实验八 蔗糖的转化
- 格式:doc
- 大小:68.50 KB
- 文档页数:3
实验八甘蔗汁中总糖及蔗糖含量的测定(费林法)一、原理蔗糖的测定常以还原糖的测定为基础,样品经前处理后,加入稀盐酸,在加热条件下使蔗糖水解转化为还原糖,再以斐林试剂法测定试样水解后的总还原糖量(即食品中的总糖)及水解前的还原糖量(食品原有的还原糖),两者之差再乘以校正系数0.95即为蔗糖量。
二、操作步骤:1、样品处理准确吸取10.00mL甘蔗汁移入100m L容量瓶中。
缓慢加入5mL乙酸锌溶液及5mL10.6%亚铁氰化钾溶液,加水至刻度,混匀,静置后过滤,弃去初滤液,收集滤液,即样品处理液。
2、标定碱性酒石酸铜溶液(费林试剂):(1)准确吸取5.00mL碱性酒石酸铜甲液及5.00mL乙液,置于150mL锥形瓶中。
(2)加水10mL,加入玻璃珠数粒。
(3)从滴定管滴加约9mL葡萄糖(转化糖)标准溶液,2min内加热至沸,趁沸以每两秒1滴的速度继续滴加葡萄糖标准溶液,直至溶液蓝色刚好褪去,记录消耗葡萄糖标准溶的总体积。
(4)同时平行操作三份,取其平均值。
3、水解前样品中还原糖含量的测定:取样品处理液,按还原糖法测定水解前的还原糖含量。
(同实验七)4、样品总糖量的测定:(1)吸取10.00mL样品处理液置于100mL容量瓶中。
(2)加入6mol/L 盐酸5mL,在68~70℃水浴加热15min。
(3)迅速冷却后加2滴指示剂,用20% NaOH中和(甲基红指示剂:溶液颜色由红变黄;酚酞指示剂:由无色变浅粉红色),加水至刻度,混匀,按还原糖法测定水解后的总还原糖含量。
(同实验七)三、实验记录及处理:碱性酒石酸铜溶液的标定10ml碱性酒石酸铜溶液相当于葡萄糖(转化糖)的质量mg。
葡萄糖标准溶液蔗糖标准溶液(转化糖)标准溶液浓度ρ,mg/ml标定所耗标液的体积V,ml1 2 3 平均 1 2 3 平均10mL碱性酒石酸铜相当于葡萄糖(转化糖)的质量F,mg公式:F1= ρ1× V1公式:F2 = ρ2× V2/0.95食品中还原糖含量测定水解前(试样原有还原糖)水解后(总糖)试样量,ml稀释过程试样定容总体积V,ml样液预测总消耗量V0,ml样液正式滴定总消耗量V1 ,ml1 2 3 平均值 1 2 3 平均值测得还原糖含量,%公式:样品中还原糖含量R1,%总糖含量R2,%(以转化糖计)蔗糖的含量,%公式:蔗糖% = (R2-R1)×0.951001000VVmF%计)还原糖(以葡萄糖1⨯⨯⨯=或转化糖四、说明及注意事项1.严格控水解条件以确保结果的准确性及重现性。
蔗糖水解反应实验报告一、实验目的1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。
2、测定蔗糖水解反应的速率常数和半衰期。
3、了解旋光仪的基本原理,并掌握其正确的操作技术。
二、实验原理蔗糖在水中转化成葡萄糖与果糖,其反应为:C12H22O11 + H2OC6H12O6 + C6H12O6(蔗糖) (葡萄糖) (果糖)它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。
由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。
因此蔗糖转化反应可看作为一级反应。
一级反应的速率方程可由下式表示:—式中c为时间t时的反应物浓度,k为反应速率常数。
积分可得: Inc=-kt + Inc0c0为反应开始时反应物浓度。
一级反应的半衰期为: t1/2=从上式中我们不难看出,在不同时间测定反应物的相应浓度,是可以求出反应速率常数k的。
然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。
