【人教版】禹城市XX中学2017-2018学年八年级上10月月考数学试题含答案解析
- 格式:doc
- 大小:466.50 KB
- 文档页数:25
2017—2018学年度第一学期八年级数学姓名班级总得分【说明】1.全卷满分为120分。
考试用时为100分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目的指定区域内相应位置上;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上)1、若某三角形的三边长分别为3,5,,则的取值范围是()A.0<<9 B.3<<9C.0<<7 D.3<<72、下列条件中,能判定△ABC为直角三角形的是()A.∠A=2∠B=3∠C B.∠A+∠B=2∠C C.∠A=∠B=30° D.∠A=∠B=∠C3、如下图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线 D.组成∠E的角平分线所在的直线(E点除外)4、在四边形的4个内角中,钝角的个数最多为()A.1 B.2 C.3 D.45、下列语句不正确的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等6、.如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O,则下列判断不正确的是()A.△ABC≌△DCB B.△AOD≌△COBC.△ABO≌△DCO D.△ADB≌△DAC7、到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点 B.三条角平分线交点C.三条高的交点 D.三条边的垂直平分线交点8、如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A. B.2 C.3 D.29、如图,△ABC中,∠C = 90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B. 已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,P Q . 在整个运动过程中,△MPQ的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小10、观察下列图形,它们是按一定规律排列的,依照此规律,第20个图形共有★()A.63个 B.57个 C.68个 D. 60个二、填空题(本大题6小题,每小题4分,共24分.请将下列各题的正确答案填写在答题卡相应位置上)11、下列说法:①有两边和第三边上的高对应相等的两个三角形全等;②对称轴是对称点连线段的垂直平分线;③等腰三角形的高、中线、角平分线互相重合;④到三角形三边距离相等的点是三角形内角平分线的交点,其中正确的序号是___________12、如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.13、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.14、正九边形的一个外角等于.15、如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.。
D B A 2018级(初二上)10月考试试题数 学(考试时间120分钟,满分150分)初2018级 班 姓名A 卷(共100分)一、选择题(每小题3分,共30分)1、若4-40=m ,则估计m 的值所在范围是( )A 、21<<mB 、32<<m C 、43<<m D 、54<<m 2、适合下列条件的ABC ∆中,是直角三角形的个数有( )①15,12,9===c b a ②045,=∠=A b a ③17,15,8===c b a ④0062,28=∠=∠B A ⑤5.2,2,5.1===c b aA 、2个B 、3个C 、4个D 、5个 3、已知0)2(32=-+-y x x ,则y x +的平方根是( )A 、3B 、3±C 、9D 、9± 4、下列各组数中,互为相反数的是( )A 、23-3-)(和 B 、31-3-2和)( C 、327-3-和 D 、3-273和 5、在二次根式5.1,131,21231453-b a ,,,,中,是最简二次根式的有( ) A 、2个 B 、3个 C 、4个 D 、5个6、在1315,==∆AC AB ABC ,中,高12=AD ,则ABC ∆的周长是( ) A 、42 B 、32 C 、42或32 D 、30或357、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现绳子刚好接触地面,则旗杆的高度是( )A 、8米B 、10米C 、12米D 、14米第13题图1C8、如图所示,在ABC Rt ∆中,BD A ,090=∠平分ABC ∠,交AC 于点D ,且54==BD AB ,,则点D 到BC 的距离是( ) A 、3 B 、4 C 、5 D 、69、已知等边三角形的边长为a ,则它边上的高、面积分别是( )A 、4,22a aB 、4,232a aC 、43,232a a D 、43,432a a 10、已知m 是13的整数部分,n 是13的小数部分,则nm nm +-的值是( ) A 、1313-6 B 、1313-136 C 、3133-13+ D 、13-6二、填空题(每小题4分,共16分)11、设3,2==b a ,用含b a ,的式子表示54= 12、在关系式3-2x x y -=中,自变量x 的取值范围是 13、实数在数轴上的位置如图所示,则化简22)11()4-+-a a (=14、如图所示,已知长方体木箱长cm BB cm AB cm BC 168,121===,高宽其中点E 是线段11C B 的一个三等分点,在长方体木箱的下底面A 处有一只蚂蚁,想沿着表面爬到上表面E 处吃食物,则蚂蚁爬行的最短路程....是 三、计算或解方程(共18分)15、计算下列各题(每小题3分,共12分) (1) 2)63(1226---+- (2)3643632932-+-++(3)22)3223()3223(+-- (4)0)2(231121-++++π第17题图CBA16、解方程(每小题3分,共6分)(1)09)142=--x ( (2)0125)127-3=-+x (四、解答题(每小题8分,共16分)17、在ABC ∆中,已知211710===BC AC AB ,,,求ABC S ∆18、已知43=a ,0312=-++-c c b ,求33c b a ++的立方根?H G F ED 第20题图CB A五、解答题(每小题10分,共20分) 19、(每小题5分,共10分) (1)先化简,再求值:21122-++m m m ,其中61=m(2)已知y x ,满足条件421025+=---y x x ,求y x -的算术平方根?20、(本题10分)如图,在ABC Rt ∆中,F E AC BE D AB CD ABC ,,450于,于⊥⊥=∠是BC 的中点,CBE ABE ∠=∠DC DF BE ,与分别交于H G ,.(1)猜想线段AC BH 与的数量关系。
