2017年11月九年级上初中数学复习
- 格式:doc
- 大小:319.43 KB
- 文档页数:10
九年级上册数学辅导复习知识点第二单元一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数某的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;b某叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数某,并用某代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
初三上册数学知识点归纳2017人教版【三篇】导读:本文初三上册数学知识点归纳2017人教版【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
导语:初三新生就要进入以备战中考为目的的学习阶段了,数学知识点的难度有所增加,那么你如何学习初三年级的数学呢?以下是整理的初三上册数学知识点归纳2017人教版【三篇】,希望对大家有帮助。
第22章一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。
在解决某些实际问题时还会遇到一种新方程——一元二次方程。
“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。
然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。
下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。
然后安排运用公式法解一元二次方程的例题。
在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。
由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。
然后安排运用因式分解法解一元二次方程的例题。
九年级上册数学44个重难点考点:1.整数的加减法和乘法2.整数的除法3.整数的混合运算4.正数、负数的乘除法5.小数的四则混合运算6.小数的乘法7.小数的除法8.小数与分数的互换9.分数的基本概念与性质10.分数的加减法11.分数的乘法12.分数的除法13.分数的混合运算14.计算技巧15.有理数的加减法16.有理数的乘法17.有理数的除法18.比与比例19.比例的变化20.图形的认识21.平行线22.三角形的性质23.全等三角形的性质24.直角三角形的特殊性质25.相似三角形的性质26.相似三角形的判定27.三角形的计算28.四边形的性质29.平行四边形的性质30.矩形、正方形的性质31.菱形、平行四边形的性质32.梯形的性质33.五边形、六边形的性质34.多边形的内角和35.空间图形的认识36.棱、面、顶点的认识37.柱体、棱柱、棱锥的认识38.四面体、棱台、棱锥的认识39.球体、圆柱、圆锥的认识40.多面体的认识41.投影42.平移43.旋转44.对称以上是九年级上册数学的44个重难点考点,每个考点都是学习数学过程中不可或缺的重要内容。
在学习这些知识点的应注重理论联系实际,善于举一反三,灵活运用所学知识解决实际问题。
希望同学们在学习过程中能够将这些知识点牢牢掌握,不断提高数学解决问题的能力。
九年级上册数学重难点考点内容丰富多样,涵盖了整数、小数、分数、有理数、比与比例、图形的性质、空间图形的认识、投影、平移、旋转、对称等多个方面。
在学习这些知识点的过程中,我们应该注重理论联系实际,善于举一反三,灵活运用所学知识解决实际问题。
整数的加减法和乘法、整数的除法以及整数的混合运算是我们学习数学的基础。
我们要掌握整数的运算规则和技巧,例如同号相乘为正,异号相乘为负,同号相除为正,异号相除为负等。
在解决实际问题时,我们要能够准确地运用这些规则,正确地进行计算。
小数的四则混合运算、小数的乘法、小数的除法以及小数与分数的互换也是重点考点。
九年级数学上册知识点复习数学,作为一门学科,对于很多学生来说是一道难以逾越的高山。
但是只要我们掌握了一些基本的知识点和解题方法,就能够轻松地攀登这座高山。
上述九年级数学上册的知识点复习,将帮助我们对课本中的内容有一个更加全面的了解。
第一章:有理数有理数是数学中很重要也很基础的一部分内容。
在这一章节中,我们学习了有理数的概念、有理数的运算、有理数的应用等内容。
有理数指的是具有有限小数或无限循环小数的数,包括正整数、负整数、零、正分数和负分数。
我们需要掌握有理数的加法、减法、乘法和除法的运算法则,并能够熟练地应用到各种问题中。
第二章:代数式代数式是数学中进行运算的基本单位,它是由字母、数字和运算符号组成的表达式。
在这一章节中,我们学习了代数式的概念、代数式的运算、代数式的应用等内容。
代数式可以用来描述或表示一个或多个数之间的关系,通过代数式的运算,我们可以进行算术运算、求未知数等。
在解决实际问题时,我们可以通过建立代数方程的方式将问题转化为代数式,进而得到问题的解答。
第三章:图形的认识在数学中,图形是由一定数量的点、线和面组成的几何实体,而图形的认识是我们进一步学习几何知识的基础。
在这一章节中,我们学习了常见图形的特点、图形的分类、图形的运动等内容。
常见的图形包括点、线、角、三角形、四边形、圆等。
通过学习图形的性质和特点,我们可以进一步学习图形的面积、周长、体积等相关知识。
第四章:方程的解法方程是数学中一个非常重要的概念,它是由等号连接的两个代数式构成的等式。
在这一章节中,我们学习了方程的概念、方程的解法、方程的应用等内容。
方程的解是指能够使等式成立的未知数的值。
通过变量的代入和求解等方法,我们可以求得方程的解。
在解决实际问题时,我们可以通过建立方程的方式将问题转化为数学语言,进而求得问题的解答。
第五章:直线与平面直线和平面是几何学中的基本概念,也是我们学习几何知识的基础。
在这一章节中,我们学习了直线和平面的概念、直线和平面的性质、直线和平面的关系等内容。
九年级上册数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。
- 无理数:不能表示为两个整数的比的数,如√2、π。
2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 实数的性质- 相反数、倒数- 有理数和无理数的性质4. 科学记数法- 表示非常大或非常小的数5. 实数的比较- 大小比较的方法- 不等式的表示和性质二、代数表达式1. 单项式- 单项式的定义- 系数、次数2. 多项式- 多项式的定义- 项、次数、系数- 多项式的加减法3. 代数式的简化- 合并同类项- 分配律、结合律、交换律4. 因式分解- 提公因式法- 公式法(平方差、完全平方等) - 十字相乘法三、方程与不等式1. 一元一次方程- 方程的建立- 解方程的步骤2. 二元一次方程组- 代入法- 消元法(加减消元、代数消元)3. 不等式- 不等式的性质- 解一元一次不等式- 解一元一次不等式组4. 绝对值不等式- 绝对值的性质- 解绝对值不等式四、平面图形1. 平行线与线段- 平行线的性质- 线段的中点、平行线之间的距离2. 角- 角的分类- 角的度量- 角的和差3. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质 - 三角形的内角和外角4. 四边形- 四边形的分类- 矩形、菱形、正方形的性质- 四边形的面积计算5. 圆- 圆的基本性质- 圆的面积和周长- 切线的性质五、立体图形1. 立体图形的基本概念- 点、线、面、体- 立体图形的分类2. 棱柱和棱锥- 棱柱和棱锥的性质- 棱柱和棱锥的体积计算3. 圆柱和圆锥- 圆柱和圆锥的性质- 圆柱和圆锥的体积和表面积计算4. 球- 球的性质- 球的体积和表面积计算六、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 条件概率和独立事件请注意,以上内容仅为九年级上册数学知识点的一个概括性归纳,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。
