高考数学 高考必会题型 专题8 概率与统计 第36练 概率的两类模型(精编文档).doc
- 格式:doc
- 大小:174.00 KB
- 文档页数:10
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
第36练 概率的两类模型题型一 古典概型问题例1 某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率: (1)选取的2位学生都是男生;(2)选取的2位学生一位是男生,另一位是女生.破题切入点 先求出任取2位学生的基本事件的总数,然后分别求出所求的两个事件含有的基本事件数,再利用古典概型概率公式求解.解 (1)设4位男生的编号分别为1,2,3,4,2位女生的编号分别为5,6.从6位学生中任取2位学生的所有可能结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.从6位学生中任取2位学生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 所以选取的2位学生全是男生的概率为P1=615=25.(2)从6位学生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种. 所以选取的2位学生一位是男生,另一位是女生的概率为P2=815.题型二 几何概型问题例2 (2013·四川改编)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________. 破题切入点 由几何概型的特点,利用数形结合即可求解. 答案 34解析设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎪⎨⎪⎧0≤x≤40≤y≤4|x -y|≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P(|x-y|≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.题型三 古典概型与几何概型的综合问题例3 已知关于x 的一元二次方程9x2+6ax -b2+4=0,a ,b ∈R.(1)若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.破题切入点 本题中含有两个参数,显然要将问题转化为含参数的一元二次方程有解的条件问题.第(1)问利用列举法将基本事件罗列出来,再结合题意求解.第(2)问将a ,b 满足的不等式转化为可行域——平面区域问题,从而利用几何概型的概率公式求解.解 设事件A 为“方程9x2+6ax -b2+4=0有两个不相等的实数根”;事件B 为“方程9x2+6ax -b2+4=0有实数根”.(1)由题意,知基本事件共9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值. 由Δ=36a2-36(-b2+4)=36a2+36b2-36×4>0,得a2+b2>4.事件A 要求a ,b 满足条件a2+b2>4,可知包含6个基本事件:(1,2),(2,1),(2,2),(3,0),(3,1),所以方程有两个不相同实根的概率P(A)=69=23.(2)由题意,方程有实根的区域为图中阴影部分, 故所求概率为: P(B)=6-π6=1-π6.总结提高 (1)求解古典概型问题的三个步骤①判断本次试验的结果是否是等可能的,设出所求事件A.②分别计算基本事件的总数n 和所求事件A 所包含的基本事件的个数m.③利用古典概型的概率公式P(A)=mn 求出事件A 的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.(2)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.(3)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A 的概率P(A)只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.1.从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是________. 答案16492.已知实数a ,b 满足⎩⎪⎨⎪⎧0≤a≤4,0≤b≤4,x1,x2是关于x 的方程x2-2x +b -a +3=0的两个实根,则不等式0<x1<1<x2成立的概率是________. 答案 332解析 由题意,关于x 的方程x2-2x +b -a +3=0对应的一元二次函数f(x)=x2-2x +b -a+3满足f(0)>0,f(1)<0,即⎩⎪⎨⎪⎧b -a +3>0,b -a +2<0,建立平面直角坐标系如图.满足题意的区域为图中阴影部分,故所求概率P =3216=332.3.(2014·陕西改编)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35. 4.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 设点P 到点O 的距离小于等于1的概率为P1,由几何概型,则P1=V 半球V 圆柱=2π3×13π×12×2=13,故点P 到点O 的距离大于1的概率P =1-13=23.5.在面积为S 的矩形ABCD 内随机取一点P ,则△PBC 的面积小于S4的概率是________.答案 12解析如图,M ,N 分别为AB ,CD 中点, 当点P 位于阴影部分时,△PBC 的面积小于S 4,根据几何概型,其概率为P =S 矩形MBCN S 矩形ABCD =12.6.已知点A 在坐标原点,点B 在直线y =1上,点C(3,4),若AB≤10,则△ABC 的面积大于5的概率是________. 答案 524解析 设B(x,1),根据题意知点D(34,1),若△ABC 的面积小于或等于5,则12×DB×4≤5,即DB≤52,所以点B 的横坐标x ∈[-74,134],而AB≤10,所以点B 的横坐标x ∈[-3,3],所以△ABC 的面积小于或等于5的概率为 P =3-(-74)6=1924,所以△ABC 的面积大于5的概率是1-P =524.7.