八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7.D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°, ∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°. 在Rt △ABC 和Rt △DEF 中,AC =DFAB =DE ,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分(证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余),∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余),∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3, 解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7. D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°,∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°.在Rt △ABC 和Rt △DEF 中,AC =DFAB =,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分 (证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余), ∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余), ∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分23.解:(1)∵|m−n−3|=0且062=-n∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3,解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3, 第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分。
湖北省孝感市2017-2018学年八年级数学10月月考试题一、选择题(本大题共10小题,每小题3分,满分30分) 1.已知三条线段长度的比值,则能构成三角形的是( ) A .1:3:4 B .1:2:3 C .2:7:4 D .3:5:42.△ABC 的三边长分别为,,a b c ,且0))((=-++c a c b a ,那么△ABC 为( ) A.不等边三角形B.等边三角形C.等腰三角形D.锐角三角形3.如图AD ⊥BC 于点D ,那么图中以AD 为高的三角形有 个( ) A .3 B .4 C .5 D .6 4.如图所示,∠a 的度数是( )A.10°B.20°C.30°D.40°5.如图,△ABC 中,∠A=50°,点D ,E 分别在AB ,AC 上,则∠1+∠2的大小为( )A.130°B.230°C.180°D.310°6.把一张多边形的纸片剪去其中某个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是是( )A .六边形B .五边形C .四边形D .三角形7.如图所示,△ABC 是不等边三角形,DE=BC,以D 、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出( ) A .8个 B .6个 C .4个 D .2个8.如图,BD=CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE=CD ,若∠A FD=145°,则∠EDF 的度数为( )A.45°B.55°C.35°D.65° 9.如图,△BDC ’是将长方形纸片ABCD 沿BD 折叠得到的,图中(包含实线和虚线)共有全等三角形( )A .2对B .3对C .4对D .5对(第3题)(第4题)(第5题)(第7题)(第8题)(第9题)10.如图所示,AD 是△ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF 、CE ,下列说法:①CE=BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≅△CDE ,其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每题3分,共18分)11.△ABC 的三边长分别为,,a b c ,则=-----c a b c b a _________.12.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________度.13.如果一个多边形每个内角都等于108°,那么这个多边形是 边形。
2023-2024学年山东省德州禹城市某校八年级上学期10月月考数学试题1.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条让其固定,其所运用的几何原理是()A.三角形的稳定性B.垂线段最短C.两点确定一条直线D.两点之间,线段最短2.下列绿色能源图标中是轴对称图形的个数()A.1个B.2个C.3个D.4个3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.B.C.D.4.如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上.若,则的度数为()A.B.C.D.5.从一个多边形的一个顶点可以引2023条对角线,则这个多边形的边数为()A.2021B.2023C.2025D.20266.下列命题,属于真命题的是()A.三角形的外角等于两个内角的和B.内错角相等,两直线平行C.两角及其一边分别相等的两个三角形全等D.三角形的一个外角大于任何一个内角7.从长度分别为,,,的四根木条中,任取三根可组成三角形的个数是()A.1个B.2个C.3个D.4个8.如图,已知,那么添加下列一个条件后,不能判定的是()A.B.C.D.9.在正方形网格中,的位置如图所示,到两边距离相等的点应是()A.点B.点C.点D.点10.如图,三条公路两两交叉,现计划修建一个油库,若要求油库到三条公路的距离都相等,则满足条件的油库的位置有()A.1处B.2处C.3处D.4处11.如图,射线是的角平分线,是射线上一点,于点,,若点是射线上一点,,则的面积是()A.10B.5C.15D.2012.如图,D,A,E三点在一条直线上,并且有,若,,,则的长为()A.8.5B.12C.13.5D.1713.