初中数学九年级上册知识点
一、代数
1.一元一次方程
–解一元一次方程的基本方法
–用一元一次方程解决实际问题
2.二元一次方程组
–解二元一次方程组的基本方法
–用二元一次方程组解决实际问题
3.因式分解
–提取公因式
–分解因式
–使用因式分解求解问题
二、几何
1.平面直角坐标系
–点、直线的坐标
–距离、中点的公式
2.平行线与垂直线
–平行线的性质
–垂直线的性质
3.圆
–圆的基本概念
–圆内角、弦长、弧长关系
三、概率
1.随机事件与概率
–随机事件的概念
–概率的基本概念
–事件的互斥和对立
–概率的计算方法
2.排列组合
–排列的概念与计算
–组合的概念与计算
四、统计
1.描述统计
–数据的集中趋势
–数据的离散程度
–分布图形与定量特征
2.抽样调查
–抽样的方法与原则
–样本的构成与调查的方法
五、综合应用
1.选择应用题
–解决实际问题过程的方法
–能力的培养和提高
2.综合性问题
–综合应用数学知识的题目
–解决综合问题的思路和方法
以上内容为初中数学九年级上册的主要知识点汇总,希望对你的学习有所帮助。
数学九年级上册知识点必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学九年级上册知识点的学习资料,希望对大家有所帮助。
九年级上册数学知识点总结第一章二次根式1 二次根式:形如 ( )的式子为二次根式;性质: ( )是一个非负数;2 二次根式的乘除:3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式:,S是三角形的面积,p为。
第二章一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的次是2的方程。
2 一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法:因式分解法:左边是两个因式的乘积,右边为零。
3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么有第三章旋转1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系点在圆外点在圆上 d=r点在圆内 d 定理:不在同一条直线上的三个点确定一个圆。
九级上册数学知识点总结Let's learn positive psychology to make our life happier.九年级上册数学知识点总结归纳2第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0a≠0.注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式.知识点2:一元二次方程的解法1.直接开平方法:对形如x+a2=b b≥0的方程两边直接开平方而转化为两个一元一次方程的方法.X+a=±b∴1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0k≠0的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为x+a2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=b2-4ac≥0.步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式.4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法.5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2x+42 =3x+4中,不能随便约去x+4.⑷注意:解一元二次方程时一般不使用配方法除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴b2-4ac≥0⇔方程有两个不相等的实数根;⑵b2-4ac=0⇔方程有两个相等的实数根;⑶b2-4ac≤0⇔方程没有实数根.解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题.主要用于求方程中未知系数的值或取值范围.知识点3:根与系数的关系:韦达定理对于方程ax 2+bx+c=0a ≠0来说,x1 +x2 =—a b ,x1●x2= a c.利用韦达定理可以求一些代数式的值式子变形,如2122122212)(x x x x x x-+=+21212111x x x x x x +=+.解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理. 知识点4:一元二次方程的应用 一、考点讲解:1.构建一元二次方程数学模型,常见的模型如下:⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等; ⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长降低两次得到新数据,常见的等量关系是a1±x2=b,其中a 表示增长降低前的数据,x 表示增长率降低率,b 表示后来的数据.注意:所得解中,增长率不为负,降低率不超过1.⑶ 经济利润问题:总利润=单件销售额-单件成本×销售数量;或者,总利润=总销售额-总成本.⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程.2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 一元二次方程与实际问题1、病毒传播问题2、树干问题3、握手问题单循环问题4、贺卡问题双循环问题5、围栏问题6、几何图形道路、做水箱7、增长率、降价率问题8、利润问题注意减少库存、让顾客受惠等字样9、数字问题10、折扣问题第二十二章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2=++a b cy ax bx ca≠的函数,,,是常数,0叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小.2.2y ax c=+的性质: 上加下减.3.()2y a x h =-的性质:左加右减.4. ()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标 ;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 右 ,上 下 ”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a-⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y axbx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,若与x 轴没有交点,则取两组对称轴对称的点. 