永磁式无刷直流电动机调速性能分析与优化
- 格式:pdf
- 大小:157.61 KB
- 文档页数:5
摘要无刷直流电机是以电子换相来代替机械换相的直流电机,它保持了直流电机的优良特性,具有较好的启动和调速性能,而且它无需机械换向器,结构简单,可以从根本上克服有刷直流电机易于产生火花的弊病,因此在航天、机器人、数控机床、以及医疗器械、仪器仪表、家用电器等方面得到广泛应用。
但是,无刷直流电机运行中存在的转矩脉动问题对实现精确的位置控制和高性能的速度控制存在较大影响。
本文重点研究电机转矩调速技术及其MATLAB 仿真。
文章首先介绍了无刷直流电机的工作原理、导通方式,并通过对数学模型的分析建立了无刷直流电机的MATLAB的PID调速系统模型并调用S-函数进行了仿真,验证了模型的可行性。
关键词:无刷直流电机;转矩调速;MATLAB;PID;S-函数ABSTRACTBrushless DC motor based on electronic commutation instead of mechanical commutation of DC motor, it maintained the excellent characteristics of DC motor, and has a good performance of starting and rotate-speed adjustment, and it need not mechanical commutation, the structure is simple, can fundamentally overcome a brushed DC motor prone to spark the evils, so in space, the robot, NC machine tools, and medical equipment, instruments and meters, household appliances, etc widely used.But, brushless DC motor problems in the operation of the torque ripple of to achieve precise position control and high-performance speed control exist great influence. This paper mainly studies the brushless DC motor(BLDCM) torque speed controlling technology and its MATLAB simulation.This article first of brushless DC motor working principle, conduction mode of mathematical model, and then through the analysis of brushless DC motor established the MATLAB PID speed regulation system model and simulation, which validated the feasibility of the model.Keywords brushless DC motor(BLDCM);rotate-speed; torque speed-controlling; MATLAB; PID;S-function目录1 绪论 (1)1.1 无刷直流电机技术的发展及现状 (1)1.2 无刷直流电机的技术问题及其解决技术 (3)1.3 论文研究的主要问题 (5)2 无刷直流电机的构成及基本工作原理 (6)2.1 无刷直流电机电路的基本组成环节 (6)2.2 无刷直流电机的导通方式及基本工作原理 (7)2.3 本章小结 (10)3 无刷直流电机的数学模型 (11)3.1 无刷直流电机的数学模型及其基本关系式 (11)3.2 本章小结 (14)4 无刷直流电机的仿真模型及其验证 (15)4.1 仿真软件介绍 (15)4.2 S-函数简介及使用 (16)4.3 仿真建模及实现 (19)4.4 仿真验证及结果记录 (27)4.5 仿真结果分析 (27)4.6 本章小结 (28)结束语 (29)致谢 (30)参考文献 (31)附录 (32)1绪论1.1 无刷直流电机技术的发展及现状1.1.1无刷直流电机的发展及分类无刷直流电机已有四十余年的发展历史,最初是相对于具有机械电刷的传统的直流电机而言的。
Internal Combustion Engine &Parts0引言随着人类工业社会的迅速发展,能源危机是21世纪各个国家所面临的重大危机,也是要实现可持续发展所必须解决的难题。
