几何光学(费马原理)传播规律
- 格式:ppt
- 大小:2.51 MB
- 文档页数:25
主要内容一、几何光学的三个基本定律二、光路可逆原理三、全反射、光学纤维四、费马原理光线:空间的几何线。
各向同性介质中,光线即波面法线。
光的直线传播、反射和折射都可以用直线段及其方向的改变表示。
几何光学是关于光的唯象理论。
对于光线,是无法从物理上定义其速度的。
几何光学是关于物体所发出的光线经光学系统后成像的理论。
几何光学实验定律成立的条件:1.被研究对象的几何尺寸D远大于入射光波波长λD/ λ>>1 衍射现象不明显,定律适用。
D/ λ~1 衍射现象明显,定律不适用。
2.入射光强不太强在强光作用下可能会出现新的光学现象。
强光:几何光学的基本实验定律有一定的近似性、局限性。
一、几何光学的三个基本定律1.光的直线传播定律在真空或均匀介质中,光沿直线传播,即光线为2.光的独立传播定律自不同方向或由不同物体发出的光线在空间相交后,对每一光线的独立传播3.光的反射和折射定律3.1 反射定律G 3.2 折射定律入射面n光线在梯度折射率介质中的弯曲nn 5n 1n 3n 2n 4n 6海市蜃楼:沙漠中海面上光线在梯度折射率介质中的弯曲二、光路可逆原理在弱光及线性条件下,当光的传播方向逆转时,•光线如果沿原来反射和折射方向入射时,则相应的反射和折射光将沿原来的入射光的方向。
如果物点Q发出的光线经光学系统后在Q三、全反射、光学纤维1.全反射原理。
继续增大入射角,,而是按反射定律确定的方向全部反射。
全反射的应用:增大视场角毛玻璃r rr2.光纤的基本结构特性(1)光纤的几何结构光纤的几何结构(2)光纤分类①按纤芯介质分:均匀光纤,非均匀光纤。
(3)光纤的传光条件i cn 0n 2n 1(4)光纤的数值孔径四、费马原理物质运动的趋势:达到一种平衡状态或极值状态费马原理:在所有可能的光传播路径中,实际路径所需的时间取极值。
1说明:费马原理是光线光学的理论基础。
① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。
费马原理定义:最小光程原理。
光波在两点之间传递时,自动选取费时最少的路径。
应用学科:费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。
光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。
费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。
因而借助于费马原理可说明光的可逆性原理的正确性。
光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。
地震学中的费马原理地震波沿射线传播的旅行时和沿其他路径传播的旅行时相比为最小,亦是波沿旅行时最小的路径传播。
光学中的费马原理光线在两点间的实际路径是使所需的传播时间为极值的路径[1]。
在大部分情况下,此极值为最小值,但有时为最大值,有时为恒定值。
费马原理详解光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。
又称最小时间原理或极短光程原理,法国数学家费马于1657年首先提出。
设介质折射率n在空间作连续变化,光传播路程ds 所需时间为式中c为真空中的光速。
光沿ACB曲线从A点传播到B点所需时间为费马原理指出了光传播的实际路径,这是一条所需时间τ为极小值的路径。
实际上τ除取极小值外,还可取极大值或稳定值,总之,τ应取极值。
光在介质中传播时,光传播的几何路程与介质折射率之乘积称为光程。
上式中的积分就是光沿ACB曲线从A点传到B点的总光程。
故费马原理也可表述为:光传播的实际路径是使光程取极值(极小值、极大值或稳定值)。
光程取极值的条件为光程的一级变分等于零,即此即费马原理的数学表达式。
费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。
光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。
费马原理可以推导出几何光学中的很多重要规律费马原理指出,光在指定的两点之间传播,实际的光程总是为最大或保持恒定,这里的光程是指光在某种均匀介质中通过的路程和该种媒质的折射率的乘积。
费马原理是几何光学中的一个十分重要的基本原理,从费马原理可以推导出几何光学中的很多重要规律。
例如光的直线传播、反射定律,折射定律,都可以从光程极小推出。
如果反射面是一个旋转椭球面,而点光源置于其一个焦点上,所有反射光线都经过另一个焦点,所有反射光线都经过另一个焦点,便是光程恒定的一个例子。
此外,透镜对光线的折射作用,也是很典型的。
一平凸透镜的折射率为 n,放置在空气中,透镜面孔的半径为R。
在透镜外主光轴上取一点 F , OF f (图 1-3-8 )。
当平行光沿主光轴入射时,为使所有光线均会聚于 F 点。
试问:(1)透镜凸面应取什么形状?( 2)透镜顶点 A与点 O相距多少?( 3)对透镜的孔径 R有何限制?解: 根据费马原理,以平行光入射并会聚于 F 的所有光线应有相等的光程,即最边缘的光线 BF 与任一条光线 NM F 的光程应相等。
由此可以确定凸面的方程。
其余问题亦可迎刃而解。
