反时限特性曲线
- 格式:doc
- 大小:335.50 KB
- 文档页数:3
浅谈反时限保护的适用范围及整定方案张克平摘要:白银电网负荷大部分是工业和电力提灌负荷,因此网内存在着大量的大型高压电动机。
相当一部分配网线路的定时限过流保护定值须躲电机启动电流,导致过电流定值很大,甚至有超限时速断电流定值的情况,而此时低电压及负序电压对线末没有灵敏度。
电网的快速发展,使保护配合的级数增加,部分配网及用户变电所时间级差已非常紧张。
因此,寻找能很好躲电机启动电流及缓解时间级差的保护类型显得尤为迫切,而反时限保护能很好的躲电机启动电流——只要选择适当的曲线类型和时间常数;同时其动作时限与故障电流的大小成反比,上下级保护之间只需一个时间级差配合,缓解时间级差效果明显。
一、定时限过流保护陷入窘境的几个案例 ㈠ 王岘水泥厂117水泥磨线过电流保护YJV-2×(3×120)/0.7117 水泥磨线K10.05560.64441.373王岘水泥厂5.751#4.6%0.8MVA 5.752#4.6%0.8MVA K2K3R:2800kW +560kW 0.4kV:1377kW保护型号:PMC-651F 装置版本号:V1.60.001、 参数计算1)电缆YJV-3×120/10,r=0.158Ω/㎞ x=0.0755Ω/㎞ Z=0.1751Ω/㎞ Z*=0.1588 2)短路电流:A I7857)3(K1=)(1538)3(K2并列A I =A I3334)2(K1=A I663)2(K2=A I 3469))2((=小首 A I7391)2()(=大首2、保护主要功能:1)瞬时电流速断;2)复压(方向)限时电流速断;3)复压(方向)定限时限过流;4)相电流加速;5)反时限过流;6)过负荷保护;7)零序过流;8)重合闸;9)低周、低压减载;10)绝缘监视;11)TV 断线、控制回路断线监视;12)检同期功能。
3、过电流保护整定 CT :300/5 PT :1001)YJV22-3×120电缆最大允许载流量:323A ;CT一次值:300A ;2)负荷电流:配电变压器,2×46.2=92.4A ;2800kW 电机,190A ;560kW 电机, 2×38=76A ;最大绕线式电机启动电流(软启动)Iqd=2Ie=2×190=380A ;Ifh ·max=92.4+76+380=548.4A 。
浅谈反时限保护的适用范围及整定方案摘要:白银电网负荷大部分是工业和电力提灌负荷,因此网内存在着大量的大型高压电动机。
相当一部分配网线路的定时限过流保护定值须躲电机启动电流,导致过电流定值很大,甚至有超限时速断电流定值的情况,而此时低电压及负序电压对线末没有灵敏度。
电网的快速发展,使保护配合的级数增加,部分配网及用户变电所时间级差已非常紧张。
因此,寻找能很好躲电机启动电流及缓解时间级差的保护类型显得尤为迫切,而反时限保护能很好的躲电机启动电流——只要选择适当的曲线类型和时间常数;同时其动作时限与故障电流的大小成反比,上下级保护之间只需一个时间级差配合,缓解时间级差效果明显。
一、定时限过流保护陷入窘境的几个案例 ㈠ 王岘水泥厂117水泥磨线过电流保护YJV-2×(3×120)/0.7117 水泥磨线K10.05560.64441.373王岘水泥厂5.751#4.6%0.8MVA 5.752#4.6%0.8MVA K2K3R:2800kW +560kW 0.4kV:1377kW保护型号:PMC-651F 装置版本号:V1.60.001、 参数计算1)电缆YJV-3×120/10,r=0.158Ω/㎞ x=0.0755Ω/㎞ Z=0.1751Ω/㎞ Z*=0.1588 2)短路电流:A I 7857)3(K1=)(1538)3(K2并列A I =A I3334)2(K1=A I663)2(K2=A I 3469))2((=小首A I7391)2()(=大首2、保护主要功能:1)瞬时电流速断;2)复压(方向)限时电流速断;3)复压(方向)定限时限过流;4)相电流加速;5)反时限过流;6)过负荷保护;7)零序过流;8)重合闸;9)低周、低压减载;10)绝缘监视;11)TV 断线、控制回路断线监视;12)检同期功能。
