采煤方法设计.ppt
- 格式:ppt
- 大小:362.01 KB
- 文档页数:53
第四章采煤方法及工艺设计第一节设计回采工作面概况4.1.1煤层赋存情况据相邻生产矿井开采和钻孔揭露资料,该矿井含煤地层为石炭系太原组,二叠系山西组、石盒子组,主要含煤地层厚约620m,共含煤27层,煤层总厚度8.48m,含煤系数1.37%,可采煤层有太原组底部的一1煤层和山西组下部的二1煤层,两层煤平均厚5.95m,可采含煤系数为0.96%。
其余各煤层均不可采或偶见可采点.本煤层在当地俗称炭煤,赋存于太原组底部,L1+2灰岩为其直接顶板,煤层发育为独立分层时,直接顶板为粉砂岩、砂质泥岩和泥岩;本溪组铝质泥岩为其直接底板。
上距二1煤层60m左右;下距奥陶系灰岩一般10m左右。
据矿井内43个钻孔、邻区9个钻孔,煤层厚度0~2.32m,平均0.97m,煤层层位稳定,结构简单,含1层夹矸。
该煤层矿井浅部采空区煤厚0.80~1.00m,多为可采区域;矿井深部煤厚多为0.50m左右,绝大部分为不可采区,煤层不可采的主要因素是其夹矸增厚,使煤层分岔为上、下分层,其夹矸层位稳定,厚度变化较大(0.30~3.45m),由于煤层上、下分层都较薄(0.25~0.55m,一般0.4m),夹矸厚度大于上下分层而不可采,一1煤层为较稳定型大部可采之薄煤层,煤层赋存标高+250m~–210m,埋深70~530m。
4.1.2煤质特征物理性质:本煤层为灰黑色,以块煤为主,似金属光泽,贝壳状断口为主,阶梯状、参差状断口次之,煤的硬度较大。
煤层上部呈薄层状光亮型煤为主,下部为中厚层状属光亮型和半亮型煤,中部夹有一层厚0.20m 左右之半暗型或暗淡型煤。
煤的真密度为 1.92 t/m3,视密度为1.64t/m3。
本煤层显微煤岩镜质组占有机组份的96%,其次为丝质组;无机组份主要为硫化物,其次为粘土矿物。
化学性质:⑴灰分(Ad):本煤层原煤灰分为11.07~31.86%,平均20.03%,属中灰煤。
⑵全硫(St,d):本煤层原煤全硫(St,d)平均为4.58%,属高硫煤,但经洗选后硫分可降低至1.1%。
陕西省榆树湾矿井初步设计——采煤方法榆树湾矿井是国家计委以计基础(2000)1841号文批准的《陕西省榆神矿区一期规划区总体规划》中的特大型矿井之一,井田位于矿区中南部,面积88.9km2,资源储量1804.58Mt,规划能力初期8.00Mt/a,后期(与曹家滩井田合并)20.00Mt/a,矿井的服务年限约106年。
榆树湾井田位于榆神矿区南部,是榆神矿区一期建设的重点煤矿,行政区划隶属榆林市。
井田内可采煤层4层,自上而下为2-2、3-1、4-3、5-3上煤层,其中2-2煤层为全井田主要可采煤层,3-1、4-3、5-3上为大部可采的次要可采煤层,各煤层倾角均不足1°。
2-2煤层为井田内主要可采煤层,位于延安组第四段顶部,全井田可采,厚度为10.83~12.41m,平均11.62m,一般底部含一层夹矸,厚0.07~0.27m,岩性为泥岩或炭质泥岩。
该煤层属特厚煤层、厚度变化小、结构简单,赋存稳定。
一、采煤方法选择本井田含煤地层产状近似水平,沿走向、倾向的产状变化不大,无较大的波状起伏、褶皱。
经地震勘探,推断有8条断距为5~10m的高角度正断层,断层走向多与煤层走向一致。
无岩浆侵入,地质构造简单。
井下首采盘区开采2-2煤层,煤层最大厚度12.41m,最小厚度10.83m,平均11.62m。
2-2煤层顶板为细粒砂岩、粉砂岩,属2类中等稳定顶板。
煤层埋藏深度小于300m。
根据2-2煤层赋存条件,矿井提出了一次采全高综合机械化放顶煤采煤法、倾斜分层金属网(或塑料网)假顶综合机械化采煤法、倾斜分层大采高复合假顶综合机械化采煤法等几种采煤方法进行比较,并推荐倾斜分层大采高复合假顶综合机械化采煤法。
本井田2-2煤的顶分层一个工作面实现8.00Mt/a的生产能力是完全可能的。