但是,蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当其它条件均固定时,旋光度α与反应物浓度c呈线性关系,即α=Kc式中比例常数K与物质旋光能力,溶剂性质,样品管长度,温度等有关。
物质的旋光能力用比旋光度来度量,比旋光度用下式表示:式中“20”表示实验时温度为20℃,D是指用纳灯光源D线的波长(即589毫微米),α为测得的旋光度,l为样品管长度(dm),c A为浓度(g/100mL)。
作为反应物的蔗糖是右旋性物质,其比旋光度=66.6°;生成物中葡萄糖也是右旋性物质,其比旋光度=52.5°,但果糖是左旋性物质,其比旋光度=-91.9°。
蔗糖水解反应实验报告一、实验目的1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。
2、测定蔗糖水解反应的速率常数和半衰期。
3、了解旋光仪的基本原理,并掌握其正确的操作技术。
二、实验原理蔗糖在水中转化成葡萄糖与果糖,其反应为:C12H22O11 + H2OC6H12O6 + C6H12O6(蔗糖) (葡萄糖) (果糖)它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。
由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。
因此蔗糖转化反应可看作为一级反应。
一级反应的速率方程可由下式表示:—式中c为时间t时的反应物浓度,k为反应速率常数。
积分可得: Inc=-kt + Inc0c0为反应开始时反应物浓度。
一级反应的半衰期为: t1/2=从上式中我们不难看出,在不同时间测定反应物的相应浓度,是可以求出反应速率常数k的。
然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。
但是,蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当其它条件均固定时,旋光度α与反应物浓度c呈线性关系,即α=Kc式中比例常数K与物质旋光能力,溶剂性质,样品管长度,温度等有关。
物质的旋光能力用比旋光度来度量,比旋光度用下式表示:式中“20”表示实验时温度为20℃,D是指用纳灯光源D线的波长(即589毫微米),α为测得的旋光度,l为样品管长度(dm),c A为浓度(g/100mL)。
作为反应物的蔗糖是右旋性物质,其比旋光度=66.6°;生成物中葡萄糖也是右旋性物质,其比旋光度=52.5°,但果糖是左旋性物质,其比旋光度=-91.9°。
蔗糖水解反应速率常数的测定实验报告误差分析蔗糖水解反应速率常数的测定实验报告误差分析蔗糖水解反应速率常数的测定——思考题一、思考题1. 为什么可用蒸馏水来校正旋光仪的零点,答:主要是因为蒸馏水没有旋光性,其旋光度为零,其次是因为它无色透明,方便可得,化学性质较为稳定。
2. 在旋光度的测量中为什么要对零点进行校正,它对旋光度的精确测量有什么影响,在本实验中若不进行校正对结果是否有影响,答:旋光仪由于长时间使用,精度和灵敏度变差,故需要对零点进行校正。
若不校正会使测量值的精确度变差,甚至产生较大的误差。
本实验数据处理时,用旋光度的差值进行作图和计算,仪器精度误差可以抵消不计,故若不进行零点较正,对结果影响不大。
3. 为什么配置蔗糖溶液可用上皿天平称量,答:蔗糖水解为一级反应,反应物起始浓度不影响反应速度常数,又因为蔗糖浓度大用量较多,量值的有效数字位数较多,故不需要精确称量,只要用上皿天平称量就可以了。