在一个直角三角形中,如果一个锐角为,则另一个锐角为___度.14.如图所示,,,,则图中的度数是______度.15.已知:的周长为,则的周长为_______.16.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米;则河的宽度为_____米.17.如图,小亮从A点出发前进6m,向右转15°,再前进6m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了________m18.如图,在直角坐标系中,,,已知点的坐标为,点的坐标为______.19.如图,已知:与交于点O,,.求证:(规范证明过程)证明:在和中,,∴(),∴().20.如图,已知,,,求证:.21.如图,中平分,,,求的度数.22.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm;求(1)△ABC的面积;(2)CD的长.23.如图,点A、D、C、F在同一条直线上,.(1)求证:;(2)求证:.24.如图,,,,,与交于点P,与交于点O.(1)与全等吗?为什么?(2)试说明与的位置关系.25.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图(1),已知:在中,,,直线经过点,,,垂足分别为点、.证明:.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图(2),将(1)中的条件改为:在中,,、、三点都在直线上,并且有,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.。
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
【最新整理,下载后即可编辑】2017-2018学年初二数学第一学期第一次阶段性测试本次测试时间100分钟,总分100分一、细心选一选:(本大题共8小题,每小题3分,共24分)1、下列说法正确的是…………………………………………………………()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2、下列交通标志图案是轴对称图形的是…………………………………().3.如图所示:ABC∆和DEF∆中①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有…………………………………()A.1组B.2组C.3组D.4组4、如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是……………………………………………………………………( )第3题A .6B .9C .12D .155.如图是一个经过改造的规则为3×5的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是……………………………………………… ( )A.1号袋B.2号袋C.3号袋D. 4号袋6.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠1=50°,则∠AEF= ( )A .110°B .115°C .120°D .130°7、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是…………… ( )A.线段CD 的中点B.OA 与O B 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB 的平分线的交点8.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )AC D E 第4题 1 3号袋 4号袋 第5题 第6题 第7题l A C BA .B .C .D .不能确定二、精心填一填:(本大题共有10空,每空2分,共20分.)9.角的对称轴是 .10.小新是一位不错的足球运动员,他衣服上的号码在镜子里如图,他是 号运动员.11.如果等腰三角形的两边长分别是4、8,那么它的周长是____________.12、如图,AC 、BD 相交于点O ,∠A =∠D ,请补充一个条件,使△AOB ≌△DOC ,你补充的条件是 (填出一个即可).13.如图所示,=∠ADC °.14.如图,已知AB ∥CF ,E 为DF 的中点,若AB =9 cm ,CF =5cm ,则BD = cm .15、如图,在△ABC 中,AB =AC =32cm ,DE 是AB 的垂直平图1.1-15 第10题o50A B C D第13题 第8题 第12题 DEB AC F 第14题第15题 第16题 第17题分线,分别交AB 、AC 于D 、E 两点.(1) 若∠C =700,则∠CBE=______(2) 若BC =21cm ,则△BCE 的周长是______cm .16.已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE⊥AB,DF⊥AC,垂足分别为E 、F ,AB =6,AC =3,则BE=___________ .17.如图,△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm .点P 从A 点出发沿A →C →B终点为B 点;点Q 从B 点出发沿B →C →A 路径向终点运动,终点为A 点.点P 和Q 分别以1cm/秒和3cm/秒的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P 和Q 作PE ⊥l 于E ,QF ⊥l 于F .设运动时间为t(秒),当t =________秒时,△PEC 与△QFC 全等.三、认真答一答(本大题八题,共56分)18.(本题满分7分)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DFA =∠D ;③∠ACB =∠DFE AB ∥ED 成立,并给出证明. (1)选择的条件是 (填序号)(2)证明:19.(本题满分6分)如图,阴影部分是由53正方形,使它们成为轴对称图形.20、(本题满分6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1 ;EA BC D(2)在直线DE上画出点Q,使最小.21、(本题满分6分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P。
