运用一元一次不等式解决方案型问题教学设计
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
课题:11.5用一元一次不等式解决问题(1)【学习目标】1.能根据实际问题中的数量关系,列出一元一次不等式,解决简单的实际问题.2.初步体会一元一次不等式的应用价值,发展分析问题和解决问题的能力.【重、难点】重点、难点:理解题意,找出表示实际问题意义的不等关系,根据不等关系列一元一次不等式.【学习过程】一、课前准备按下图的搭法,用50根火柴棒最多可以搭出多少个正方形?二、探索新知活动一:一只纸箱质量为1kg,放入一些苹果后,箱子和苹果的总质量不超过10kg.假设每个苹果的质量为0.25kg,这只纸箱内最多能装多少个苹果?小结:列不等式解应用题的步骤与列方程解应用题的步骤类似。
即(1)(2)(3)(4)(5)活动二:某种杜鹃花适宜生长在平均气温为17℃到20℃之间(包括17和20)的山区。
已知某山区山脚下的平均气温为20℃,并且每上升100米,气温下降0.6℃。
要在该山区种植这种杜鹃花,应种在比山脚的海拔最多高多少米的山坡上?三、当堂反馈1.一个工程队原定在10天内至少要挖掘600m3的土方,在前2天共完成了120m3后,又要求提前2天完成挖土任务,问此后平均每天至少要挖掘多少m3土方?2.某班同学外出春游,要拍照留念,若一张彩色底片需0.57元,冲一张需0.35元,每人预定一张,出钱不超过0.45元,问参加合影的同学至少有几人?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?4.某七年级406名师生外出春游,租用44座和40座的两种客车。
如果44座的客车租用了2辆,那么40座的客车至少需要租用多少辆?5.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?课题:11.5用一元一次不等式解决问题(2)【学习目标】1.会用一元一次不等式描述现实生活中的数量之间的不等关系,并解决一些简单的实际问题;2.初步体会一元一次不等式的应用价值,发展学生的分析问题和解决问题的能力.【学习重点、难点】1.列一元一次不等式解应用题的关键是对各数量间关系的理解和分析。
9.2 一元一次不等式第1课时 一元一次不等式的解法1.理解一元一次不等式的概念;(重点)2.掌握一元一次不等式的解法.(重点、难点)一、情境导入1.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?3.如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念 【类型一】 一元一次不等式的识别下列不等式中,是一元一次不等式的是( )A .5x -2>0B .-3<2+1xC .6x -3y ≤-2D .y 2+1>2解析:选项A 是一元一次不等式,选项B 中含未知数的项不是整式,选项C 中含有两个未知数,选项D 中未知数的次数是2,故选项B ,C ,D 都不是一元一次不等式.故选A.方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数;②未知数的最高次数为1;③不等式的两边都是关于未知数的整式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 根据一元一次不等式的概念确定字母的取值范围已知-13x 2a -1+5>0是关于x 的一元一次不等式,则a 的值是________. 解析:由-13x 2a -1+5>0是关于x 的一元一次不等式得2a -1=1,则a =1.故答案为1. 变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:解一元一次不等式【类型一】 解一元一次不等式及在数轴上表示不等式的解集解下列不等式,并把解集在数轴上表示出来:(1)2x -3<x +13; (2)2x -13-9x +26≤1. 解析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,然后在数轴上表示出来即可.解:(1)去分母,得3(2x -3)<x +1,去括号,得6x -9<x +1,移项,合并同类项,得5x <10,系数化为1,得x <2.不等式的解集在数轴上表示如下:(2)去分母,得2(2x -1)-(9x +2)≤6,去括号,得4x -2-9x -2≤6,移项,得4x -9x ≤6+2+2,合并同类项,得-5x ≤10,系数化为1,得x ≥-2.不等式的解集在数轴上表示如下:方法总结:在数轴上表示不等式的解集时,一要把点找准确,二要找准方向,三要区别实心圆点与空心圆圈.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 根据不等式的解集求待定系数已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值.