八年级数学分式方程练习题
- 格式:doc
- 大小:204.50 KB
- 文档页数:7
可编辑修改精选全文完整版【专题】解分式方程(50题)一、计算题1.解分式方程(1)3−x x−4+14−x=1(2)x+1x−1−4x 2−1=12.计算:15x+2x 2+x =31+x .3.解分式方程(1)3x x+2+2x−2=3;(2)1x−1−2x+1=4x 2−1.4.解方程:3+x x−4+1=34−x .5.解下列分式方程: (1)x 2x−5+55−2x =1(2)4x 2−4−1x−2=3x+26.解下列分式方程:(1)1x+2=1 3x(2)3x+1−x1−x=17.解方程:2x−2=6x2−4.8.解分式方程:xx+1+1=32x+2.9.解分式方程:1x−2=1−x2−x−410.解关于x的方程:xx+3=1+2x−1.11.解方程:4x2−1=x x+1−112.解方程:(1)3x=2x−2(2)2x 2x−1+51−2x=313.解分式方程:1+4x−5=2x5−x.14.解方程:x+1x−1−3x+1=1 .15.解方程:x−1x+1−2x 2−1=1.16.解分式方程: (1)21−x +1x =0.(2)x x−1+3(x−1)(x−4)=1.17.解分式方程:2x 2x−1+512x =3.18.解方程:xx−3−3(x−3)2=1.19.解分式方程:x−1x +3x+2=1.20.解方程:(1)x x−1=2x−1x−1(2)x x 2+x −3x+1=121.解分式方程:(1)x 2−8x 2−4=1+12−x ;(2)x−2x−3=2−16−2x.22.解分式方程: (1)2x−1=1x+1(2)1+6x 2−9=x x−323.1x−5=10x 2−25.24.解分式方程:x x−1−2x+1=1.25.解方程:2x−3x 2−1−1x+1=2x−1.26.解方程:5x−2−3x =027.解方程:x x−1−1=2x+128.解下列分式方程:(1)2−x x−3+4=13−x(2)x x−2−1=1x 2−429.解方程1x−2+1=2x 2x+1.30.解方程:(1)x x−2−1=1x 2−4(2)3x x+2+2x−2=331.解方程:(1)x−1x+1−3x 2−1=1 ;(2)x x−2−8x 2−2x =1 .32.解分式方程: (1)1x +11.5x =772(2)x−2x−3+13−x =533.解方程:(1)5x 2+x −1x 2−x =0(2)x−2x+2−16x 2−4=x+2x−234.解分式方程(1)x 2x−3+53−2x =4(2)1x−1−2x+1=4x 2−135.解方程:2x3+2x−1=39−4x2.36.解方程:2x3x+3+1=xx+1.37.解方程:xx−2−8x2−4=138.解方程:1−x2−x=1x−2+3.39.解方程:2−2yy+1=3y−1.40.解分式方程:3(x−1)(x+2)+1=xx−1.41.解方程:(1)x−8x−7−17−x=8;(2)xx−2+1x2−4=1.42.解方程: 2x+1−31−x =61−x 2.43.解方程:(1)1x−3−2=3x 3−x ;(2)x+1x−1−4x 2−1=1 .44.解方程(1)x−3x−2+1=32−x(2)x x−1−1=3(x+2)(x−1)45.解方程:(1)x x+3=1+2x−1(2)x−1x 2+x =43x+346.解方程: x x−1 = 2x 3x−3 +147.解分式方程:(1)2x−2+3=1−x 2−x(2)xx+3+6x2−9=x−2x−348.解方程:32−13x−1=56x−2.二、解答题49.阅读下面材料,解答后面的问题.解方程:x−1x -4xx−1=0.解:设y=x−1x,则原方程可化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y=0的解.当y=2时,x−1x=2,解得x=-1;当y=-2时,x−1x=-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.所以原分式方程的解为x1=-1,x2=13.上述这种解分式方程的方法称为换元法.问题:(1)若在方程x−14x-x x−1=0中,设y=x−1x,则原方程可化为;(2)若在方程x−1x+1-4x+4x−1=0中,设y=x−1x+1,则原方程可化为;(3)模仿上述换元法解方程:x−1x+2-3x−1-1=0.50.已知a,b,c,d都是互不相等的正数.(1)若ab=2,cd=2,则badc,acbd(用“>”,“<”或“=”填空);(2)若ab=cd,请判断ba+b和dc+d的大小关系,并证明;(3)令ac=bd=t,若分式2a+ca−c−3b+db−d+2的值为3,求t的值.。
初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。
初二50道分式方程练习题1. 解方程:(3x + 2)/(5 - x) = 7/92. 解方程:(2x - 1)/(x + 3) = 4/53. 解方程:(5x + 1)/(2x - 3) = 3/44. 解方程:(4 - 2x)/(7x + 1) = 2/35. 解方程:(3x - 4)/(4 - x) = 2/56. 解方程:(x + 1)/(2x - 3) = 5/87. 解方程:(3x - 2)/(x + 5) = 1/28. 解方程:(2x - 5)/(x + 1) = 3/49. 解方程:(4x - 3)/(7x + 2) = 2/510. 解方程:(3x + 1)/(2 - x) = 7/911. 解方程:(5x - 4)/(3x - 2) = 1/212. 解方程:(x - 2)/(4x + 3) = 3/513. 解方程:(3 - 4x)/(5x + 2) = 2/714. 解方程:(2x - 3)/(x + 4) = 1/215. 