某某省东营市广饶县丁庄中学2015-2016学年八年级数学10月月考试题一、选择题(每小题3分,共30分)1.下面四个图形中,线段BE是△ABC中AC边上的高是()A.B.C.D.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.73.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.134.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA5.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠E B.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠D D.∠A=∠D,AB=DE,∠B=∠E6.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD7.将一X长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或1010.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2二、填空题(每小题3分,共30分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.一个多边形有35条对角线,则这个多边形的边数为.13.如图,∠A=∠D,AB=CD,要使△AEC≌△DFB,还需要补充一个条件,这个条件可以是(只需填写一个).14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,在△A BC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB 的距离是cm.16.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.17.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.18.已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=.19.如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四边形OABC绕点O 进行3次旋转变换后形成的.测得AB=BC,OA=OC,∠ABC=40°,则∠OAB的度数是.20.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.三、解答题(共60分)21.如图,已知AB=AC,BD=DC,图中∠B和∠C相等吗?为什么?22.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.23.已知:在△ABC中,AC=BC,∠ACB=90°,CD⊥AB,点E是AB边上一点.直线BF⊥CE 于点F,交CD于点G(如图),求证:(1)∠CGB=∠AEC;(2)AE=CG.24.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.25.已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.26.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN 于E,求证:DE=BD+CE.27.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.28.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.2015-2016学年某某省东营市广饶县丁庄中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个图形中,线段BE是△ABC中AC边上的高是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义解答即可.【解答】解:△ABC中AC边上的高是过点B垂直于AC边的线段,只有A选项正确.故选A.【点评】本题考查了三角形的高线的定义,是基础题,熟记高线的概念是解题的关键.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17 B.22 C.17或22 D.13【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.5.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠E B.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠D D.∠A=∠D,AB=DE,∠B=∠E【考点】全等三角形的判定.【分析】从选项提供的已知条件开始思考,结合全等三角形的判定方法,与之符合的能够判定全等,不符合的不全等,本题中,D符合ASA,能确定△ABC≌△DEF,其它则不能确定△ABC≌△DEF.【解答】解:A、AB=DE,BC=EF,∠A=∠E,符合SSA,不能判断三角形全等;B、AB=DE,BC=EF,∠C=∠E,符合SSA,不能判断三角形全等;C、∠A=∠E,AB=EF,∠B=∠D,AB、EF不是对应边,不能判断三角形全等;D、当∠A=∠D,AB=DE,∠B=∠E,符合ASA,所以△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.【点评】本题考查了全等三角形的性质和平行线的判定的应用,注意:全等三角形的对应角相等,对应边相等.7.将一X长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【分析】设∠A=x,则∠B=x,∠C=3x,再根据三角形内角和定理求出x的值,进而可得出结论.【解答】解:∵在△ABC中,∠A=∠B=∠C,∴设∠A=x,则∠B=x,∠C=3x,∵∠A+∠B+∠C=180°,即x+x+3x=180°,解得x=36°,∴3x=3×36°=108°,∴此三角形是钝角三角形.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.9.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10【考点】等腰三角形的性质.【专题】计算题.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,即AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,此题要采用分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.这也是学生容易忽视的地方,应注意向学生特别强调.10.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.二、填空题(每小题3分,共30分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.一个多边形有35条对角线,则这个多边形的边数为10 .