为红灯的概率为p,0<p<1,以x 表示首次停车时所通过的交通灯数,求x的概率分布律。
< p=""> 例:从生产线上随机抽产品进行检测,设产品的次品率为p,0<p<1,若查到一只次品就得停机检修,设停机时已检测到x只产品,试写出x的概率分布律。
< p="">三个主要的离散型随机变量0-1(p) 分布二项分布例:1. 独立重复地抛n次硬币,每次只有两个可能的结果:正面,反面,设A在n重贝努利试验中发生X次,则并称X服从参数为p的二项分布,记例:设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能有一个人处理。
考虑两种配备维修工人的方法,其一是由4个人维护,每人负责20台;其二是由3个人共同维护80台。
试比较这两种方法在设备发生故障时不能及时维修的概率的大小。
例:某人骑了自行车从学校到火车站,一路上要经过3个独立的交通灯,设各灯工作独立,且设各灯为红灯的概率为p,0<p<1,以y 表示一路上遇到红灯的次数。
< p="">(1)求Y的概率分布律;(2)求恰好遇到2次红灯的概率。
例:某人独立射击n次,设每次命中率为p,0<p<="">例:有一大批产品,其验收方案如下:先作第一次检验,从中任取10件,经检验无次品接受这批产品,次品数大于2拒收;否则作第二次检验,从中任取5件,仅当5件中无次品便接受这批产品,设产品的次品率为p.求这批产品能被接受的概率L(p).泊松分布(Poisson分布)若随机变量X的概率分布律为称X服从参数为λ的泊松分布,记§3 随机变量的分布函数例:解:§4 连续型随机变量及其概率密度定义:对于随机变量X的分布函数若存在非负的函数使对于任意实数有:与物理学中的质量线密度的定义相类似例:设X的概率密度为(1)求常数c的值;(2)写出X的概率分布函数;(3) 要使求k的值。