3、过电流保护整定 CT :300/5 PT :1001)YJV22-3×120电缆最大允许载流量:323A ;CT一次值:300A ;2)负荷电流:配电变压器,2×46.2=92.4A ;2800kW 电机,190A ;560kW 电机, 2×38=76A ;最大绕线式电机启动电流(软启动)Iqd=2Ie=2×190=380A ;Ifh ·max=92.4+76+380=548.4A 。
2-6 画出三相五柱电压互感器的Y0/Y0/Δ接线图,并说明其特点。
答:三相五柱式电压互感器有五个铁芯柱,给零序磁通提供了闭合磁路。
增加了一个二次辅助绕组,接成开口三角形,获得零序电压。
接线图如图2-3所示。
电网正常运行时,三相电压对称,开口三角绕组引出端子电压mnU为三相二次绕组电压相量和,其值为零。
但实际上由于漏磁等因素影响,mnU一般不为零而有几伏数值的不平衡电压unbU b。
当电网发生单相接地故障时,TV一次侧零序电压要感应到二次侧,因三相零序电压大小相等,相位相同,故三角形绕组输出电压U mn=3U0/K TV(K TV为电压互感器额定电压变比)。
(1)这种接线用于中性点不直接接地电网中,在电网发生单相接地时,开口三角形绕组两端为3倍零序电压,U mn= =3U0,为使U mn=100V,开口三角形绕组每相电压为100/3V,因此,TV100/3V(U N为一次绕组的额定线电压,kV)。
(2)这种接线用于中性点直接接地电网中,在电网发生单相接地故障时,故障相电压为零,非故障相电压大小、相位与故障前相同不改变,开口三角绕组两端的3倍零序电压U mn为相电压,为使此时U mn=100V,TV/100V。
图2-3 三相五柱式TV的磁路及接线(a) 磁路;(b)接线原理接线如图3-1所示。
反时限过电流保护原理接线如图3-2所示。
图3-1 定时限过电流保护原理接线图3-2 反时限过电流保护原理接线图(一)定时限过电流保护的工作原理及动作过程用图3-3说明定时限过流保护装置的工作原理。
当线路WL3上k1点发生短路时,短路电流由电源S经过WLl,WL2,WL3流经k1点,过电流保护1、2、3同时启动,根据选择性要求,保护3动作,3QF跳闸切除故障线路WL3。
而保护2、3在故障切除后立即返回,所以要求各保护装置的整定时限不同。
越靠近电源侧则时限越长。
图3-3 定时限过流保护装置的工作原理说明用图3-1说明保护装置的动作过程,当线路短路后,短路电流经电流互感器TA 转变为二次电流进入电流继电器1KA 、2KA 。
反时限特性曲线:II 1Q曲线可视为两段定时限加一段反时限,只讨论两段定时限之间的反时限特性的微机实现方法,表达式如下:()121maxA e K t I I ->其中:e I ,发电机额定电流;发电机发热同时的散热效应系数1A ,一般整定为1;发电机定子绕组热容量常数1K ,机组容量MVA S n 1200≤时,1K 整定为37.5(当有制造厂家提供的参数时,以厂家参数为准)。
反时限继电器根据被保护设备提供的反时限特性曲线,实现与其相应的保护。
本继电器要求整定的项目有:电流启动定值及与其对应的动作延时。
考虑到曲线的复杂性和便于实现,以下参数事先以表格形式存储于EPROM 中:即从1.1倍至2.0倍启动电流对应的时延(级差0.1倍),从2.0倍至10.0倍启动电流对应的时延(级差1.0倍),若精度等有特殊要求可调整级差和电流倍数范围。
这些点选定后由保护装置用线性插值进行曲线拟合,级差较小时拟合的曲线将更为光滑。
法一:考虑实时计算中电流的变化(继电器的动态特性),定义一个综合过流倍数n M [3],它不仅能反映当前的过流程度,也能计及从故障起始整个过程的过流程度,其定义为:∑∑===M k Mk kk k M tt n n 112/ 或∑∑===M k Mk kk k M t t n n 11/式中 n k 为k 时刻过流倍数t k 为与n k 相对应的持续时间k=1,2,…,M M 为累计计算次数前者反映的是过流倍数的方均根值,而后者反映的是加权平均值,可分别应用于不同场合。