解析:先解不等式x +8>4x +m ,再列方程求解.解:因为x +8>4x +m ,所以x -4x >m -8,所以-3x >m -8,所以x <-13(m -8). 因为其解集为x <3,所以-13(m -8)=3,解得m =-1. 方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集的唯一性列方程求字母的值.解题过程体现了方程思想.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型三】 求不等式的特殊解y 为何值时,代数式5y +46的值不大于代数式78-1-y 3的值?并求出满足条件的最大整数. 解析:根据题意列出不等式5y +46≤78-1-y 3,再求出解集,然后找出符合条件的最大整数. 解:依题意,得5y +46≤78-1-y 3, 去分母,得4(5y +4)≤21-8(1-y ),去括号,得20y +16≤21-8+8y ,移项,得20y -8y ≤21-8-16,合并同类项,得12y ≤-3,把y 的系数化为1,得y ≤-14.y ≤-14在数轴上表示如下:由图可知,满足条件的最大整数是-1.方法总结:求不等式的特殊解,先要准确求出不等式的解集,然后确定特殊解.在确定特殊解时,一定要注意是否包括端点的值,一般可以结合数轴,形象直观,一目了然.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型四】 一元一次不等式与二元一次方程组的综合已知关于x 、y 的方程组⎩⎪⎨⎪⎧x -y =3,2x +y =6a 的解满足不等式x +y <3,求实数a 的取值范围. 解析:先解方程组,求得x 、y 的值,再根据x +y <3解不等式即可.解:解方程组得⎩⎪⎨⎪⎧x =2a +1,y =2a -2. ∵x +y <3,∴2a +1+2a -2<3,∴4a <4,∴a <1.方法总结:已知方程组,可先求出方程组的解,再把方程组的解代入不等式,求出字母系数的取值范围.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:去分母去括号移项合并同类项系数化为1。
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
一元一次不等式组教学设计一、教学内容具体实例说明得到一元一次不等式组,以及一元一次不等式组的解集的概念。
另外,还通过一元一次不等式的解,探讨一元一次不等式组的解法.二、教材分析及教学目标1、教材分析:(1)教材内容分析:本节通过具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念,教会学生怎样解一元一次不等式组,并通过具体实例让学生经历知识的拓展过程,也重视不等式与不等式组的解集在数轴上的表示,让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要的思想方法。
本节中还通过具体实例的解决让学生体会到对题意的分析和理解是建立数学模型的基础,并认识到现实生活中的数量关系是错综复杂的。
(2)教学方法:本节知识与前一节的知识联系比较紧密,建议教师在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。
另外,建议教师在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,利用观察法、归纳法即可掌握求不等式解集的办法。
2、教学目标:(1)通过对不等式的复习和具体实例,总结一元一次不等式组以及一元一次不等式组的解集的概念。
通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。
通过对具体实例的分析让学生感受现实生活中错综复杂的数量关系,让学生认识到现在学习的不等式和方程知识是认识客观世界的基础。
通过对例题的学习掌握解一元一次不等式组的方法及其应用。
(2)通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。
在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。
在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
【教案设计】一、教学目标1.理解一元一次不等式组的概念和解法;2.掌握利用一元一次不等式组解法解决实际问题的方法;3.提高学生分析问题的能力和解决问题的能力。
二、教学重点难点1.理解一元一次等式组的概念和解法;2.利用一元一次不等式组解法解决实际问题。
三、教学方法1.课前小组讨论;2.基础讲授与解题演示;3.课堂练习;4.开放性问题探究;5.分享讨论。