【考点】多边形的对角线.【分析】根据多边形的对角线公式列式计算即可得解.【解答】解:设多边形的边数为n,由题意得, =35,整理得,n2﹣3n﹣70=0,解得n1=10,n2=﹣7(舍去),所以,这个多边形的边数为10.故答案为:10.【点评】本题考查了多边形的对角线,熟记对角线条数公式是解题的关键.13.如图,∠A=∠D,AB=CD,要使△AEC≌△DFB,还需要补充一个条件,这个条件可以是AE=DF (只需填写一个).【考点】全等三角形的判定.【专题】开放型.【分析】求出AC=DB,根据全等三角形的判定定理SAS推出即可.【解答】解:AE=DF,理由是:∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△AEC和△DFE中∴△AEC≌△DFB,故答案为:AE=DF.【点评】本题考查了等腰三角形的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,此题是一道开放型的题目,答案不唯一.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB 的距离是 3 cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD 即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.16.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=80 度.【考点】翻折变换(折叠问题);平行线的性质.【专题】计算题;压轴题.【分析】根据中位线的定义得出ED∥BC,再根据平行的性质和折叠的性质即可求.【解答】解:∵D、E为AB、AC的中点,∴DE为△ABC的中位线,ED∥BC,∴∠ADE=∠ABC∴∠ADE=50°,由于对折前后两图形全等,故∠EDF=50°,∠BDF=180°﹣50°×2=80°.【点评】本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.18.已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|= 2c .【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a﹣b+c>0,a﹣b﹣c<0,再根据绝对值的性质进行化简计算.【解答】解:根据三角形的三边关系,得a+c>b,a﹣b<c.∴a﹣b+c>0,a﹣b﹣c<0.∴原式=a﹣b+c﹣(a﹣b﹣c)=2c.【点评】此题综合考查了三角形的三边关系和绝对值的化简.19.如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四边形OABC绕点O 进行3次旋转变换后形成的.测得AB=BC,OA=OC,∠ABC=40°,则∠OAB的度数是95°.【考点】全等三角形的判定与性质.【专题】计算题.【分析】先根据旋转的性质得到∠AOC=90°,再利用“SSS”可证明△ABO≌△CBO,则∠AOB=∠BOC=∠AOC=45°,然后根据三角形内角和定理计算∠OAB的度数.【解答】解:∵“北大西洋公约组织”标志的主体部分(平面图)是由四边形OABC绕点O 进行3次旋转变换后形成的,∴∠AOC==90°,在△ABO和△CBO中,∴△ABO≌△CBO,∴∠AOB=∠BOC,即∠AOB=∠AOC=45°,在△AOB中,∠OAB=180°﹣45°﹣40°=95°.故答案为95°.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了旋转的性质.20.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO:S△BCO:S△CAO=2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.三、解答题(共60分)21.如图,已知AB=AC,BD=DC,图中∠B和∠C相等吗?为什么?【考点】全等三角形的判定与性质.【分析】∠B和∠C相等,理由为:连接AD,由AB=AC,BD=CD,以及AD为公共边,利用SSS 可得出三角形ABD与三角形ACD全等,利用全等三角形的对应角相等可得证.【解答】解:∠B=∠C,理由为:连接AD,如图所示:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD =∠CAD (角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS .【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.23.已知:在△ABC中,AC=BC,∠ACB=90°,CD⊥AB,点E是AB边上一点.直线BF⊥CE 于点F,交CD于点G(如图),求证:(1)∠CGB=∠AEC;(2)AE=CG.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)易证∠CBG=∠ACE,根据三角形内角和为180°的性质可以求得∠CGB=∠AEC;(2)根据(1)中结论易证△CGB≌△AEC,即可求得AE=CG.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠A=∠BCG=45°,∵∠ACE+∠BCF=90°,∠BCF+∠CBF=90°,∴∠CBG=∠ACE,∵∠AEC=180°﹣∠A﹣∠ACE,∠CGB=180°﹣∠CBG﹣∠BCG,∴∠AEC=∠CGB;(2)在△BCG和△CAE中,,∴△BCG≌△CAE(ASA),∴AE=CG.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BCG≌△CAE是解题的关键.24.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由两角和夹边即可得出△ABE≌△ACD,由全等三角形的性质可到AE=AD,进而可得出结论BD=CE.【解答】证明:在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD,∵BD=AB﹣AD,CE=AC﹣AE,∴BD=CE.【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握,也是中考常见题型.25.已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB≌△CFD就可以得出结论.【解答】证明:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,∴△CEB≌△CFD(HL),∴BE=DF.【点评】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明△CEB≌△CFD是关键.26.