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y axbx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ,b ,c 为常数,0a ≠; 2. 顶点式:2()y a x h k =-+a ,h ,k 为常数,0a ≠;3. 两根式两点式:12()()y a x x x x =--0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y axbx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. x 轴对称 2y axbx c =++x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+x 轴对称后,得到的解析式是()2y a x h k =---;2. y 轴对称 2y axbx c =++y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+y 轴对称后,得到的解析式是()2y a x h k =++;3. 原点对称 2y axbx c =++原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k=-+原点对称后,得到的解析式是()2y a x h k=-+-;4. 顶点对称即:抛物线绕顶点旋转180°2y ax bx c =++顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+顶点对称后,得到的解析式是()2y a x h k=--+.5. 点()m n ,对称()2y a x h k=-+点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数: ① 当240bac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y axbx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y axbx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.与二次函数有关的还有二次三项式,二次三项式2(0)++≠本身就是所含ax bx c a字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)2(x-2)2y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2-322.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过0,3,4,6两点,对称轴为35=x ,求这条抛物线的解析式.4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线2y axbx c =++a ≠0与x 轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-错误!1确定抛物线的解析式;2用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题. 例题经典由抛物线的位置确定系数的符号例1 1二次函数2y axbx c =++的图像如图1,则点),(ac b M 在A .第一象限B .第二象限C .第三象限D .第四象限2已知二次函数y=ax 2+bx+ca ≠0的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是 A .1个 B .2个 C .3个 D .4个1 2点评弄清抛物线的位置与系数a,b,c 之间的关系,是解决问题的关键.例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点-2,O 、x 1,0,且1<x 1<2,与y 轴的正半轴的交点在点O,2的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a -b+1>O,其中正确结论的个数为 A 1个 B. 2个 C. 3个 D .4个 会用待定系数法求二次函数解析式例3.已知:x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为A2,-3 B.2,1 C2,3 D .3,2例4、如图单位:m,等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.1写出y 与x 的关系式; 2当x=2,时,y 分别是多少 3当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间求抛物线顶点坐标、对称轴.例5、已知抛物线y=12x 2+x-52.1用配方法求它的顶点坐标和对称轴.2若该抛物线与x 轴的两个交点为A 、B,求线段AB 的长.点评本题1是对二次函数的“基本方法”的考查,第2问主要考查二次函数与一元二次方程的关系.例6.已知:二次函数y=ax 2-b+1x-3a 的图象经过点P4,10,交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x ,交y 轴负半轴于C 点,且满足3AO=OB .1求二次函数的解析式;2在二次函数的图象上是否存在点M,使锐角∠MCO>∠A CO 若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由.1的图象经过点Ac,-2,例7、“已知函数c+=2y+xbx求证:这个二次函数图象的对称轴是x=3.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.1根据已知和结论中现有的信息,你能否求出题中的二次函数解析式若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由.2请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.点评:对于第1小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点Ac,-2”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式.对于第2小题,只要给出的条件能够使求出的二次函数解析式是第1小题中的解析式就可以了.而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等.用二次函数解决最值问题例1 某产品每件成本10元,试销阶段每件产品的销售价x元•与产品的日销售量y 件之间的关系如下表:x元1523…y件2521…若日销售量y是销售价x的一次函数.1求出日销售量y件与销售价x元的函数关系式;2要使每日的销售利润最大,每件产品的销售价应定为多少元•此时每日销售利润是多少元点评解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:1设未知数在“当某某为何值时,什么最大或最小、最省”的设问中,•“某某”要设为自变量,“什么”要设为函数;2•问的求解依靠配方法或最值公式,而不是解方程.