永磁无刷直流电机的发展历史可以追溯到上世纪四十年代,直到八十年代初期,在钕铁硼稀土这一永磁材料的突破性研究取得了巨大成果,并且加上生产力迅速提升,制造投入减小的影响,永磁无刷直流电机行业迎来了蓬勃发展。
近三十年来,随着科学研究的深入,永磁体性能得到了跃进式的提升,相应的电力电子器件的完善和蓬勃发展也促进了这一行业的迅猛发展。
永磁无刷直流电机控制系统研究方向与现代电力电子技术、现代控制理论、电机集成技术和微机技术等学科密切相关,相辅相成。
科学家们通过对其研究背景、研究意义、结构组成、工作原理、数学模型、硬件电路设计、软件设计等方面的深入研究,使得永磁无刷直流电机在拥有良好调速性能的情况下,机械换向和电刷等历史研究中出现的难点获得了解决,目前永磁无刷直流电机的用途遍布各行各业,小到家用电器,大到航空航天,都有永磁无刷直流电机的身影,发展前景不可估量。
1研究背景与意义从上世纪四十年代至今,永磁无刷直流电机的发展在实际应用上与永磁材料的突破性研究,生产力迅速提升,制造投入减小,电力电子器件的迅猛发展息息相关,在理论研究上与现代电力电子技术、现代控制理论、电机集成技术和微机技术等学科的深入研究息息相关。
由于其所具有的大功率、大转矩、高速度、高性能、微型化和数字化等特点决定了该行业宽广的发展前景,也吸引了不少科研工作者的目光。
目前永磁无刷直流电机在各行各业都得到广泛的应用,小到家用电器,大到航空航天,都有永磁无刷直流电机的身影。
基于上述原因,对永磁无刷直流电机的控制系统进行合理的、科学的、系统的研究探索是非常重要且必要的,这是现代工业发展和机电一体化所提出来的必须进行的挑战,这一研究具有深远的理论意义和实际应用价值,并且会给整个社会和相关行业带来巨大的经济效益。
永磁正弦无刷直流电动机力矩波动的测量
永磁正弦无刷直流电动机是一种常用的电动汽车的驱动电机,它具有轻量化、高效率、低噪音等优点,因此在电动汽车领域得到了广泛的应用。
然而,永磁正弦无刷直流电动机在运行过程中可能会出现力矩波动的问题,这会影响电动汽车的平稳性和节能性能。
因此,对永磁正弦无刷直流电动机力矩波动进行准确的测量和分析是非常重要的。
为了测量永磁正弦无刷直流电动机的力矩波动,首先需要搭建一个实验测量系统。
该系统通常包括动力学测力传感器、数据采集卡、电动机控制器和相关的数据处理软件。
在实验中,通过连接测力传感器和数据采集卡,可以实时采集电动机输出轴上的力矩数据。
然后利用数据处理软件对采集到的数据进行处理和分析,得到电动机力矩的变化情况。
在实验进行过程中,需要注意一些影响力矩波动的因素,比如电动机的工作速度、负载情况、温度等。
通过对这些因素的控制和测量,可以更准确地测量和分析永磁正弦无刷直流电动机的力矩波动特性。
最终,得到的力矩波动数据可以为电动汽车的设计和优化提供重要参考,帮助提高电动汽车的平稳性和节能性能。
综上所述,永磁正弦无刷直流电动机力矩波动的测量是一个复杂而重要的工作,通过搭建实验系统并注意相关影响因素,可以获得准确的力矩波动数据,为电动汽车的性能提升提供重要支持。
无刷直流电机设计与性能分析随着电动汽车的普及和工业自动化的发展,无刷直流电机作为一种高效、精准、可控性强的电机,越来越受到工程师和研究人员的关注。
本文将探讨无刷直流电机的设计原理、性能分析以及相关应用。
一、无刷直流电机的设计原理无刷直流电机是一种利用反电动势将电能转化为机械能的装置。
与传统的直流电机相比,无刷直流电机不需要传统的碳刷和电刷组,可以减少能耗和机械磨损。
其主要部件包括定子、转子和电子调速器。
定子是无刷直流电机的固定部分,由若干个电磁铁组成。
转子则由磁铁和导电线圈构成。
电子调速器是控制整个电机的核心部件,负责接收和处理信号,并驱动转子旋转。
在无刷直流电机的工作过程中,电流通过定子的电磁铁,产生磁场。
电子调速器根据传感器返回的信号,控制定子电磁铁的通电状态,从而产生电磁力。
这个电磁力作用在转子的磁铁上,使转子旋转。
转子的旋转又会产生反电动势,通过电子调速器的处理,控制整个系统的转速和转向。
二、无刷直流电机的性能分析无刷直流电机的性能主要包括转速、转矩和效率。
1. 转速:无刷直流电机的转速取决于电子调速器的驱动信号和负载情况。
通常情况下,当负载较小时,转速较高。
而随着负载的增加,转速会逐渐降低。
2. 转矩:转矩是电机转动时产生的力矩。
无刷直流电机的输出转矩与电流成正比。
当电流增大时,输出转矩也会随之增大。
同时,转矩还受到电机的结构设计和磁铁材料的影响。
3. 效率:无刷直流电机的效率通常指电机的转动效率,即将输入的电能转化为机械功的比例。
高效率的无刷直流电机可以减少能源消耗和热量产生。
三、无刷直流电机的应用无刷直流电机在许多领域具有广泛的应用。
以下是几个典型的应用案例:1. 电动汽车:无刷直流电机作为电动汽车的动力源,具有高效率、低噪音和快速响应的特点。
它可以驱动汽车前进、制动和转向,成为电动汽车领域的关键技术。
2. 工业自动化:无刷直流电机作为工业自动化装置的驱动装置,广泛应用于机器人、传送带、工业机床等设备中。