(2013·湖北)在区间[-2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为56,则m =________. 答案 3解析 由|x|≤m,得-m≤x≤m.当m≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m<4时,由题意得m -(-2)6=56,解得m =3.即m 的值为3.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x2m2+y2n2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析∵方程x2m2+y2n2=1表示焦点在x 轴上的椭圆,∴m>n.如图,由题意知,在矩形ABCD 内任取一点Q(m ,n),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.(2013·江苏)现有某类病毒记作XmYn ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为______. 答案2063解析 P =4×57×9=2063.10.平面内有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________. 答案 13解析 如图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为13.11.已知向量a =(-2,1),b =(x ,y). (1)若x 、y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a·b<0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a·b=-1有-2x +y =-1,所以满足a·b=-1的基本事件为(1,1),(2,3),(3,5),共3个; 故满足a·b=-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x≤6,1≤y≤6}; 满足a·b<0的基本事件的结果为A ={(x ,y)|1≤x≤6,1≤y≤6且-2x +y<0}; 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a·b<0的概率为2125.12.某同学参加省学业水平测试,物理、化学、生物成绩获得等级A 和获得等级不是A 的机会相等,且三个学科成绩获得等级A 的事件分别记为W1,W2,W3,获得等级不是A 的事件分别记为W1,W2,W3.(1)试列举该同学在这次水平测试中物理、化学、生物成绩是否为A 的所有可能结果(如三科成绩均为A 记为(W1,W2,W3));(2)求该同学参加这次水平测试获得两个A 的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.解 (1)该同学在这次水平测试中物理、化学、生物成绩是否为A 的可能结果有8种,分别为(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3).(2)由(1),知有两个A 的情况为(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),共3种,从而所求概率为P =38.(3)方法一 该同学参加这次水平测试物理、化学、生物成绩不全为A 的事件概率大于85%. 理由如下:该同学参加这次水平测试物理、化学、生物成绩不全为A 的事件有如下7种情况:(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,,W2,W3),故物理、化学、生物成绩不全为A 的概率是P1=78=0.875>85%.方法二 该同学参加这次水平测试物理、化学、生物成绩至少一个为A 的事件概率大于85%. 理由如下:该同学参加这次水平测试物理、化学、生物成绩全不为A 的事件有1种情况,即(W1,W2,W3),其概率为18,则物理、化学、生物成绩至少一个为A 的概率为P2=1-18=78>85%.。
高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
概率与统计热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是ξ 0 2 4 P82740811781【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118, ∴所求概率为P (B|A )=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为X 20 60P 1212所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X120 60 100P 162316X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P 162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11.②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为X 012P 25815115E(X)=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b^=l xy l xx=2480=0.3, a^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷 读书迷总计 男 15 女 45 总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 解 (1)完成2×2列联表如下:非读书迷 读书迷 总计 男 40 15 55 女 20 25 45 总计6040100K 2=100×(40×25-15×20)60×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关. (2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3).X 的分布列为 X0 1 2 3 P27125 54125 36125 8125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。
