正方体纸盒展开平面图
- 格式:doc
- 大小:32.00 KB
- 文档页数:1
正方体的展开图
同学你好,今天我们共同学习正方体的展开图。
(出示正方体纸盒)我们知道正方体由上下两个底面和四个侧面围成,共有12条棱,现在我们要想将正方体沿棱剪开展开成平面图形,请你操作并思考:剪开的棱有几条?未剪开的棱有几条?
(选其中一种情形动画演示)需要剪开的棱有7条而未剪开的有5条。
下面平面图形中能围成正方体的有哪些?
这些图形中,你一眼能判定能围成正方体的有哪些?一眼能判定不能围成的有哪些?现在我们把不能判定的动手操作一下。
(动画演示)
通过刚才的操作演示,我们发现正方体的展开图一共有十一种,为了便于判段你能把它们分
一下类吗?
正方体的展开图共可以分为以下三类:
一四一
一三二
二二二
三三
你分对了吗?
实际上我们可以把第一类图形称为正方体展开图的基本图形,上下两个面可以看作正方体的上下两个底面,而把中间的四个面看作正方体的侧面。
而其它三类图形都可以通过旋转变成
基本图形。
(动画演示)
所以换句话说只要能旋转成基本图形的都能围成正方体。
牛刀小试
下面六个正方形连在一起的图形,经折叠后能围成正方体的图形有哪几个?
A、D、G三个,选对了吗?
课堂小结
这节课我们共同学习了正方体的平面展开图(投影出示四类图),我们还可以用旋转的方法看它能不能变为基本图形从而作出判断。
下节课我们再见。
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)。
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。