由于微机保护实现时是等间隔计算,故可分别简化为∑==MK kM nMn 121 或∑==MK kMnMn 11继电器实时计算中,当电流大于启动电流后,每次均计算得到一个M n 。
设M n 落在事先输入的数据表格,x1,x2内,得到对应的y1,y2,如图1所示。
应用线性插值得到动作延时:)(112121x n x x y y y y M ---+=继电器开始计时后,只要计数器设定值未到就反复计算M n ,并根据给定的特性曲线(已输入的数据表格)不断地用新的综合过流倍数得到允许的时延M t ,再减去现已达到的时延,即得到还需要的时延:jM t M t t ∆-=∆式中jt ∆为计算间隔;M t 为第M 次计算的综合过流倍数决定的时延。
1.保护对象说明本装置为微机综合保护装置,根据软件的不同配置可实现对线路、电动机、电容器及厂用变的保护,装置在出厂时默认设置为线路保护,在实际使用时请用户务必将保护对象设置的与实际相符;具体设置方法如下:2.整定说明假设用户要对‘过流I段’定值按如下要求整定:将本保护投入,电流定值设置为21.4A,延时设置为0.2 s,可参照如下流程进行:3.控制回路异常说明在使用时因控制回路接线不当本装置可能会有‘控制回路异常’的告警提示,如果出现如上情况可按照如下方式进行处理:进入装置“查看”菜单下的“开关量”子菜单,查看本菜单下的TW(跳位)和HW (合位)的状态,正常情况下断路器在跳闸状态时TW为1、HW为0,断路器在合闸状态时TW为0、HW为1,如与上述情况不符可判断为控制回路接线错误,请仔细参照本说明书的第6节“产品接线说明”和WGB-53(C),WGB-54(C),WGB-55(C)控制回路接线示意排图’进行查修正;4.调试说明部分用户在对本装置实验时由于设置、接线或操作不当可能出现如下状况:例如预对‘过流II段’进行动作试验,对装置施加了电流但保护却不动作,如出现上述情况应该为用户原因,可按如下方法排查:A.检查‘过流II段’保护功能是否投入、电流定值及动作延时是否妥当,检查方法如下:在“查看”菜单下的“定值”子菜单选择当前使用的定值区进入,按“↓”键翻到‘过流II段’的相关定值上,确认压板已经投入并且定值合理,否则需到‘整定’菜单下对‘过流II段’定值进行重新整定;B.检查是否对保护装置正确的施加了电流,主要包括如下方面:◇用户使用的电流输出设备是否工作正常;◇用户对装置交流回路的接线是否正确,施加的电流回路是否正确;◇用户施加的电流是否已经大于了‘过流II段’的电流定值并且已经等待了本保护规定的动作延时;◇查看本保护装置实际采集到的动作电流是否与用户施加的电流相符,查看方法:在装置的‘主信息屏’或者进入“查看”菜单下的“模拟量”子菜单即可看到装置实际的采样电流。
电机过载反时限计算公式电机过载反时限计算公式是电力系统中常用的一种计算方法,它可以用来判断电机是否发生过载,并确定过载的程度。
在电力系统中,电机的过载是指电机承载的负荷超过了其额定容量,导致电机运行过热,甚至发生故障的现象。
电机过载反时限计算公式是根据电机的热特性来推导得出的,它基于电机的热特性曲线和过载保护器的时间-电流特性曲线。
通过测量电机的电流和时间,结合这两个特性曲线,可以计算出电机的过载保护动作时间。
这个动作时间可以用来判断电机是否过载,并确定过载的程度。
电机过载反时限计算公式的推导过程比较复杂,需要考虑电机的负载特性、绕组温度特性、热容量等多个因素。
具体的计算公式如下:TOF = K1 * (I / Ir) ^ K2 * (t / tr) ^ K3其中,TOF表示过载保护器的动作时间,单位为秒;I表示电机的电流,单位为安培;Ir表示电机的额定电流,单位为安培;t表示电机的运行时间,单位为秒;tr表示电机的额定时间,单位为秒;K1、K2、K3为系数,可以根据具体的电机和过载保护器的特性进行确定。
通过这个公式,我们可以计算出电机的过载保护动作时间,从而判断电机是否过载。
当动作时间小于过载保护器的设定时间时,说明电机没有发生过载;当动作时间接近或大于过载保护器的设定时间时,说明电机发生了过载,并可以根据动作时间的大小确定过载的程度。