至于2-2煤的底分层,在开采15年后才开采,届时再生顶板早已形成,同时采煤技术、机械化自动化水平也将大大提高,因此设计认为15年1后底分层用一个工作面保证矿井8.00Mt/a生产能力也是可能的。
《采煤概论》经典课件•采煤概述•采煤地质基础•采煤方法与工艺•矿井开拓与巷道布置•矿井通风与安全•煤矿机电与运输•煤矿环境保护与可持续发展采煤概述01采煤的定义与意义采煤定义采煤是指通过一系列工艺和技术手段,从地下煤层中开采出煤炭资源的过程。
采煤意义煤炭是世界上最主要的能源之一,采煤对于满足全球能源需求、推动工业发展、提高生活水平等具有重要意义。
采煤的历史与发展古代采煤早在古代,人们就开始利用煤炭作为燃料。
随着时间的推移,采煤技术逐渐发展,出现了露天开采、地下开采等方式。
现代采煤随着科技的进步和工业的发展,现代采煤技术不断更新换代,实现了机械化、自动化和智能化,大大提高了采煤效率和安全性。
采煤的分类与特点分类根据煤层赋存条件和开采技术,采煤可分为露天开采和地下开采两大类。
其中,地下开采又可细分为房柱式开采、长壁式开采等多种方法。
特点不同采煤方法具有各自的特点。
例如,露天开采具有投资少、见效快、资源回收率高等优点,但受地形和气候条件限制较大;地下开采则适用于各种地质条件,但投资大、技术复杂、安全风险高。
采煤地质基础02阐述煤田的形成过程,包括沉积环境、成煤物质来源、古地理和古气候条件等。
煤田的形成煤田构造特征煤田勘探方法详细介绍煤田的构造形态、断层、褶皱等地质构造现象,以及它们对煤层赋存的影响。
介绍煤田勘探的常用方法,如地质填图、钻探、地球物理勘探等,以及勘探成果的表达方式。
030201煤田地质构造煤层赋存条件煤层的厚度和稳定性阐述煤层的厚度变化、稳定性及其影响因素,如构造运动、沉积环境等。
煤层的结构和构造详细介绍煤层的结构特征,如层理、节理、结核等,以及它们对采煤工艺的影响。
煤层的顶底板条件分析煤层的顶底板岩石性质、厚度、稳定性等条件,以及它们对采煤安全和效率的影响。
阐述矿井充水的来源和影响因素,如大气降水、地表水、地下水等。
矿井充水因素介绍矿井涌水量的预测方法和步骤,包括水文地质勘探、建立水文地质模型、涌水量计算等。
煤矿工作面采煤工艺设计运料系统:副斜井→副斜井井底车场→南运输巷→一采区运输巷→110102运料绕道→110102回风顺槽→工作面110102工作面运料设备4.2.2排水系统工作面→110101运输顺槽排水点→一采区运输巷排水点→南轨道巷→中央水仓→地面110102回风顺槽→一采区轨道巷→南轨道巷→中央水仓→地面4.2.3供电系统4.2.4通风系统工作面风量、风速计算:1、按瓦斯涌出量计算:Q=100qk式中:Q—工作面实际需要风量,m3/min。
100—单位瓦斯涌出量配风量,按回风流瓦斯浓度不超过1%,取100计算。
q—工作面瓦斯绝对涌出量4.25m3/mink—工作面瓦斯涌出不均匀的各用风量系数,取k=1.2—1.5,取k=1.5 Q=100×4.25×1.5=637m3/min2、按二氧化碳涌出量计算:Q=100qk/1.5式中:Q—工作面实际需要风量,m3/min。
100—单位瓦斯涌出量配风量,按回风流瓦斯浓度不超过1%,取100计算。
q—工作面二氧化碳绝对涌出量5.12m3/mink—工作面二氧化碳涌出不均匀的各用风量系数,取k=1.2—1.5,取k=1.5 Q=100×5.12×1.5/1.5=5213/min3、按工作面适宜风速计算Q=60VS=60×V×(L大+L小)H/2式中:Q—工作面实际需要风量。
V—工作面平均风速。
H—工作面采高,取2mL大—最大控顶断面面积;取4.05m2L小—最小控顶断面面积;取3.45m2Q=60×1.5(4.05+3.45)×2/2=657m3/min工作面平均风速按人员舒适条件取1.5m/s。
4、按工作面每班工作最多人数计算:Q=4N式中:Q—工作面实际需要风量,m3/minN—工作面同时工作的最多人数Q=4×32=128m3/min经过上述计算,工作面配风量取最大值6573/min。