例2.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A.1.5 m B.1.625 mC.1.66 m D.1.67 m分析:本题考查二次函数的应用第二十三章旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角.2、性质1对应点到旋转中心的距离相等.2对应点与旋转中心所连线段的夹角等于旋转角.二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2、性质1中心对称的两个图形是全等形.2中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3中心对称的两个图形,对应线段平行或在同一直线上且相等.3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形这一点对称.4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心.考点五、坐标系中对称点的特征 3分1、原点对称的点的特征两个点原点对称时,它们的坐标的符号相反,即点Px,y原点的对称点为P’-x,-y2、x轴对称的点的特征两个点x轴对称时,它们的坐标中,x相等,y的符号相反,即点Px,yx轴的对称点为P’x,-y3、y轴对称的点的特征两个点y轴对称时,它们的坐标中,y相等,x的符号相反,即点Px,yy轴的对称点为P’-x,y第二十四章圆一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr2圆环面积计算方法:S=πR2-πr2或S=πR2-r2R 是大圆半径,r 是小圆半径二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O 为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧.2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线. 二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C在圆内;A2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离图1⇒无交点⇒d R r>+;外切图2⇒有一个交点⇒d R r=+;相交图3⇒有两个交点⇒R r d R r-<<+;内切图4⇒有一个交点⇒d R r=-;内含图5⇒无交点⇒d R r<-;图4图5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧.推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;2弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论. 推论2:圆的两条平行弦所夹的弧相等.即:在⊙O 中,∵AB ∥CD∴弧AC =弧BD六、圆心角定理顶点到圆心的角,叫圆心角.圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等. 此定理也称1推3定理,即上述四个结论中,BD只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理顶点在圆上,并且两边都与圆相交的角,叫圆周角. 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半.即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径.即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒∴90C ∠=︒ ∴AB 是直径BA推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理.八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角.即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒DAE C ∠=∠九、切线的性质与判定定理1切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA外端∴MN 是⊙O 的切线 2性质定理:切线垂直于过切点的半径如上图推论1:过圆心垂直于切线的直线必过切点.BAO推论2:过切点垂直于切线的直线必过圆心. 以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠十一、圆幂定理1相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等.即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅2推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅DBA3切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅4割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如上图. 即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦. 如图:12O O 垂直平分AB .即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB十三、圆的公切线两圆公切线长的计算公式:1公切线长:12Rt O O C ∆中,221ABCO ==2外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 .十四、圆内正多边形的计算。
九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