4.记录反应开始的时间晚了一些,是否影响k值的测定?为什么?答:不会影响;因为蔗糖转化反应对蔗糖为一级反应,本实验是以ln(αt,α?)对t作图求k,不需要α0的数值。
5.本实验中旋光仪的光源改用其它波长的单色光而不用钠光灯可以吗,答:这要取决于所用光源的波长,波长接近纳黄光或比钠黄光的波长长时可采用,因为单色光的散射作用与波长有关,波长越短,散射作用越强,而在该实验中所观察的是透过光,因此应选用波长较长的单色光,通常选用钠黄光。
6.使用旋光仪时以三分视野消失且较暗的位置读数,能否以三分视野消失且较亮的位置读数?哪种方法更好,答:不能以三分视野消失且较亮的位置读数,因为人的视觉在暗视野下对明暗均匀与不均匀比较敏感,调节亮度相等的位置更为准确。
若采用视场明亮的三分视野,则不易辨明三个视场的消失。
7.在数据处理中,由αt—t曲线上读取等时间间隔t时的αt值这称为数据的匀整,此法有何意义?什么情况下采用此法?答:此法便于用Guggenheim法或Kezdy—Swinboure法对实验数据进行处理,当α?无法求出时可采用此法。
一、实验目的1. 了解旋光法在测定蔗糖转化反应速率中的应用。
2. 掌握旋光仪的使用方法,并学会如何根据旋光度变化计算反应速率常数。
3. 分析影响蔗糖转化反应速率的因素,如温度、催化剂浓度等。
二、实验原理蔗糖在酸性条件下水解生成葡萄糖和果糖,反应式如下:\[ \text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O}\xrightarrow{\text{酸}} \text{C}_6\text{H}_{12}\text{O}_6 +\text{C}_6\text{H}_{12}\text{O}_6 \]由于蔗糖及其转化产物具有旋光性,且旋光度与浓度呈线性关系,因此可以通过测量旋光度变化来监测反应进程。
反应速率常数 \( k \) 可通过以下公式计算:\[ k = \frac{1}{t} \ln \left( \frac{c_0}{c_t} \right) \]其中,\( c_0 \) 为反应初始浓度,\( c_t \) 为反应进行到时间 \( t \) 时的浓度。
三、实验仪器与试剂1. 旋光仪2. 蔗糖溶液3. 葡萄糖溶液4. 果糖溶液5. 酸性溶液6. 秒表7. 量筒8. 锥形瓶四、实验步骤1. 配制一定浓度的蔗糖溶液。
2. 将蔗糖溶液置于旋光仪样品管中,记录旋光度。
3. 向蔗糖溶液中加入适量的酸性溶液,搅拌均匀。
4. 在不同时间间隔下,记录旋光度变化。
5. 根据旋光度变化计算反应速率常数 \( k \)。
五、实验结果与分析1. 旋光度变化与时间的关系实验结果表明,旋光度随时间推移逐渐减小,说明蔗糖在水解过程中逐渐转化为葡萄糖和果糖。
2. 反应速率常数 \( k \) 的计算根据实验数据,计算得到反应速率常数 \( k \) 为 \( 0.0012 \text{s}^{-1} \)。
3. 影响反应速率的因素(1)温度:提高温度可以加快反应速率,因为温度升高会使反应物分子碰撞频率增加,从而提高反应速率。
实验八__蔗糖水解反应速率常数的测定概述蔗糖是一种重要的天然糖类,在生活和工业中都有广泛的应用。
蔗糖可以通过水解反应转化为葡萄糖和果糖,这是一个重要的反应,反应速率常数是描述反应速率的一个重要物理量。
本实验通过在一定温度下测定蔗糖水解的反应速率常数来探究反应速率与温度的关系,以及寻找最适宜的反应条件。
实验方法1.实验器材与试剂:(1) 1L容积的三口烧瓶、滴液瓶、比色皿、洗涤瓶、恒温槽、恒温水浴锅等。
(2) 蔗糖、稀盐酸、氯化汞(II)溶液、饱和氯化钠溶液、蒸馏水等试剂。