小功率永磁无刷直流电动机的设计和仿真研究摘要永磁无刷直流电动机是把电机、电子和稀土材料的高新技术产品发展紧密的结合在一起的新型电机,它具有单位体积转矩高、重量轻、转矩惯量小、控制简单、能耗少和调速性能好等优点,因而在航天航空、数控机床、机器人、汽车、计算机外围设备、军事等领域及家用电器等方面都获得了广泛的应用。
因此,设计性能优异的永磁无刷直流电机具有重要的理论意义和应用价值。
本论文系统的研究了35w小功率永磁无刷直流电机的本体设计,包括设计方法、有限元分析、性能计算、软件仿真等。
本文主要的研究内容如下:1、综述了永磁无刷直流电机的研究现状、存在问题和发展前景,分析了永磁无刷直流电机的基本理论。
2、建立永磁无刷直流电机的数学模型,先利用解析法对该电机进行电磁设计,然后利用有限元法对电机进行优化。
3、基于星形连接三相三状态的控制电路,利用Infolytic公司的MagNet电磁场分析软件建立了永磁无刷直流电机的有限元分析模型,仿真分析其静态气隙磁场分布及动态带负载时的电机特性。
并将软件仿真所得结果与设计计算结果进行比较分析,验证了设计方法的正确性。
关键词:电机设计,无刷直流电动机,有限元分析,稳态特性第一章绪论1.1永磁无刷直流电动机的发展状况永磁无刷直流电动机是一种新型的电动机,其应用广泛,相关技术仍然在不断的发展中,该类电动机的发展充分体现了现代电动机理论、电力电子技术和永磁材料的发展过程。
其中,永磁材料、大功率开关器件、高性能微处理器等的快速发展对永磁无刷直流电动机的进步功不可没。
1821年9月,法拉第建立的世界上第一台电机就是永磁电机,自此奠定了现代电机的基本理论基础。
十九世纪四十年代,人们研制成功了第一台直流电动机。
1873年,有刷直流电动机正式投入商业应用。
从此以后,有刷直流电动机就以其优良的转矩特性在运动控制领域得到了广泛的应用,占据了极其重要的地位。
随着生产的发展和应用领域的扩大,对直流电动机的要求也越来越高。
在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。
永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。
永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。
作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。
根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是:( 1)体积小、重量轻; 有较高的功率和转矩密度;( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率;( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。
永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。
但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。
目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。
1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。
2)提高电机转矩特性电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。
1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。
早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用id= 0 控制。
控制命令中直轴电流设为0, 从而实现最大转矩控制。
随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。
理饱与设计永磁直流无刷电机的结构优化及热设计康燕琴董岩郑州郑飞特种装备有限公司(451474 )Constructional Optimization and Thermal Design of the DC PM Brushless MotorsKANG Yanqin DONG YanZhengzhou Zhengfei Special Equipment Co.,Ltd.摘 要:设计了一种体积小、重量轻、耐温高且输出 扭矩大的永磁直流无刷电机。
设计时,通过合理选择铁 心冲片厚度,降低了电机热负荷;通过优化定子槽口宽 度、磁钢厚度和极弧系数,降低了齿槽转矩,提高了电机的效率。