四、教学过程1.课前小组讨论(10分钟)教师让学生以小组为单位讨论,总结一下一元一次不等式和一元一次不等式组的定义和解法,并搜集一些实际问题。
2.基础讲授与解题演示(30分钟)2.1.概念讲解教师介绍一元一次不等式和一元一次不等式组的概念,包括符号的意义、如何化简等,过程中教师可以给出一些例子让学生跟随进行计算。
2.2.解题方法教师介绍一元一次不等式组的解题方法,包括两种基本方法,其中一种是代入法,即逐一检验每一个组合是否符合不等式;另一种是加减消元法,即通过等式变形,消去一个变量,从而将问题化简到一元一次不等式的解法。
2.3.解题演示教师以一些简单的例子为基础,进行解题演示。
例如:已知两个数的和是50,两数之差是10。
请问两个数各是多少?此例子可以使用加减消元法进行求解。
3.课堂练习(30分钟)学生独自或小组内互相交流,进行练习题的解题训练,教师过程中应该予以指导和辅导,帮助学生更好的掌握解题方法。
4.开放性问题探究(40分钟)教师提出一些实际问题,比如:小明和小红一共有150块钱,小明的钱比小红多,且二者钱数均为整数,请问小明有多少钱?,要求学生独立思考解决方法,并在组内讨论,进行讲解和分享。
5.分享讨论(10分钟)在的分享讨论环节中,教师可以邀请学生分享一些成功解决的实际问题,并进行讲解和思考分析,比如设计一张卡片,收益最大的一个在什么情况下可以实现等等。
五、教学总结通过本节课的学习,学生在实际问题的应用中掌握了一元一次不等式组的解法,同时也提高了思维能力和分析能力,并准备好了进行更深入的学习和实践。
一元一次不等式的方案问题解题思路在数学学习中,不等式是一个重要的知识点。
而在不等式中,一元一次不等式也占有着举足轻重的地位,因为它不但对于初学者来说比较容易掌握,而且在实际生活中也有着广泛的应用。
本文将介绍如何解决一元一次不等式的方案问题,希望能够帮助大家更好地理解和应用这一知识点。
一、什么是一元一次不等式的方案问题在学习一元一次不等式时,我们会遇到方案问题,这是指询问满足某个不等式的变量范围。
例如,我们需要确定不等式 $3x+5>7$ 的解集,即 $x$ 的取值范围。
解决这类问题需要掌握一些基本的解题方法。
二、简单不等式的解法对于一元一次不等式,我们可以通过移项的方式将其转化为简单的形式,进而得到解的范围。
例如:$$3x+5>7$$将等式两边减去 $5$,得到:$$3x>2$$再将等式两边除以 $3$,得到:$$x>\frac{2}{3}$$因此,不等式 $3x+5>7$ 的解集为 $x>\frac{2}{3}$。
三、变式不等式的解法对于一些变式不等式,我们可以通过构造等价不等式的方法,将其转化为简单的形式。
例如:$$\frac{2x-3}{5-x}>0$$我们将其改写为$$(2x-3)(5-x)>0$$根据零点定理,不等式 $(2x-3)(5-x)>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$。
注意到原不等式中的分母为$5-x$,而$x=5$ 会使$5-x=0$,从而分母无意义。
因此,不等式 $\frac{2x-3}{5-x}>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$,即 $x$ 属于区间$(-\infty,\frac{3}{2})\cup(5,\infty)$。
四、绝对值不等式的解法对于绝对值不等式,我们可以将其变形为复合不等式,然后利用复合不等式的求解方法得到其解集。
一元一次不等式组教学设计(教案)章节一:引言教学目标:1. 让学生了解一元一次不等式组的概念及其在实际生活中的应用。
2. 培养学生对不等式组的兴趣和好奇心。
教学内容:1. 引入不等式组的概念,解释一元一次不等式组的定义。
2. 通过实际例子展示一元一次不等式组的应用场景。
教学活动:1. 引导学生思考实际生活中的不等关系,例如购物时价格的限制。
2. 让学生尝试用不等式表示这些不等关系。
教学评估:1. 观察学生在实际例子中的参与程度和理解程度。
2. 收集学生的不等式表示,评估其理解能力。
章节二:一元一次不等式组的解法(一)教学目标:1. 让学生掌握解一元一次不等式组的基本方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 介绍解一元一次不等式组的基本方法。
2. 通过例子演示解一元一次不等式组的过程。
教学活动:1. 让学生尝试解一些简单的一元一次不等式组。
2. 分组讨论并分享解题方法。
教学评估:1. 观察学生在解题过程中的思路和步骤。
2. 收集学生的解题结果,评估其解题能力。
章节三:一元一次不等式组的解法(二)教学目标:1. 让学生进一步掌握解一元一次不等式组的方法。
2. 培养学生解决复杂问题的能力。
教学内容:1. 介绍解一元一次不等式组的进阶方法。
2. 通过例子演示解一元一次不等式组的进阶过程。
教学活动:1. 让学生尝试解一些较复杂的一元一次不等式组。