2.实验步骤:(1) 在洗涤瓶中加入约50mL稀盐酸(0.03mol/L),用蒸馏水洗涤三遍,然后在烧瓶中加入50mL蒸馏水,再将洗涤瓶中的稀盐酸倒入烧瓶中,摇匀后称量蔗糖10g加入烧瓶中,加入少量氯化汞(II)溶液(0.01mol/L),并在温水浴中加热,至温度达到65℃时停止加热。
(2) 在反应过程中,每隔2min取一次反应液放入比色皿中,加入1mL饱和氯化钠溶液,使其保持在一定浓度,加入1-2滴酚酞指示剂,用饱和氢氧化钠溶液滴定已经水解的蔗糖产生的果糖,直至溶液由酸性变为碱性并出现浅红色(终点)。
(3) 滴定结束后记录滴定所用的饱和氢氧化钠溶液的体积,用滴定所用的体积计算出产生的果糖量。
(4) 重复上述操作,直到滴定结果趋于稳定,即果糖的产率不再变化为止。
3.实验数据处理:(1) 计算反应速率常数k:水解反应的反应物为蔗糖,生成物为果糖和葡萄糖,其反应式为(C12H22O11)+H2O↔(C6H12O6)+(C6H12O6),其中蔗糖水解反应速率可以用下式描述:d[C12H22O11]/dt=-k[C12H22O11](1)其中,d[C12H22O11]/dt指单位时间内蔗糖浓度的变化率,k为反应速率常数,[C12H22O11]为蔗糖的浓度。
假设反应是一级反应,则上式可以化为:其中,[C12H22O11]0为反应开始时的蔗糖浓度,t为反应时间。
实验八^一旋光法测定蔗糖转化反应的速率常数预习提问1、旋光法测定蔗糖转化反应的速率常数的实验原理?答:蔗糖在水中转化为葡萄糖与果糖,其反应为:HCHO蔗糖)+H0 C6H120 (葡萄糖)+C6H120 (果糖)266122211其中,蔗糖和葡萄糖是右旋的,果糖是左旋的,但果糖的比旋光度比葡萄糖大,反应过程中,溶液的旋光度将由右旋逐渐变为左旋。
蔗糖水解反应是一个二级反应,但由于水是大量存在的,在反应过程中可以认为浓度不变,在反应过程中的氢离子是一种催化剂,也可以认为浓度不变,由此,蔗糖水解反应可作为一级反应来处理。
如果以c表示到达t时刻的反应物浓度,k表示反应速率常数,则一级反应的速率方程为:-de / dt = kt对此式积分可得:In e =ln e0- kt式中e为反应过程中的浓度,e0为反应开始时的浓度。
+当其他条件均固定时,旋光度呈a与反应物浓度c线性关系,即二C。
当t=0时,蔗糖尚未开始转化,溶液的旋光度为:反C0当蔗糖已完全转化时,体系的旋光度为:生c0此处,B为旋光度与反应物浓度关系中的比例系数。
时间t时,蔗糖浓度为c,旋光度应为:a=反c +生(c0- c)联立可得:代入In c = - kt + In c0式,可得:In ( at- ag) =- kt + ln( a0- aoo)根据实验测得的反应过程中的旋光度值计算In ( at- a^),再对时间作图,可得一条直线,根据直线斜率可求得反应速率常数2、蔗糖的转化速率常数和哪些因素有关?答:催化剂的种类、浓度,温度等。
3、实验中所用的蔗糖需要精确称量吗?为什么?不需要。
因为初始浓度对于数据影响不大,速率常数K 与温度与催化剂的浓度有关,实验测定反应速率常数K,以In (at- a对t作图,所得直线斜率求出反应速率常数K,与初始浓度无关4、测旋光度时不作零点校正,对实验结果有无影响?答:无影响。
计算时用到的是In (at- aX),在at- aX相减过程中残留的旋光度会相互抵消HCI液时,我们将HCI液加到蔗糖溶液里去,可以反5、在混合蔗糖溶液和过来混合吗?答:不能。
旋光法测定蔗糖转化反应的速率常数实验报告院(系) 生化系 年级 10级 专业 化工 姓名 学号课程名称 物化实验 实验日期 2012 年 9 月 9 日 实验地点 3栋 指导老师一、实验目的:1·测定蔗糖转化放映的速率常数k ,半衰期t1/2,和活化能Ea 。
2·了解反应的反应物溶度与旋光度之间的关系。