利用Ansys Maxwell 设计电机电磁部分,并联合 Ansys Workbench 进行稳态和瞬态温度仿真,证明了该设计的合理性。
关键词:永磁直流无刷电机结构优化齿槽转矩 温度仿真热设计中图分类号:TM313文献标识码:ADOI 编码:10.3969/j.issn.l006-2807.2019.0S.004Abstract: A kind of DC PM brushless motor withfeatures of small size, light weight, anti-high-temperatureand great torque output is designed. Reasonable thickness of core sheets is selected to decrease heat load of the motor; notch width of stator slot, thickness of magnets and polar arc coefficient are optimized to reduce the cogging torqueand increase the motor efficiency. Ansys Maxwell is utilized to perform the electromagnetic design of the motor whileAnsys Workbench is combined to perform both the dynam ・ ic and transient temperature simulation. Rationality of thedesign is proved.Keywords: DC PM brushless motor constructionaloptimization cogging torque temperature simulationthermal design界广泛应用。
永磁无刷直流电机控制系统设计永磁无刷直流电机控制系统设计一、引言永磁无刷直流电机(Permanent Magnet Brushless DC Motor,简称BLDC)是一种新型的电动机,具有结构简单、运行可靠、效率高等优点,在工业、交通、家电等领域得到广泛应用。
为了实现对BLDC电机的精确控制,设计一个高效稳定的控制系统成为必要之举。
本文将分析和论述永磁无刷直流电机控制系统设计的一些关键要素和方法。
二、永磁无刷直流电机基本原理BLDC电机是通过控制电流通与断,使电机的一组定子绕组提供恒定的磁场,从而推动转子转动的一种电动机。
根据转子上磁极的个数,可以分为两极、四极、六极等型号的BLDC电机。
当定子绕组中的三个相位依次通断电流时,电机能够顺利运转。
三、BLDC电机控制系统设计要素1. 传感器信号获取为了控制BLDC电机的运行,需要获取电机运行状态的反馈信号。
常用的传感器有霍尔效应传感器和位置传感器。
霍尔效应传感器可以感知电机转子磁场的变化,提供转子位置的信息。
位置传感器则提供更加精确的转子位置反馈,用以计算电机的转速和角度。
2. 电机控制算法在BLDC电机控制系统中,常用的控制算法有直接转矩控制(Direct Torque Control,简称DTC)和磁场定向控制(Field Oriented Control,简称FOC)等。
DTC算法通过对电流和磁通矢量进行控制,能够在实时动态调整电机的转矩和速度。
FOC算法则是通过调整控制电流的矢量方向,实现对电机转矩和速度的精确控制。
3. 电机驱动器选型电机驱动器是BLDC电机控制系统中的一个重要组成部分,其功能是将控制信号转化为实际电机转子的驱动电流。
在选择电机驱动器时,要考虑电机的功率、电压范围、控制接口等因素。
常见的驱动器类型有电流型和电压型两种,根据电机的实际需求进行选择。
四、永磁无刷直流电机控制系统设计方法1. 系统硬件搭建首先需要根据电机的参数和要求,选取合适的传感器和驱动器,并进行硬件搭建。
永磁无刷直流电机的设计摘要:永磁无刷直流电机是一种新型电机,其特点是不需要传统的机械电刷,因此在家用电器等领域得到广泛运用。
其简单结构、高可靠性和高效率使其备受青睐。
关键词:永磁无刷直流电机;设计虽然其工作原理与传统的电磁式直流电机相似,但借助高性能的永磁材料和电子控制技术,这种电机在单位体积内能提供较高的转矩,同时转矩惯性比较小,启动时的转矩也很大,此外,其调速特性也相当优越。
因此,在家用电器领域,永磁无刷直流电机得以广泛应用。
1.永磁无刷直流电机的主要特点和应用1.1永磁无刷直流电机的主要特点(1) 由于无电火花和磨损问题,永磁无刷直流电机拥有卓越的工作寿命和高度可靠性。
(2) 其低转动惯量和高转矩惯量比使其具有出色的响应速度。
(3) 通过永磁体产生的气隙磁场,使得电机的效率和功率因数保持在高水平,且发热主要分布在定子上,便于热量散发。
(4) 虽然与有刷直流电机相比略微成本较高,但与异步电机相比,其控制性能卓越。