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN 于E,求证:DE=BD+CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证∠EAC=∠ABD,即可求证△ABD≌△CAE,根据全等三角形相等的性质即可解题.【解答】证明:∵∠DAB+∠EAC=90°,∠DAB+∠ABD=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∵DE=AD+AE,∴DE=BD+CE.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△CAE是解题的关键.27.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD 与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.28.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【考点】全等三角形的判定;三角形内角和定理;翻折变换(折叠问题).【专题】操作型;探究型.【分析】(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点是对应点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据(2)中的表示方法,可以求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2=2∠A.规律为:∠1+∠2=2∠A.【点评】在研究折叠问题时,有全等形出现,要充分利用全等的性质.。
山东省禹城市XX中学2017-2018学年八年级10月月考数学试题一、选择题(每题4分,共48分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.下列叙述中错误的是()A.能够完全重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB4.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对5.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.如图,将△ABC进行折叠,使得点A落在BC边上的点F处,且折痕DE∥BC,若∠B=56°,则∠BDF等于( )A .56°B .54°C .68°D .62°7.如图,已知AC =12,BC =15,CD 是△ABC 的角平分线,则S △ACD :S △BCD 为( )A .11:12B .11:15C .4:5D .5:48.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A .90°B .95°C .100°D .105°9.已知△ABC 在直角坐标系中的位置如图所示,如果△A ′B ′C ′与△ABC 关于y 轴对称,则点A 的对应点A ′的坐标是( )A .(﹣3,2)B .(3,2)C .(﹣3,﹣2)D .(3,﹣2)10.如图,△ABC 中,AB 的垂直平分线DE 交AC 于D ,如果AC =5cm ,BC =4cm ,那么△DBC 的周长是( )A.6cm B.7cm C.8cm D.9cm11.在直角坐标系中,等腰三角形ABC的底边两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标12.如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DAB=30°,以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG =BG.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共32分)13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:(只添加一个条件即可).14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM =ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是.15.如图所示的方格中,∠1+∠2+∠3=度.16.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.17.在△ABC中,∠A:∠B:∠C=2:3:4,则∠B=.18.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是.19.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于.20.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE 的周长是cm.三、解答题(共70分)21.(8分)如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论.22.(8分)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.23.(8分)一个多边形的外角和是内角和的,求这个多边形的边数和内角和.24.(10分)如图,在△ABC中,∠1=∠2,BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F.求证:∠B=∠C.25.(12分)求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)26.(14分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.参考答案一、选择题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念求解. 解:A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列叙述中错误的是( ) A .能够完全重合的图形称为全等图形 B .全等图形的形状和大小都相同 C .所有正方形都是全等图形D .形状和大小都相同的两个图形是全等图形【分析】能够完全重合的两个图形叫做全等形,结合各选项进行判断即可. 解:A 、能够重合的图形称为全等图形,说法正确,故本选项错误;B 、全等图形的形状和大小都相同,说法正确,故本选项错误;C 、所有正方形不一定都是全等图形,说法错误,故本选项正确;D 、形状和大小都相同的两个图形是全等图形,说法正确,故本选项错误;故选:C .【点评】本题考查了全等图形的知识,要求同学们掌握全等图形的定义及性质.3.