解方程:(4x + 1)/(3 - 2x) = 5/716. 解方程:(9 - 2x)/(6x - 1) = 3/418. 解方程:(3x + 4)/(5 + x) = 1/319. 解方程:(2x - 5)/(3x + 1) = 4/920. 解方程:(4x + 3)/(7 - x) = 2/521. 解方程:(7x - 1)/(x - 3) = 5/922. 解方程:(3x + 2)/(4 - 2x) = 1/323. 解方程:(x - 1)/(2x + 3) = 2/524. 解方程:(4 - 3x)/(x + 2) = 1/425. 解方程:(5x + 1)/(3x - 4) = 7/826. 解方程:(3 - 5x)/(x + 2) = 2/327. 解方程:(2x + 1)/(3 - 4x) = 1/528. 解方程:(4 - 3x)/(2 + x) = 5/729. 解方程:(5x + 2)/(7x - 3) = 3/430. 解方程:(3x - 2)/(5x + 1) = 5/731. 解方程:(6 - 2x)/(5x - 3) = 1/232. 解方程:(3x + 2)/(2 - 4x) = 1/733. 解方程:(x - 3)/(4x - 1) = 3/535. 解方程:(2x + 1)/(3 - 5x) = 7/836. 解方程:(4 - 2x)/(3x + 1) = 3/537. 解方程:(3x - 1)/(2x + 5) = 1/238. 解方程:(2x + 3)/(x - 4) = 7/939. 解方程:(3 - 2x)/(x + 3) = 4/540. 解方程:(4x - 1)/(2x + 3) = 3/441. 解方程:(5 - 3x)/(x + 4) = 2/542. 解方程:(2x + 1)/(5x - 2) = 3/743. 解方程:(3x - 2)/(4x + 1) = 1/344. 解方程:(x + 3)/(2 - 3x) = 2/545. 解方程:(5x - 1)/(2x + 3) = 4/946. 解方程:(4 - 3x)/(3x - 2) = 1/247. 解方程:(2x - 1)/(7x + 3) = 5/948. 解方程:(3x + 4)/(5 - x) = 7/849. 解方程:(x + 2)/(3x - 5) = 4/750. 解方程:(5x - 2)/(4 + 3x) = 1/2以上是初二50道分式方程练习题,请根据题目逐一解答,求出每道题的x值。
2023-2024学年人教版数学八年级上册分式方程应用题专题训练1.甲、乙两人加工同一种零件,乙每天加工的数量比甲每天加工数量多50%,两人各加工600个这种零件,甲比乙多用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)现有3000个这种零件的加工任务,由甲单独加工m天后剩余任务由乙单独完成,试用含m的代数式表示乙单独完成剩余任务的天数(结果要求化简);(3)已知甲、乙两人加工这种零件每天的加工费分别是120元和150元,在(2)的情况下,如果总加工费不超过7800元,那么甲最多加工多少天?2.“走,去永州,品道州脐橙”,道州脐橙果大形正,橙红鲜艳,肉质脆嫩化渣,风味浓甜芳香.2023年11月29日在“道州脐橙”品牌推介活动上,某水果批发商用40000元购进一批道州脐橙后,供不应求,该水果批发商又用90000元购进第二批这种道州脐橙,所购数量是第一批数量的2倍,但每箱贵了10元(1)有水果批发商购进的第一批道州脐橙每箱多少元?(2)若两次购进的道州脐橙按同一价格售出,两批脐橙全部销售完后,获利不低于17000元,则销售单价至少是多少元?3.元宵节是中国的传统节日之一,元宵节主要有赏花灯、吃汤圆、猜灯谜等习俗,某超市节前购进了甲、乙两种畅销口味的汤圆.已知购进甲种汤圆的金额是1200元,购进乙种汤圆的金额是800元,购进的甲种汤圆比乙种汤圆多20袋.甲种汤圆的单价是乙种汤圆单价的1.2倍.(1)求甲、乙两种汤圆的单价分别是多少元;(2)为满足消费者需求,该超市准备再次购进甲、乙两种汤圆共120袋,若总金额不超过1300元,最多购进______袋甲种汤圆.4.甲、乙两人分别从距目的地8km和12km的两地同时出发,甲、乙的速度比是4:5,结果甲比乙提前2h5到达目的地,求甲、乙的速度.5.某工程队承接了45万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了15天完成了这一任务.(1)用含x的代数式填表(结果不需要化简);工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x______45实际____________45(2)求(1)的表格中的x的值.6.“阅读陪伴成长,书香润泽人生”.万年县某学校为了开展学生阅读活动,计划网购甲、乙两种图书.已知甲种图书每本的价格比乙种图书每本的价格多5元,且用1600元购买甲种图书比用900元购买乙种图书可多买20本.(1)甲种图书和乙种图书的价格各是多少?(2)根据学校实际情况,需一次性网购甲、乙两种图书共300本,购买时得知:一次性购买甲乙两种图书超过100本时,甲种图书可按九折优惠,乙种图书可按八折优惠.若该校此次用于购买甲、乙两种图书的总费用不超过4800元,那么学校最多可购进甲种图书多少本?7.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.长沙某汽车销售决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元;(2)该公司决定用不多于1220万元购进A型和B型汽车共100辆,最多可以购买多少辆A 型汽车?8.为开展特色体育,致远中学上学期购买了甲、乙两种不同足球,购买甲种足球用了3000元,购买乙种足球用了2100元,购买甲种足球数量恰好是购买乙种足球数量的2倍,且购买一个甲种足球比购买一个乙种足球少花20元.