2017年11月初中数学博文教育期末复习卷一.选择题(共16小题)1.关于x的一元二次方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是()A.B.C.且a≠1 D.且a≠12.如图所示,当b<0时,函数y=ax+b与y=ax2+bx+c在同一坐标系内的图象可能是()A.B. C.D.3.如图,将△ABC沿BC翻折得到△DBC,再将△DBC绕C点逆时针旋转60°得到△FEC,延长BD交EF于H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为()A.B.C.D.4.如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.45.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为()A.(80﹣x)(70﹣x)=3000 B.80×70﹣4x2=3000C.(80﹣2x)(70﹣2x)=3000 D.80×70﹣4x2﹣(70+80)x=30006.若函数y=mx2+(m﹣1)x+(m﹣1)的图象与x轴只有一个交点,那么m的值是()A.0 B.0,﹣1或1 C.1或﹣1 D.0或17.如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB=2,OD=4,将矩形ABCD绕点O旋转,使点D落在x轴上,则点C对应点的坐标是()A.(﹣,1) B.(﹣1,) C.(﹣1,)或(1,﹣)D.(﹣,1)或(1,﹣)8.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为()A. B.C.D.9.用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2=C.(x﹣1)2=D.(3x﹣1)2=110.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.411.如图,在矩形ABCD中,AB=1,BC=.将矩形ABCD绕点A逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD上,连接DD′,则DD′的长度为()A.B.C.+1 D.212.如图,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连结BD、DC.若圆O的半径为8,∠BAC=120°,则DI的长度为()A.B.C.D.13.某市2016年国内生产总值(GDP)比2015年增长了11%,预计2017年比2016年增长9%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.11%+9%=x% B.(1+11%)(1+9%)=2(1+x%)C.11%+9%=2•x%D.(1+11%)(1+9%)=(1+x%)214.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C 停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.15.如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3 B.3:4 C.5:3 D.3:516.图中的正三角形和正六边形有公共的外接圆⊙O.则这个正三角形和正六边形边长的比为()A.:2 B.:2 C.:1 D.2:1二.填空题(共9小题)17.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.18.如图所示是二次函数y=ax2+bx+c的图象,则方程ax2+bx+c=0的两根之和为.19.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2015为止.则AP2015=.20.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.21.已知2是关于x的方程:x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长是.22.如图,正方形ABCO放置在平面直角坐标系上,抛物线y=ax2+bx+c经过B,C,点D在边AB上,连结OD,将△OAD沿着OD折叠,使点A落在此抛物线的顶点E处,若AB=2,则a 的值是.23.如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针旋转,当点D落在BC上点D′时,则∠DAD′=度.24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.25.定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为.26.二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有.27.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH 的长为.28.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F 处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④S=.其中正确结论的序号是.阴影四.解答题(共12小题)29.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.30.为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;②当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?31.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)32.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.33.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2并求出线段AB扫过的面积.34.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.35.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.36.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.37.已知:AB为⊙O的直径,AB=2,弦DE=1,直线AD与BE相交于点C,弦DE在⊙O上运动且保持长度不变,⊙O的切线DF交BC于点F.(1)如图1,若DE∥AB,求证:CF=EF;(2)如图2,当点E运动至与点B重合时,试判断CF与BF是否相等,并说明理由.38.如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P.过点C作AE的垂线,交AE于点F,交圆O于点B.作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.39.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,=8S△QAB,且△QAB∽△OBN成立?若存在,请求使得S四边形OPMN出Q点的坐标;若不存在,请说明理由.40.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?2017年11月04日林皓天的初中数学组卷参考答案一.选择题(共16小题)1.D;2.B;3.C;4.C;5.C;6.B;7.C;8.D;9.C;10.B;11.A;12.D;13.D;14.D;15.A;16.C;二.选择题(共3小题)17.2;18.4;19.1343+672;三.填空题(共9小题)20.2;21.14;22.2﹣;23.30;24.;25.0;26.①③;27.6;28.①②④;四.解答题(共12小题)29.;30.y=300x﹣600;y=﹣12x2+420x﹣600;31.;32.;33.;34.;35.;36.;37.;38.;39.;40.;。