2. 分组讨论并分享解题方法。
教学评估:1. 观察学生在解题过程中的思路和步骤。
2. 收集学生的解题结果,评估其解题能力。
章节四:一元一次不等式组的应用教学目标:1. 让学生学会将一元一次不等式组应用于实际问题中。
2. 培养学生解决实际问题的能力。
教学内容:1. 介绍一元一次不等式组在实际问题中的应用方法。
2. 通过例子演示一元一次不等式组在实际问题中的应用。
教学活动:1. 让学生尝试解决一些实际问题,运用一元一次不等式组。
2. 分组讨论并分享解题方法。
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
湘教版数学八年级上册《4.3 一元一次不等式的解法》教学设计一. 教材分析《4.3 一元一次不等式的解法》是湘教版数学八年级上册的重要内容,主要让学生掌握解一元一次不等式的方法。
本节课的内容是在学生已经掌握了不等式的基本性质和一元一次方程的解法的基础上进行学习的。
教材通过具体的例子引导学生探究解不等式的方法,并运用口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”来记忆解不等式的步骤。
二. 学情分析学生在学习本节课之前,已经掌握了一定的数学基础,对不等式和方程的概念有所了解,具备一定的逻辑思维能力。
但是,对于解不等式的方法,学生可能还比较陌生,需要通过具体的例子和操作来理解和掌握。
此外,学生可能对于口诀的记忆和运用还需要加强。
三. 教学目标1.知识与技能目标:使学生掌握一元一次不等式的解法,能够独立解简单的一元一次不等式。
2.过程与方法目标:通过探究和合作,让学生学会用口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”来解不等式。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.教学重点:一元一次不等式的解法。
2.教学难点:口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”的运用。
五. 教学方法采用启发式教学法、情境教学法和小组合作学习法。
通过具体的例子和操作,引导学生主动探究解不等式的方法,运用口诀记忆和运用解不等式的步骤。
同时,学生进行小组合作,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备一些简单的一元一次不等式题目,用于课堂练习和巩固。
2.准备PPT,用于展示和解释解不等式的步骤和口诀。
七. 教学过程1.导入(5分钟)通过一个具体的一元一次不等式题目,引导学生思考如何解不等式。
例如:解不等式3x > 6。
让学生尝试解答,并解释解题思路。
2.呈现(10分钟)通过PPT展示和解解释解不等式的方法和口诀。
《一元一次不等式(组)与方案选择问题》教案设计一、学习目标1、有效提取信息,根据题意找到关键词语列出不等式或不等式组2、会分段分析,预设结果,用不等式比较,进行方案选择3、能从实际问题中抽象出一元一次不等式(组),加深对数学模型的认识,体会数学化的过程,提高用数学分析和解决问题的能力二、重难点提示教学重点:根据关键词语列出不等式(组)。
教学难点:根据解集求出最优方案。
三、知识梳理:用不等式(组)解决实际问题例1 在一次环保知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案是正确的.要求学生把正确答案选出来.每道题选对得4分,不选或错选倒扣2分.如果一个学生在本次知识竞赛中的得分不低于60分,那么他至少选对了多少道题?分析:这道题的数量关系很明确,就是由作对题目所得分数减去作错题目所扣分数大于或等于60分,关键是如何列代数式正确表示作对题目所得分数与作错题目所扣分数.解:设他选对了x 道题,根据题意,得(注意:不能设成“他至少选对了x 道题”)4x-2(25-x )≥60解得 x ≥1106因为题目数必须是正整数,而符合条件的正整数最小是19,所以他至少选对了19道题.例2今年9月份,我市某果农收获苹果30吨,梨13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往南方.已知甲种货车可装苹果4吨和梨1吨,乙种货车可装苹果、梨各2吨.该果农安排甲、乙两种货车时有几种方案?请你设计出来.分析:这类方案设计题虽然没有出现表示不等关系的术语,但同学们要明白这是利用不等式组来解决实际问题.题目中的不等关系为:①甲种货车和乙种货车合运的苹果至少为30吨;②甲种货车和乙种货车合运的梨至少为13吨.另外注意答案一定要取自然数.解:设安排甲种货车x 辆,则安排乙种货车(10-x )辆,根据题意,得解这个不等式组得所以5≤x ≤7,又因为x 必须取整数,所以x 可以取5,6,7.即安排甲、乙两种货车共有三种方案: 甲种货车5辆,乙种货车5辆;甲种货车6辆,乙种货车4辆;甲种货车7辆,乙种货车3辆.教学反思:课堂以学生为主体进行教学引导,以激励性语言来鼓动学生的学习热情,以练为主线,让学生有效地掌握“不等式与不等式组”这个知识点的相关内容.本课时体现新课改要求,以学生为主体,,尽量让学生参与;设计20分钟师生互动,20分钟学生活动解决问题,以导学案的形式呈现,容量大。