概率与统计的数学模型概率与统计是数学中两个重要的分支,它们在现代科学和实际生活中都起着至关重要的作用。
概率是研究随机现象发生的规律性,而统计是用数据推断总体特征的方法。
它们的数学模型在研究和应用中具有广泛的应用和意义。
一、概率的数学模型概率的数学模型主要有概率空间和概率分布两个方面。
1. 概率空间概率空间是指由样本空间和样本空间中的事件组成的数学模型。
样本空间是指所有可能结果的集合,事件是指样本空间的某些子集。
概率空间由三个元素组成:样本空间Ω,事件的集合F和概率函数P。
概率函数P定义了事件在样本空间中的概率,它满足三个条件:非负性、规范性和可列可加性。
2. 概率分布概率分布是指随机变量在各取值上的概率分布情况。
随机变量是样本空间到实数集的映射,它描述了随机现象的数值特征。
概率分布可以分为离散型和连续型两种。
离散型概率分布可以用概率质量函数(probability mass function,PMF)来描述。
例如,二项分布是描述n重伯努利试验的概率分布,其PMF可以用来计算在n次试验中成功的次数。
连续型概率分布可以用概率密度函数(probability density function,PDF)来描述。
例如,正态分布是一种常见的连续型概率分布,它在自然界和社会科学中有广泛应用。
二、统计的数学模型统计的数学模型主要有样本和总体两个方面。
1. 样本样本是指从总体中获取的部分观察结果。
样本可以是随机抽样或非随机抽样得到的,它用来代表总体并推断总体的特征。
样本是统计推断的基础。
2. 总体总体是指研究对象的整体集合。
总体可以是有限总体或无限总体,它包含了研究对象的所有可能结果。
总体的特征可以用参数来描述,例如总体的均值、方差等。
统计的数学模型主要是通过样本推断总体的特征。
统计推断包括点估计和区间估计两个方面。
点估计是利用样本数据来估计总体参数的值,常用的点估计方法有最大似然估计和矩估计等。
区间估计是利用样本数据给出总体参数的区间范围,常用的区间估计方法有置信区间和预测区间等。
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考数学中的概率与统计在高考数学中,概率与统计是两个非常重要的概念。
概率是指某件事情发生的可能性,而统计则是通过数据分析找出事情的规律。
本文将介绍高考中的概率和统计内容,以及对于考生应该如何应对这些考点。
一、概率概率是高考数学中的重点之一,它涉及到很多基本概念和计算方法。
我们先来看看常见的概率问题:1. 定义概率:概率是指某事件发生的可能性,通常用一个介于0 到 1 之间的数字表示。
比如说,掷一枚骰子,出现 1 的概率是1/6,出现偶数的概率是 3/6=1/2。
2. 事件的互斥:如果两个事件不能同时发生,就称它们互斥。
比如说,掷一枚骰子,出现 1 和出现 2 是互斥的事件。
此时它们的概率可以简单地相加。
3. 事件的独立:如果两个事件的发生不会互相影响,就称它们独立。
比如说,掷两枚骰子,第一枚出现 1 的概率是 1/6,第二枚出现 2 的概率也是 1/6。
此时出现 1 和 2 的概率就是它们的乘积。
4. 条件概率:条件概率是指在已知一个事件发生的情况下,另一个事件发生的可能性。
比如说,从一副扑克牌中取出一张牌,它是红桃的概率是 1/4,如果告诉你它是一张面值为 A 的牌,那么这张牌是红桃的概率就变成了 1/2。
考生在备考概率时,需要将这些基本概念掌握清楚,并能够结合具体问题来进行计算。
此外,还需要注意一些细节问题,比如说事件是否独立、概率的范围等等。
二、统计统计是高考数学中的另一个重要考点,它用来描述数据的分布规律和相关性。
常见的统计问题有:1. 统计指标:统计学有很多指标,比如说平均数、中位数、众数、标准差等等。
这些指标用来描述数据的各种特征,可以通过计算得出。
2. 直方图:直方图是一种常用的数据可视化工具。
它将一段数据区间划分为若干个子区间,并计算每个子区间的数据量,然后将它们用矩形图形表示出来。
通过直方图可以看出数据的分布规律,比如说是否呈正态分布等等。
3. 散点图:散点图可以用来表示两个变量之间的关系。
掌握高考数学中的概率与统计题解题方法概率与统计是高考数学中的重要内容之一,许多学生在解答概率与统计题目时感到困惑。
本文将详细介绍高考数学中概率与统计题解题的方法,帮助学生掌握这一部分知识。
一、概率与统计题的分类在高考数学中,概率与统计题主要分为两类:概率题和统计题。
概率题是指要求计算某一事件发生的可能性;统计题是指要求根据给定的数据分析并得出结论。
接下来,将分别介绍这两类题目的解题方法。
二、概率题的解题方法概率题通常涉及到事件的概率计算,解题的关键在于理解题意并运用相应的公式进行计算。
1. 计算概率的基本公式- 若事件A发生的可能性为P(A),则事件A不发生的可能性为1-P(A)。
- 若事件A、B相互独立,则事件A和事件B同时发生的概率为P(A) × P(B)。
- 若事件A、B不相互独立,则事件A和事件B同时发生的概率为P(A) × P(B|A)。
2. 运用排列组合解决问题有时,概率题需要运用排列组合的知识进行计算。
比如,从n个元素中选取m个元素的组合数可表示为C(n,m)=n!/[(n-m)! × m!]。
3. 运用条件概率解决问题有时,概率题需要运用条件概率的概念进行计算。
条件概率表示在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B)。