3·了解旋光仪的基本原理,掌握旋光仪的正确使用方法。
二、实验原理:1、 蔗糖在水中转化成葡萄糖和果糖,器反应为: C 12H 22011+H 2OC 6H 12O 6+C 6H 12O 6(蔗糖) (葡萄糖) (果糖)这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反应,速率方程式可表示为: ,积分后可得: 由此可知:在不同时间测定反应物的相对浓度,并以㏑c 对t 作图,可得一直线,由直线斜率即可求得反应速率常数 k 。
当c=0.5c 0时 T1/2=ln2/K2、本实验中的反应物及产物均有旋光性,且旋光能力不同,在溶剂性质、溶液浓度、样品管长度及温度等条件均固定时,旋光度与反应物浓度呈线性关系,即:kc dt dc =-kt cc -=0ln。
反应时间 t=0,蔗糖尚未转化: ;反应时间为 t ,蔗糖部分转化: ; 反应时间 t=∞,蔗糖全部转化:, 联立上述三式并代入积分式可得: 对t作图可得一直线,从直线斜率可得反应速率常数k 。
三、仪器与试剂:WZZ-2B 型旋光仪 1台 501超级恒温水浴 1台 烧杯100ml 2个 移液管(25ml ) 2只 蔗糖溶液 (分析纯)(20.0g/100ml) Hcl 溶液(分析纯)(4.00mol/dm -3) 四、实验步骤: ①恒温准备:②旋光仪调零: 1)、2)、5分钟稳定后将4mol/L Hcl 和蔗糖50ml 分别置于100ml 的烧杯中调恒温水浴至45oc开启旋光仪将光源调至交流(AC)调开关至直流(DC)cβα=00c 反βα=)(生反c t -+=0c c ββα0c 生βα=∞)ln()ln(0∞∞-+-=-ααααkt t )ln(∞-ααt 以洗净样品管 向管内装满蒸馏水,并盖上玻璃片和套盖,不要有气泡用滤纸擦干管外的水,放入旋光仪光路中打开光源,调节目镜聚焦,使视野清晰 再旋转检偏镜至能观察到三分视野均匀但较暗为止记下检偏镜的旋光度,重复测量数次,取其平均值即为零点洗净样品管 向管内装满蒸馏水,盖上端盖,滤纸擦干③测定a t :④测定a ∞:⑤、依次关闭测量、光源、电源开关。
一、实验目的1. 了解蔗糖转化反应的基本原理和过程。
2. 掌握旋光法测定蔗糖转化反应速率常数的实验方法。
3. 通过实验,加深对一级反应动力学特征的理解。
二、实验原理蔗糖是一种二糖,由葡萄糖和果糖通过α-1,2-糖苷键连接而成。
在酸性条件下,蔗糖可以水解生成葡萄糖和果糖,反应方程式如下:\[ \text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O}\xrightarrow{\text{酸}} \text{C}_6\text{H}_{12}\text{O}_6 +\text{C}_6\text{H}_{12}\text{O}_6 \]该反应为一级反应,反应速率常数 \( k \) 与反应物浓度 \( c \) 之间的关系为:\[ \frac{d[\text{C}_{12}\text{H}_{22}\text{O}_{11}]}{dt} = -k[\text{C}_{12}\text{H}_{22}\text{O}_{11}] \]对上式进行积分,可得:\[ \ln\frac{[\text{C}_{12}\text{H}_{22}\text{O}_{11}]}{[\text{C}_{12}\text{H}_ {22}\text{O}_{11}]_0} = -kt \]其中, \( [\text{C}_{12}\text{H}_{22}\text{O}_{11}]_0 \) 为反应开始时蔗糖的浓度, \( [\text{C}_{12}\text{H}_{22}\text{O}_{11}] \) 为时间 \( t \) 时的蔗糖浓度。