一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。
由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。
二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。
2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。
3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。
4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。
三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。
四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。
五、教学过程复引入】复不等式的定义和性质。
探索新知】观察不等式的共同特征,引入一元一次不等式的概念。
练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。
归纳总结】总结一元一次不等式的解法和注意事项。
拓展应用】通过实际问题,巩固一元一次不等式的应用。
课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。
课后作业】完成课后作业,巩固一元一次不等式的解法和应用。
判断下列各式是否为单项式。
如果不是,请说明理由。
如果是,请指出它的系数和次数。
1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。
《一元一次不等式》单元整体设计教学思路《《一元一次不等式》单元整体设计教学思路》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容一、单元教学目标1.了解不等式的概念,会从实际问题中抽象出不等式的数学模型。
2.经历探究的过程,掌握不等式的性质,会运用它进行简单的不等式变形。
3.经历问题的建模过程,感受不等式是刻画现实世界的有效模型。
4.理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),能在数轴上表示一元一次不等式(组)的解集,并能求一元一次不等式(组)的特殊解;初步体会数形结合思想。
5.能根据具体问题中的数量关系,列出一元一次不等式(组),解决简单的实际问题。
二、单元知识内容结构本章的主要内容是一元一次不等式(组)的解法及其简单应用。
教材首先从一个实际问题引入,体现了现实生活中的不等关系,使不等式的学习成为必然,然后从认识不等式开始入手,依次介绍了不等式及其解和解集的意义、不等式的性质、一元一次不等式(组)的解法和一元一次不等式(组)在实际问题中的应用与探索等问题,体现了类比、化归思想在数学中的应用。
本章的重点是不等式的性质、一元一次不等式(组)的解法和不等式(组)的应用。
本章的难点是不等式的解集、不等式的性质及应用不等式(组)解决实际问题。
特别是实际问题中的不等式(组)求解是本章知识的关键。
另外,不等式的知识是研究方程、函数以及其他数学分支的重要工具。
三、学生主要学习活动1.不等式的性质的得出,要通过学生的动手、动脑去体验、发现、归纳、概括结论,由此培养学生的实践能力和概括能力。
值得注意的是由不等式的性质3变形前后的两个不等式是异向不等式(不等号的方向改变),学生在理解上有一定的困难。
为了突破这一难点,教师应结合具体实例,由浅入深,直观明了地阐述不等式的性质3的真正内涵,分析透,讲清楚。
教师可在学生掌握有理数大小比较法则的基础上,对不等式两边乘以(或除以)同一个负数,着眼于不等式两边积的性质符号,借助有理数大小比较的法则确定变形后不等式的不等号方向问题,使学生温故而知新,从而突破这一教学难点。
中学生命课堂七年级数学导学案
课题:运用一元一次不等式解决方案型问题课时: __1课时_ 班级:____________
主备人:审核人:复备人:
过关检测
1、某种矿泉水每瓶售价1.2元,现甲、乙两家商场给出优惠政策:甲商家全部9折,乙商家20瓶以上的部分8折,若你是消费者,选哪家商场购买比较合适?
2、学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总
租车费用不超过2300元,求最省钱的租车方案?。