三、统计题的解题方法统计题主要涉及到数据的分析和处理,解题的关键在于根据题目要求选择合适的统计方法和技巧进行计算。
1. 构建频数表和频数分布图对于给定的数据,可以通过构建频数表和频数分布图来更好地观察数据的分布情况。
频数表可以统计每个数值出现的次数,频数分布图可以直观地展示数据的分布情况。
2. 求解平均数、中位数和众数平均数表示数据的平均值,中位数表示数据的中间值,众数表示出现次数最多的数值。
这些统计量可以帮助我们更好地了解数据的特征。
3. 进行数据的比较和推断统计题中常常需要进行数据的比较和推断,这时可以运用假设检验等方法进行判断并得出结论。
高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。
因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。
一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。
(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。
(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。
2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。
(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。
二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。
2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。
3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。
4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。
总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。
【最新整理,下载后即可编辑】第36练概率的两类模型题型一古典概型问题例1 某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率:(1)选取的2位学生都是男生;(2)选取的2位学生一位是男生,另一位是女生.破题切入点先求出任取2位学生的基本事件的总数,然后分别求出所求的两个事件含有的基本事件数,再利用古典概型概率公式求解.解(1)设4位男生的编号分别为1,2,3,4,2位女生的编号分别为5,6.从6位学生中任取2位学生的所有可能结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.从6位学生中任取2位学生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以选取的2位学生全是男生的概率为P1=615=25.(2)从6位学生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以选取的2位学生一位是男生,另一位是女生的概率为P2=8 15 .题型二几何概型问题例2 (2013·四川改编)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.破题切入点由几何概型的特点,利用数形结合即可求解.答案34解析设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x、y,x、y相互独立,由题意可知⎩⎨⎧0≤x≤40≤y≤4|x-y|≤2,如图所示.∴两串彩灯第一次亮的时间相差不超过2秒的概率为P(|x-y|≤2)=S正方形-2S△ABCS正方形=4×4-2×12×2×24×4=1216=34.题型三古典概型与几何概型的综合问题例3 已知关于x的一元二次方程9x2+6ax-b2+4=0,a,b∈R.(1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.破题切入点本题中含有两个参数,显然要将问题转化为含参数的一元二次方程有解的条件问题.第(1)问利用列举法将基本事件罗列出来,再结合题意求解.第(2)问将a,b满足的不等式转化为可行域——平面区域问题,从而利用几何概型的概率公式求解.解设事件A为“方程9x2+6ax-b2+4=0有两个不相等的实数根”;事件B为“方程9x2+6ax-b2+4=0有实数根”.(1)由题意,知基本事件共9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.由Δ=36a2-36(-b2+4)=36a2+36b2-36×4>0,得a2+b2>4. 事件A 要求a ,b 满足条件a2+b2>4,可知包含6个基本事件:(1,2),(2,1),(2,2),(3,0),(3,1),所以方程有两个不相同实根的概率P(A)=69=23.(2)由题意,方程有实根的区域为图中阴影部分,故所求概率为:P(B)=6-π6=1-π6. 总结提高 (1)求解古典概型问题的三个步骤①判断本次试验的结果是否是等可能的,设出所求事件A.②分别计算基本事件的总数n 和所求事件A 所包含的基本事件的个数m.③利用古典概型的概率公式P(A)=m n求出事件A 的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.(2)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.(3)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A 的概率P(A)只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.1.从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是________.