(1)取 o xy 坐标系如图,由光线 BF 和 NM F 的等光程性,得2 2 2 2nx ( f x) y f R整理后,得到任一点 M(x,y)的坐标 x,y 应满足的方程为1 ( ) 1 ( 1)2 2 2 2 2 2 2 2 2 2 n nf f R y n n f R f n x 令 1 2 2 2 0 n n f R f x , 1 2 2 2 n nf f R a,则上式成为2 2 2 0 2 (n 1)(x x ) y a这是双曲线的方程,由旋转对称性,透镜的凸面应是旋转双曲面。
(2)透镜顶点 A的位置应满足2 2 0 2 (n 1)( xA x ) axyBAM(x,y)nRf ′ F′ 图 1-3-8或者 1 1 2 2 2 n f R f n a x A x O可见,对于一定的 n 和 f , xA 由 R决定。
第三章 几何光学基本原理1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CBB C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmnd p p 10)321(30)11(=-=-=',即像与物的距离为cm 10题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11=38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
光的衍射与费马原理光的衍射是光学中重要的现象之一,它描述了光线通过狭缝或障碍物时的传播特性。
费马原理是衍射现象的基础理论,旨在解释光线沿着最短时间路径传播的原理。
本文将探讨光的衍射和费马原理之间的关系,以及其在实际应用中的重要性。
首先,让我们从光的衍射的概念开始。
当光通过狭缝或障碍物时,光线会发生弯曲和扩展的现象。
这种现象可以用光的波动性来解释,即光的传播可以看作是波的传播。
根据惠更斯-菲涅尔原理,每个点上的任意波前都可以看作是大量次级波的源点,这些次级波的幅度和相位决定了波的传播。
现在,让我们来谈一谈费马原理。
费马原理是光束传播的基本规律。
它表明光线传播的路径是沿着使光的传播时间最短的路径进行的。
这可以通过定义光程来解释,光程是光线传播路径的长度与光在介质中的传播速度之积。
费马原理指出,在传播路径的两侧点之间的所有可能路径中,只有光程最短路径上的光才能到达观察点。
这样,费马原理确定了光线的传播路径,进一步影响了光的衍射现象。
光的衍射可以用传统的赫兹霍尔兹尔公式进行计算。
该公式通过叠加光线幅度的波动来描述光线通过狭缝或障碍物时的传播特性。
这说明光的传播不仅仅沿直线路径进行,而是以波的形式向周围扩散。
在波前上的每个点上,都会发射出次级波,这些次级波形成干涉效应,并最终表现为光的衍射。
光的衍射是一个复杂而有趣的现象,它在许多领域中都有着广泛的应用。
例如,在天文学中,观测太阳和其他恒星的衍射图样可以提供有关它们的信息。
在光学显微镜中,光的衍射被利用来增强图像的清晰度和细节。
光的衍射还被用于成像和传输数据,如激光技术中的光纤通信。
费马原理的应用也非常广泛。
在几何光学和光路设计中,费马原理可以用来确定最佳的光路布局和透镜形状。
在光线传播的微观尺度上,费马原理可以用于计算光学薄膜的反射和透射特性。
此外,费马原理还与最速降线法相结合,应用于优化问题中,如光线在多介质系统中的传播路径。
总结而言,光的衍射现象可以通过费马原理来解释。
费马定理费马原理是光学中最为基础的原理,它在物理学发展的历程中有着至关重要的作用。
它用一种新的看法将几何光学的三个基本实验定律(光的反射定律和折射定律、光的独立传播定律光的直线传播定律直线传播)进行统一,并表述了三者的联系。
通过研究几何光学问题,能彰显出费马定理的重要性,能更加系统化光学理论。
可见通过费马原理推导上述三个基本实验定律,能使我们更加系统的理解光学理论,这对广大学者都有着不可或缺的意义。
费马原理的直观表达:光从空间的一点到另一点的实际路径是沿着光程为极值的路径传播的。
或者说, 光沿着光程为极大、极小或者常量的路径传播。
光线从Q 点传播到P 点所需的总时间:⎰∑∑=∆=∆===ndl ct l n c v l t PQ i i i i i i 1111费马原理:在所有可能的光传播路径中,实际路径所需的时间 取极值。
⎰==01ndl ct P Q δδ 在光传播的所有可能存在的路径中,其实际路径所对应的光程取极致。
⎰==0ndl L P Qδδ① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。
② 内椭球面的反射: 椭球面上任一点到两个焦点连线的角平分线即过该点()⎥⎦⎤⎢⎣⎡-+++=222221x a H x H n OBn AO n L +=的面法线,且两线段长度之和相等。
用费马原理导出反射定律如下图, PQ 为两个介质间的平面反射镜,从A 点发射出的光线照射到PQ 平面上的O 点,经过反射到达B 点。
假设光线所处的介质为均匀介质。
光线的透射点O 到A 点与反射平面垂足P 的长度为x 。
那么点A 到点B 的光程为:很明显,光程L 是关于变量x 的函数,由费马原理分析,真实的光程是固定的,在均匀介质中的一阶导数是0,即()()0222221=-+--+=x a H x a n xH nx dxdL即有()I n I n -sin sin =即I I -=反射定律由上面推导出来了。