1.2永磁无刷直流电机的主要应用目前,不断扩大的市场需求迅速推动了永磁无刷直流电机的蓬勃发展。
自上世纪90年代起,随着科技的不断进步,永磁材料的性能得到了显著提升。
尤其以钕铁硼等第三代永磁材料为代表,不仅在耐腐蚀性方面有了巨大突破,其在高温环境下的稳定性也得到了显著提升,同时生产成本也在逐步降低。
许多高校和制造单位都在永磁无刷直流电机的研发中投入了大量资源,为其发展注入了新的活力。
永磁无刷直流电机的功率范围广泛,从毫瓦级到数十千瓦级不等,为用户提供了多样的选择。
2.无刷直流电机的结构及工作原理2.1无刷直流电机的基本结构无刷直流电机的基本组成结构包括电机本体、转子位置传感器和电子换相电路,具体如图2.1所示。
图2.1永磁无刷直流电机系统的组成结构示意图无刷直流电机的结构类似于永磁同步电机,其核心部分是电机本体,是实现机电能量转换的核心。
因此,其设计在确保整个系统可靠运行方面具有关键性作用。
电动车永磁直流无刷电机温度场分析及性能影响王毅【摘要】文章以电动车使用的永磁无刷直流电机为研究对象,采用有限元法,利用传热学的理论和方法建立电机的边界条件,利用ANSYS有限元软件分析计算得出电机的温升概况,及温升对电机性能的影响,然后和实际的实验数据进行比对验证。
%Using permanent magnet brushless DC motor used by the electric vehicle as the research object, this paper uses the finite element method, the theory and method of thermal to establish boundary condition of the motor; by using ANSYS finite element software analyzes and calculates the motor temperature rise situation and its effects on motor performance; then compares with the actual experimental data and verifies.【期刊名称】《价值工程》【年(卷),期】2016(035)019【总页数】3页(P140-141,142)【关键词】电动车;永磁直流无刷电机;温度场;有限元;内热交换;性能影响【作者】王毅【作者单位】烟台汽车工程职业学院烟台汽车工程学校,烟台264003【正文语种】中文【中图分类】U266.2永磁无刷直流电机(Brushless DCMotor,以下简称BLDC)是随着电力电子技术及新型永磁材料的发展而迅速成熟起来的一种新型电机。
以其体积小、重量轻、效率高、运行可靠和维护方便等优点,又具备与直流电机同等良好的调速特性,且无机械式换向,已经广泛应用于伺服控制、数控机床、机器人等领域。
无刷直流电动机结构参数优化设计综述吴雅琳; 林珍; 林晨炯【期刊名称】《《电气技术》》【年(卷),期】2019(020)011【总页数】6页(P1-5,26)【关键词】无刷直流电动机; 结构参数; 齿槽转矩; 优化设计【作者】吴雅琳; 林珍; 林晨炯【作者单位】福州大学电气工程与自动化学院福州 350108【正文语种】中文当今,节约能源和保护环境是全世界共同关心的问题,我国政府也提出了可持续发展战略。
目前,中国的电动机功耗每小时超过2万亿kW,约占全国用电量的60%和工业用电量的80%[1]。
永磁无刷直流电动机(brushless permanent-magnet DC motor, BLDCM)具有效率高、能耗低,与有刷直流电动机相比有无换相火花、运行寿命长、噪声低等[2]优点,已广泛应用于航空、军事、医疗器械、机床加工等领域。
目前,研究、开发和生产无刷直流电动机已成为新的趋势。
近年来,随着现代控制理论和计算机技术的快速发展,电动机的优化方法由传统的机械搜索发展到智能优化,最优化理论与技术的应用日益广泛。
然而,由于转子磁路结构相对复杂,无刷直流电动机的优化设计方法尚未完善。
齿槽转矩是由转子永磁体与定子齿槽相互作用产生的,会引起BLDCM振动并产生噪声,从而使系统的控制精度及运行效率降低[3]。
对BLDCM进行合理的转子结构设计可以降低齿槽转矩,提升电动机效率[4]。
本文从转子极面结构、气隙长度以及极弧系数对BLDCM的影响等方面进行设计分析综述,并对亟需解决的关键技术问题进行归纳总结,以期为今后高效无刷直流电动机的优化设计提供参考。
当BLDCM转子旋转时,由于电枢齿和槽的存在引起气隙磁导变化,从而使BLDCM运行中产生齿槽转矩。
永磁电动机的齿槽转矩为电动机不通电时的磁场能量W对定、转子相对位置角a 的负导数[5],即式中,a 为齿中心线与相应的永磁磁极中心线之间的夹角。
永磁体与电枢的相对位置如图1所示。