答案16492.已知实数a,b满足⎩⎪⎨⎪⎧0≤a≤4,0≤b≤4,x1,x2是关于x的方程x2-2x +b-a+3=0的两个实根,则不等式0<x1<1<x2成立的概率是________.答案332解析由题意,关于x的方程x2-2x+b-a+3=0对应的一元二次函数f(x)=x2-2x+b-a+3满足f(0)>0,f(1)<0,即⎩⎪⎨⎪⎧b-a+3>0,b-a+2<0,建立平面直角坐标系如图.满足题意的区域为图中阴影部分,故所求概率P=3216=332. 3.(2014·陕西改编)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35 解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35. 4.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.答案 23 解析 设点P 到点O 的距离小于等于1的概率为P1,由几何概型,则P1=V 半球V 圆柱=2π3×13π×12×2=13,故点P 到点O 的距离大于1的概率P =1-13=23. 5.在面积为S 的矩形ABCD 内随机取一点P ,则△PBC 的面积小于S 4的概率是________. 答案 12解析如图,M ,N 分别为AB ,CD 中点,当点P 位于阴影部分时,△PBC 的面积小于S 4,根据几何概型,其概率为P =S 矩形MBCN S 矩形ABCD=12.6.已知点A在坐标原点,点B在直线y=1上,点C(3,4),若AB≤10,则△ABC的面积大于5的概率是________.答案524解析设B(x,1),根据题意知点D(34,1),若△ABC的面积小于或等于5,则12×DB×4≤5,即DB≤52,所以点B的横坐标x∈[-74,134],而AB≤10,所以点B的横坐标x∈[-3,3],所以△ABC的面积小于或等于5的概率为P=3-(-74)6=1924,所以△ABC的面积大于5的概率是1-P=524.7.(2013·湖北)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m 的概率为56,则m=________.答案 3解析由|x|≤m,得-m≤x≤m.当m≤2时,由题意得2m6=56,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得m-(-2)6=56,解得m=3.即m的值为3.8.在区间[1,5]和[2,4]上分别各取一个数,记为m和n,则方程x2 m2+y2n2=1表示焦点在x轴上的椭圆的概率是________.答案1 2解析∵方程x2m2+y2n2=1表示焦点在x轴上的椭圆,∴m>n.如图,由题意知,在矩形ABCD内任取一点Q(m,n),点Q落在阴影部分的概率即为所求的概率,易知直线m=n恰好将矩形平分,∴所求的概率为P=1 2 .9.(2013·江苏)现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为______.答案20 63解析P=4×57×9=20 63.10.平面内有一组平行线,且相邻平行线间的距离为3 cm,把一枚半径为1 cm的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________.答案1 3解析如图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为1 3 .11.已知向量a=(-2,1),b=(x,y).(1)若x、y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.解(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a·b=-1有-2x+y=-1,所以满足a·b=-1的基本事件为(1,1),(2,3),(3,5),共3个;故满足a·b=-1的概率为336=112.(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};画出图形如图,矩形的面积为S矩形=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25 .12.某同学参加省学业水平测试,物理、化学、生物成绩获得等级A和获得等级不是A的机会相等,且三个学科成绩获得等级A 的事件分别记为W1,W2,W3,获得等级不是A的事件分别记为W1,W2,W3.(1)试列举该同学在这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为(W1,W2,W3));(2)求该同学参加这次水平测试获得两个A的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.解(1)该同学在这次水平测试中物理、化学、生物成绩是否为A 的可能结果有8种,分别为(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3).(2)由(1),知有两个A的情况为(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),共3种,从而所求概率为P=3 8 .(3)方法一该同学参加这次水平测试物理、化学、生物成绩不全为A的事件概率大于85%.理由如下:该同学参加这次水平测试物理、化学、生物成绩不全为A的事件有如下7种情况:(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,W2,W3),(W1,,W2,W3),故物理、化学、生物成绩不全为A的概率是P1=78=0.875>85%.方法二该同学参加这次水平测试物理、化学、生物成绩至少一个为A的事件概率大于85%.理由如下:该同学参加这次水平测试物理、化学、生物成绩全不为A的事件有1种情况,即(W1,W2,W3),其概率为18,则物理、化学、生物成绩至少一个为A的概率为P2=1-18=78>85%.。