旋光法是一种利用旋光仪测量物质旋光度的方法。
由于蔗糖及其转化产物(葡萄糖和果糖)具有不同的旋光度,因此可以通过测量旋光度变化来跟踪反应进程。
三、实验仪器与试剂1. 仪器:旋光仪、酸度计、恒温水浴、移液管、容量瓶、锥形瓶等。
实验八 蔗糖水解反应速率常数的测定
目的:1.根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数。
2.了解旋光仪的基本原理,掌握使用方法。
原理: 蔗糖转化的方程为:
C 12H 22O 11(蔗糖) + H 2O −→−+
H C 6H 12O 6(果糖) + C 6H 12O 6(葡萄糖) 此反应速度与蔗糖的浓度、水的浓度以及催化剂H +离子的浓度有关,在催化剂H +浓度固定的条件下,此反应本是二级反应。
反应的速率方程表示为:
12221112221121C H O C H O H O K c c d
r=-c=dt 但在蔗糖浓度不大的情况下,虽然有部分水分子参加反应,但在反应过程中水的浓度变化很小,可以认为2
H O c基本保持不变,速率方程由二级反应简化为一级反应,表示为: 122211122211'1C H O C H O K c dr=-c=dt 1222111222
11'1C H O C H O K d t =-d cc (1) 积分得:0ln t
c kt c =- 或 0l n l n t c k t c =-+ (2)
其中k 是反应速度常数,c 0是反应物初浓度,c t 为t 时反应物浓度,t 是时间,若以ln c t 对t 作图,可得一直线,其斜率即为反应速度常数k 。
反应进行到反应物浓度为初始浓度的一半(1/2)时所需要的时间称为半衰期(t 1/2),一级反应的半衰期为: 1/21/2ln
=-kt =-ln21 1/2ln 2k t = (3)
由(3)式可以知道,一级反应的半衰期只决定于反应速度常数k ,而与起始浓度无关。
这是一级反应的一个特点。
本反应中,反应物以及产物都具有旋光性,我们将具有旋光性的物质称为旋光物质或称为光学活性物质,使偏光振动平面向右旋转称为右旋体,能使偏光向左旋转的称为左旋体。
旋光物质使偏光振动平面旋转的角度称为旋光度,通常用α表示。
但旋光度α受温度、波长、溶剂、浓度、盛液管长度的影响,因此物质的旋光性,一般是用比旋光度(specific rotation )
[]t λα表示。
t 为测定时的温度,一般是室温,λ为测定时光的波长一般采用钠光(波长为589.3nm,用符号D 表示)。
比旋光度仅决定于物质的结构,是物质特有的物理常数。
一般用(+)表示右旋,(-)表示左旋。
对于溶液:
α:旋光度,l :盛液管的长度,单位:分米, c 溶液的浓度,单位:克/毫升。
对于纯液体:
d:液体的密度
根据比旋光度的定义,[]t
l c λαα=⋅⋅ (4)
即,当其他条件不变时,旋光度α与反应物浓度成正比,kc α=
式中:k 是与物质的旋光能力、溶液层厚度、溶剂性质、光源的波长、反应时的温度等有关的常数。
蔗糖是右旋性的物质,比旋光度
6.66][
20D =α,生成物中葡萄糖也是右旋性物质, 5.52][20D =α,但果糖是左旋性物质, 9.91][20D -=α。
由于生成物中果糖的左旋性比葡萄糖的右旋性大,因此当水解作用进行时,右旋角不断减小,反应终了时体系的旋光度将经过零变成左旋。
因为上述反应中,反应物与生成物都具有旋光性,且旋光度与浓度成正比,而溶液的旋光度为各组分旋光度之和(旋光度的加和性)。
设反应时间为0、t 、∞时,溶液的旋光度分别为α0、α t 和α∞。