电机过载反时限计算公式的应用范围比较广泛,可以用于各种类型的电机,包括感应电动机、直流电动机等。
在电力系统中,电机过载保护是非常重要的一项工作,它可以保护电机免受过载损坏,提高电机的可靠性和安全性。
除了计算公式,还有一些其他因素也需要考虑到,例如环境温度、电机的冷却方式、负载变化情况等。
这些因素都会对电机的过载保护动作时间产生影响,因此在进行计算时需要进行综合考虑。
电机过载反时限计算公式是电力系统中一种常用的计算方法,它可以用来判断电机是否发生过载,并确定过载的程度。
反时限过负荷保护电流时间特性对照表曲线系数K=10-1200过载倍数动作时间(秒)按上表,当用户选择曲线速率K为60时,如过负荷电流是三倍额定电流,则对应的反时限动作时间是7.50秒。
反时限曲线时值示意图100005000100050010050105时间1 0.5 0.11 2 3 4 5 6 7 8 9 10额定电流倍数四、 外形尺寸160*80型仪表外型尺寸图五、安装及接线启动失败不平衡●标准智能电动机保护器160*80;采用面板卡式安装。
开孔尺寸:152*76。
●将电动机三相电流互感器的次级分别接至电动机保护器的相应输入端子。
(详见产品接线图)●将高压电动机三相电压互感器的次级分别接至电动机保护器的相应输入端子(低压电机可直接接入,详见产品接线图)●四组输出继电器,分别用于报警、前级跳闸和启动/停止A、启动/停止B,不用悬空即可。
●无源触点“启动A”、“启动B”、“停止/复位”用于电动机的正常启动和停止;“紧急停止”是现场使用的非正常停止按钮;“A反馈”、“B反馈”为接触器动作信号,通常与常开辅助接点相连;“断路器状态”是前级开关送电信号,如不使用前级跳闸功能,此接点短路即可;“远程控制”是现场控制权转移开关,接点闭合时,可通过RS485远程启动/停止电机保护器。
●保护控制器电源最好不与电机使用同一条线,否则将影响“晃电”功能的使用;若必须与电机使用同一电源时,请选择具有电源保持功能的保护控制器。
●“变送输出”、“通讯”和“漏电CT”端子,使用时连接,不使用时悬空。
HD5200电机保护器接线端子定义。
目录:一、概述1、现有的反时限特性曲线的数学模型2、标准反时限SIT3、非常反时限VIT或LTI4、超反时限UIT5、极端反时限EIT6、热过载(无存储)反时限7、热过载(有存储)反时限二、各种反时限介绍三、反时限的实现1、基于硬件电路实现1)反时限过流保护定时电路的原理讲解 2)反时限过流保护定时电路的工作过程2、基于固件的实现1)直接数据存储法 2)曲线拟合法----------------------------------------------------------------------------------------------------------一、概述反时限过电流保护在原理上和很多负载的故障特性相接近,因此保护特性更为优越。
反时限电流保护在国外应用较为广泛,尤其在英、美国家应用更为广泛。
实际上,许多工业用户要求保护为反时限特性,而且对于不同的用户(负荷),所需的反时限特性并不相同。
反时限在控制器里一般做在三段电流保护的第Ⅲ段,如下图。
----------------------------------------------------------------------------------------------------------二、各种反时限介绍1、现有的反时限特性曲线的数学模型目前,国内外常用的反时限保护的通用数学模型的基本形式为:动作时间t是输入电流I的函数式中,I——故障电流(值越大,时间越短);Ip——保护启动电流(设定值);r——常数,取值通常在0-2之间(也有大于2的情况);k——常数,其量纲为时间。
微机综保电流设定值2A,实际瞬间电流值达到6A,对应I/Ib=6A/2A=3,标准反时限时间6.3S。
----------------------------------------------------2、标准反时限SIT按照IEC标准:当r<1时,称为一般反时限特性。
反时限特性曲线:
I
I
曲线可视为两段定时限加一段反时限,只讨论两段定时限之间的反时限特性的微机实现方法,表达式如下:
()1
2
1
max A
e K t I I ->
其中:e I ,发电机额定电流;发电机发热同时的散热效应系数1A ,一般整定为1;发电机定子绕组热容量常数1K ,机组容量MVA S n 1200≤时,1K 整定为37.5(当有制造厂家提供的参数时,以厂家参数为准)。
反时限继电器
根据被保护设备提供的反时限特性曲线,实现与其相应的保护。
本继电器要求整定的项目有:电流启动定值及与其对应的动作延时。
考虑到曲线的复杂性和便于实现,以下参数事先以表格形式存储于EPROM 中:即从1.1倍至2.0倍启动电流对应的时延(级差0.1倍),从2.0倍至10.0倍启动电流对应的时延(级差1.0倍),若精度等有特殊要求可调整级差和电流倍数范围。
这些点选定后由保护装置用线性插值进行曲线拟合,级差较小时拟合的曲线将更为光滑。
法一:
考虑实时计算中电流的变化(继电器的动态特性),定义一个综合过流倍数n M [3],它不仅能反映当前的过流程度,也能计及从故障起始整个过程的过流程度,其定义为:
∑∑===
M k M
k k
k k M t
t n n 1
1
2/ 或 ∑∑===
M k M
k k
k k M t
t n n 1
1
/
式中 n k 为k 时刻过流倍数
t k 为与n k 相对应的持续时间
k=1,2,…,M M 为累计计算次数 前者反映的是过流倍数的方均根值,而后者反映的是加权平均值,可分别应用于不同场合。
由于微机保护实现时是等间隔计算,故可分别简化为
∑==
M
K k
M n M
n 1
21 或 ∑==M
K k
M n
M n 1
1
继电器实时计算中,当电流大于启动电流后,每次均计算得到一个M n 。
设M n 落在事先输入的数据表格,x1,x2内,得到对应的y1,y2,如图1所示。
应用线性插值得到动作
延时:
)(11
21
21x n x x y y y y M ---+
=
继电器开始计时后,只要计数器设定值未到就反复计算M n ,并根据给定的特性曲线(已输入的数据表格)不断地用新的综合过流倍数得到允许的时延M t ,再减去现已达到的时延,即得到还需要的时延:
j M t M t t ∆-=∆
式中 j t ∆为计算间隔;M t 为第M 次计算的综合过流倍数决定的时延。
用该方法实现的可灵活运用的反时限继电器,经试验,精度完全可以满足要求,且应用灵活,不受固有数学模型的限制。
其实现的简要流程图:
分析:(1)如果是持续过负荷,且超过反时限的启动值q I (将近 1.3倍e I ),
∑==
M
K k M n M
n 1
2
1
,综合过流倍数可以反映热量的累积;(2)如果q I I <,0=M ,原来的热量累积一笔勾销,散热太快
措施:连续判断几次q I I <,再置0=M ;或者判断q I I <,则将热积累固定减去某一个正定值 散热概念的理解
当相电流q I I >max 时,进入反时限特性段,由于这一阶段的积热都大于散热,总的来
说都是个积热的过程。
但是所谓散热的概念,一:电流max I 上下波动,应该体现出一个综合电流的概念,使其在波动范围之间,不是最大也不是最小;二:若电流波动比较大,出现
q I I <max ,应该如何处理?(看下图,因为q I I >max 是反时限特性处理程序的启动量,此
时它不进入反时限特性处理程序;q I I >max 也是进入1t 这个定时限的启动值,说明此时进入s t 这个定时限,或者不再过负荷)可否这样:q I I <max 时,置q I I =max ,连续几次,则将以前的热积累一笔勾销
发信
法二:
前面一直用到的反时限特性曲线中过流倍数与延时的关系,其实反时限特性曲线方程:
∑=-m k k mA T I S 1
2=总,只要m m m
k k k m s S T I s s s S +==++++=-=∑11
221......大于热积累极
限,此时就应该跳,这个逻辑更简单直接一些,它不需要查反时限特性曲线表,计算也相对简单多了。
如何处理q I I <哪?给当前热积累k s 置负值,连续几次0<k s ,置0=m S 。
实现的简要流程图:。