如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对【分析】求出AF=DE,∠A=∠D,根据SAS推出△BAF≌△CDE,△BAE≌△CDF,求出BE=CF,∠AEB=∠DFC,推出∠BEF=∠CFE,根据SAS推出△BEF≌△CFE即可.解:∵AE=DF,∴AE+EF=DF+EF,∴AF=DE,∵AB∥CD,∴∠A=∠D,在△BAF和△CDE中,,∴△BAF≌△CDE(SAS),在△BAE和△CDF中,,∴△BAE≌△CDF(SAS),∴BE=CF,∠AEB=∠DFC,∴∠BEF=∠CFE,在△BEF和△CFE中,,∴△BEF≌△CFE(SAS),即全等三角形有3对,故选:C.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.【点评】此题主要考查了学生的三角形的内角和定理及等腰三角形的性质的运用.6.如图,将△ABC进行折叠,使得点A落在BC边上的点F处,且折痕DE∥BC,若∠B=56°,则∠BDF等于()A.56°B.54°C.68°D.62°【分析】先根据图形翻折不变性的性质可得∠ADE =∠EDF ,再由平行线的性质可得∠B =∠ADE =56°,最后由平角的性质即可求解.解:∵△DEF 是△DEA 沿直线DE 翻折变换而来, ∴∠ADE =∠EDF , ∵DE ∥BC ,∠B =56°, ∴∠B =∠ADE =56°, ∴∠ADE =∠EDF =56°,∴∠BDF =180°﹣∠ADE ﹣∠EDF =180°﹣56°﹣56°=68°. 故选:C .【点评】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质是解答此题的关键. 7.如图,已知AC =12,BC =15,CD 是△ABC 的角平分线,则S △ACD :S △BCD 为( )A .11:12B .11:15C .4:5D .5:4【分析】先求出AE =AC =12,再利用相似三角形的性质得出BD :AD ,最后用等高的两三角形的面积比等于底的比即可. 解:如图,过点A 作AE ∥BC 交BD 的延长线于E , ∴∠BCD =∠E ,∵CD 是∠ACB 的角平分线, ∴∠BCD =∠ACD , ∴AE =AC =12,∵∠BCD =∠E ,∠BDC =∠ADE , ∴△BCD ∽△AED ,∴,∵BC =15,AE =12,∴=,过点C 作CF ⊥AB 于F ,∴==,故选:C.【点评】此题主要考查了角平分线的意义,相似三角形的判定和性质,利用等高的两三角形的面积的比等于底的比是解本题的关键.8.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.9.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)【分析】让点A的横坐标为原来横坐标的相反数,纵坐标不变可得所求点的坐标.解:∵A的坐标为(﹣3,2),∴A关于y轴的对应点的坐标为(3,2).故选:B.【点评】考查图形的对称变换;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数.10.如图,△ABC中,AB的垂直平分线DE交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6cm B.7cm C.8cm D.9cm【分析】由于AB的垂直平分线交AC于D,所以AD=BD,而△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,由此即可求出△DBC的周长.解:∵DE是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,∴△DBC的周长是9cm.故选:D.【点评】此题主要考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.结合图形,进行线段的等量代换是正确解答本题的关键.11.在直角坐标系中,等腰三角形ABC的底边两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标【分析】先确定出等腰三角形的顶点在线段AB的垂直平分线上(除过点D)即可得出结论.解:如图,记等腰三角形底边的两端点分别为A和B,即:A(﹣2,0),B(6,0),作AB的垂直平分线交x轴于点D,即:D(2,0),∴等腰三角形的顶点在直线x=2上(除过点D),∴顶点坐标的横坐标为2,故选:A.【点评】此题主要考查了等腰三角形的性质,利用等腰三角形的三线合一的性质得出顶点的位置是解本题的关键.12.如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DAB=30°,以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG =BG.其中正确的个数为()A.1 B.2 C.3 D.4【分析】①根据已知得出∠CAF=30°,∠GAF=60°,进而得出∠AFB的度数;②利用ASA证明△ADG≌△ACF得出答案;③利用△AGO≌△AFO,得出AO=CO=AC,进而得出BO=CO=AO,即O为BC的中点;④在Rt△AGE中,由∠AGE=90°,∠E=30°,推出AG=AE,又AB=AE,可得AG=AB解决问题.解:∵两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.∴∠CAF=30°,∴∠GAF=60°,∴∠AFB=90°,∴AF丄BC正确,故①正确,∵AD=AC,∠DAG=∠CAF,∠D=∠C=60°,∴△ADG≌△ACF正确,故②正确,∵△ADG≌△ACF,∴AG=AF,∵AO=AO,∠AGO=∠AFO=90°,∴△AGO≌△AFO,∴∠OAF=30°,∴∠OAC=60°,∴AO=CO=AC,∴BO=CO=AO,故③正确,在Rt△AGE中,∵∠AGE=90°,∠E=30°,∴AG=AE,∵AB=AE,∴AG=AB,∴AG=GB,故④正确.故选:D.【点评】此题主要考查了全等三角形的判定和性质、直角三角形中30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、填空题(每题4分,共32分)13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:BC=EF(只添加一个条件即可).【分析】本题是开放题,应先确定题中给出的条件,再对应三角形全等条件求解.解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM =ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是SSS证明△COM≌△CON.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故答案为:SSS证明△COM≌△CON.