《交通系统分析》交通参数
1. 泊松(Poisson)分布
P(k) (t)k et ,
k!
k 0,1, 2,
式中:P(k)——在计数间隔t内到达k辆车或人的概率;
λ——单位时间内的平均到达率(辆/s或人/s);
t——每个计数间隔持续的时间(s)或距离(m);
e——自然对数的底,取值为2.71828;
《交通系统分析》交通参数
负二项分布估计波动流合理性分析:观测数据说明合适
车辆数
观测频率
理论拟合频率
泊松分布
负二项分布
0
139
129.6
140.4
1
128
132.4
122.0
2
55
67.7
62.2
3
25
23.1
24.2
4
10
5.9
8.0
5
3
1.2
2.3
>5
0
0.1
0.9
合计
360
360.0
360.0
《交通系统分析》交通参数
3. 负二项(Negative Binomial)分布
P(k)
C 1 k 1
p
(1
p)k
,
k 0,1,2,
p、β为负二项布参数。0<p<1,β为正整数。
适用条件:交通流波动性大或以一定的计 算间隔观测到达的车辆数(人数)其间隔长 度一直延续到高峰期间与非高峰期间两个 时段时,所得数据可能具有较大的方差。
解: 可以将400m理解为计算车辆数的空间间隔, 则车辆在空间上的分布服从
泊松分布
t 400m, 60/4000辆/m,m t 6辆,此分布服从m 6的泊松分布