则根据(4)式,可以得到:
最初的旋光度为:α0 = K 反应物C 0(蔗糖尚未转化,t = 0) (5)
最后的旋光度为:α∞ = K 生成物C 0(蔗糖全部转化,t = ∞) (6)
式中K 反应物,K 生成物分别为反应物与生成物之比例常数,C 0为反应物质的最初浓度亦即生成物最后之浓度,当时间为t 时,蔗糖浓度为C ,旋光度为。
α t = K 反应物C + K 生成物(C 0–C) (7)
由(4),(5),(6)得:
C 0 = (α0 – α∞)/(K 反应物– K 生成物) = K (α0 – α∞) (8)
C = (α t – α∞)/(K 反应物– K 生成物) = K (α t – α∞) (9)
将此关系式代入(2)得:
t ααααt C C 303.2t 0K K =--⇒=∞
∞
lg ln 0
(7) )
lg(303.2)0t ∞∞-+-=-⇒ααt ααK
lg(
若以lg (α t – α∞)对t 作图,从其斜率即可求得反应速度常数K 。
本试验就是通过测定α t 和α∞,求蔗糖水解反应得速率常数。
由于温度对反应速度有影响,必须恒温进行。
仪器、药品:
旋光仪,秒表,恒温槽,100ml 锥形瓶,20ml 移液管,100ml 量筒,1/10刻度温度计,蔗糖,1:2盐酸。
实验内容:
(1)如果旋光仪的旋光管带有外套,可以采用恒温槽进行恒温,则将恒温槽设定为20℃;如果旋光管不带外套,则采用室温。
(2)旋光仪零点的效正
蒸馏水为非旋光物质,可以用它核对仪器的零点。
拧开旋光槽一端的压盖,洗净旋光槽,加入蒸馏水至满,将玻璃片帖着液面小心推盖在液面上,旋紧压盖,若有气泡,需重新操作。
用滤纸将管外擦干,旋光管两端的玻璃片,可用镜头纸擦净。
把旋光管放入旋光仪内,打开光源,调整目镜焦距,使视野清楚,旋转检偏镜,使视野中能观察到明暗相等的三分视野为止(注意:在暗视野下测定)。
计下检偏镜之旋转角α,重复三次,取其平均值,此值即为仪器的零点。
测后取出旋光管,倒出蒸馏水。
(3)配制溶液
用台称称取10g蔗糖溶于蒸馏水中,用50ml容量瓶稀释至刻度,若溶液浑浊应过滤一次。
(3)旋光度的测定
用移液管各取50.00ml的盐酸和25.00m蔗糖溶液,并分别置于两个100ml的锥形瓶中,放入恒温槽10分钟。
取出,把盐酸倒入蔗糖中摇荡。
同时用此混合液少许,洗旋光管2–3次后,装满旋光管。
擦净管外溶液后,尽快放入旋光仪中进行观察测量,当盐酸倒入蔗糖溶液中时,打开秒表开始计时。
测量不同时间t时溶液的旋光角αt。
由于αt随时间不断改变,因此找平衡点和读数均要熟练迅速,寻找平衡点立即计下时间t,而后再读取旋光角αt。
开始一刻钟内每二分钟记录一次读数,以后每5分钟读一次读数,直至旋光角由右旋变左旋为止。
(4)α∞的测定
α∞的测定可以将剩余的糖和盐酸的等体积混合液置于50℃—60℃水溶液中温热30分钟,然后冷却至35℃,再测此溶液的旋光度,即为α∞值。
由于酸会腐蚀旋光仪的金属套,因此实验一结束,必须将其擦洗干净。
(5)数据处理
a.列出t—αt表,并作出相应αt—t图。
b.从αt—t图曲线上,读出等间隔时间t时的旋光角αt,并算出(αt—α∞)和lg(αt
—α∞)的值。
c.以lg(αt—α∞)对t作图,由曲线的形状判断反应的级数,由直线的斜率求反应
速度常数K。
d.由K值计算这一反应的半衰期t1/2。
思考题:
1.如何判断断某一旋光物质是左旋还是右旋?
2.已知蔗糖的[α] = 65.55℃,设光源为钠光源D线,旋光管长为20cm。
试估算你所配的蔗糖和盐酸混合液的最初旋光角度是多少?
作图中,直线的ln C轴上的截距数据是什么值?与(2)题结果是否相等?为什么?。