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.15.如图所示的方格中,∠1+∠2+∠3=135 度.【分析】标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.【点评】本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.16.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为(0,﹣2)或(2,﹣2)或(2,2).【分析】先求出BC的长,根据题意得出两种情况,画出图形,即可得出答案.解:∵A(﹣1,0)、B(3,0)、C(0,2),∴BC=,∴符合条件的有两种情况:①AD=BC=,如图:②BD=BC=,如图:即符合条件的D点坐标是(0,﹣2),(﹣2,﹣2),(2,2),故答案为:(0,﹣2),(2,﹣2),(2,2).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.在△ABC中,∠A:∠B:∠C=2:3:4,则∠B=60°.【分析】设一份是x°,则∠A=2x°,∠B=3x°,∠C=4x°,再根据三角形的内角和是180°列方程求解.解:设一份是x°,则∠A=2x°,∠B=3x°,∠C=4x°.则有2x+3x+4x=180,x=20.则∠B=3x°=60°;故答案为:60°.【点评】此题考查了三角形的内角和定理.18.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是76°.【分析】先根据三角形内角和,得到∠ABC的度数,再根据角平分线的定义,得出∠DBC,进而根据三角形内角和,即可得到∠BDC的度数.解:∵∠A=46°,∠C=74°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=30°,∴△BCD中,∠BDC=180°﹣∠C﹣∠DBC=76°,故答案为:76°【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和等于180°.19.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于75°.【分析】根据两直线平行,内错角相等求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解:如图,∠1=30°,所以,∠α=∠1+45°=30°+45°=75°.故答案为:75°.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.20.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE 的周长是 5 cm.【分析】分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm.解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.故答案为:5.【点评】此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.三、解答题(共70分)21.(8分)如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH 为半径画弧,两弧交于N,作射线DN,交AM于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.解:(1)如图所示:(2)△ADF是等腰直角三角形.理由:∵AB=AC,AD是高,∴∠BAD=∠CAD又∵AM是△ABC外角∠CAE的平分线,∴∠FAD=×180°=90°,∴AF∥BC,∴∠CDF=∠AFD.又∵∠AFD=∠ADF,∴∠CDF=∠ADF.∴AD=AF.∴△ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.22.(8分)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是9 .【分析】(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.解:(1)如图所示;(2)S△ABC=4×5﹣×2×4﹣×3×3﹣×1×5=20﹣4﹣﹣=9.故答案为:9.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.(8分)一个多边形的外角和是内角和的,求这个多边形的边数和内角和.【分析】设这个多边形的边数为n,由n边形的内角和是(n﹣2)•180°,多边形的外角和是360°列出方程,解方程求出n的值,进而得到这个多边形的内角和.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9,所以内角和为(9﹣2)180°=1260°.答:这个多边形的边数为9,内角和为1260°.【点评】本题考查了多边形内角与外角,掌握n边形的内角和是(n﹣2)•180°,多边形的外角和是360°是解题的关键.24.(10分)如图,在△ABC中,∠1=∠2,BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F.求证:∠B=∠C.【分析】欲证明∠B=∠C,只要证明Rt△BDE≌Rt△CDF(HL)即可.证明:∵DE⊥AB,DF⊥AC,∴∠DEA=∠DFA,在Rt△AED和Rt△AFD中,,∴△AED≌△AFD(AAS),∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(12分)求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)【分析】根据题意画出图形,写出已知与求证,然后证明:连接AD,由AB=AC,D为BC中点,利用等腰三角形的“三线合一”性质得到AD为顶角的平分线,由DE与AB垂直,DF与AC垂直,根据角平分线上的点到角两边的距离相等即可得到DE=DF,得证.已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.证明:连接AD,∵AB=AC,D是BC中点,∴AD为∠BAC的平分线(三线合一的性质),又∵DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角的两边相等).【点评】本题主要考查等腰三角形的性质的应用,关键是掌握等腰三角形的腰相等且底边上的两个角相等,及角平分线上的点到角两边的距离相等.26.(14分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为垂直,线段CF、BD的数量关系为相等;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。