(1)求购买一个甲种足球和一个乙种足球各需多少元;(2)为了加大开展力度,学校决定本学期再次购买甲、乙两种足球共50个,恰逢商场对两种足球售价进行调整,甲种足球售价比上学期购买时提高了10%,乙种足球售价比上学期购买时降低了10%,如果本学期购买甲、乙两种足球的总费用不超过2800元,并且乙种足球至少要购买5个,那么该校本学期有几种不同购买足球的方案?9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.某茶店1月份第一周绿茶的销售总额为1500元,红茶的销售总额为900元,且红茶每克售价是绿茶每克售价的1.2倍,红茶的销售量比绿茶的销售量少3000克,设绿茶每克销售价格为x 元.(1)请用含x的代数式填表:售价(元/克)销售量(克)销售总额(元)绿茶x______1500红茶____________900(2)请列出方程,并求出绿茶、红茶每克的售价分别是多少元?10.期末考试在即,某学校准备购进A、B两种奖品对进步学生进行奖励,已知一盒A 种奖品的单价比一盒B种奖品的单价多1元,且花600元购买A种奖品和花500元购买B种奖品的盒数相同.(1)求A,B两种奖品一盒的单价各是多少元?(2)若计划用不超过1100元的资金购进A、B两种奖品共200盒,求A种奖品最多能购进多少盒?11.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用12万元购买A型充电桩与用18万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A,B型充电桩,购买总费用不超过15万元,且A型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?12.长寿重百商场用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回是第一次进货件数3倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完.求:(1)商场第一次购买了多少件T恤衫?(2)商场在这两次生意中共盈利多少元?13.某商店购进篮球、足球两种商品,已知每个篮球的价格比每个足球的价格贵16元,用2400元购买篮球的个数恰好与用2000元购买足球的个数相同.求篮球,足球每个的价格各是多少元?14.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?(3)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?15.列方程(组)解应用题:綦江区某校为举行六十周年校庆活动,特定制了系列文创产品,其中花费了312000元购进纪念画册和保温杯若干.已知纪念画册总费用占保温杯总费用的3 10.(1)求纪念画册和保温杯的总费用各是多少元?(2)若每本纪念画册的进价比每个保温杯的进价多20%,而保温杯数量比纪念画册数量的3倍多1200个.求每本纪念画册和每个保温杯的进价各是多少元?。
人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
分式方程应用题一、单选题(共4题;共8分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B.C. D.3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.4.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣个物件,则可列方程为()A. B. C. D.二、填空题(共2题;共2分)5.某班学生从学校出发前往科技馆参观,学校距离科技馆15km,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是________km/h.6.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为________ km/h.三、计算题(共1题;共10分)7.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,己知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?四、解答题(共11题;共55分)8.列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?9.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.10.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?11.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.12.甲、乙两人每小时共做个零件,甲做个零件所用的时间与乙做个零件所用的时间相等.甲、乙两人每小时各做多少个零件?13.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.14.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.15.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.17.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?18.为建国70周年献礼,某灯具厂计划加工9000套彩灯。
八年级上册数学分式方程练习题及答案一、选择题:1、下列式子:22x1am?n,,,1?,, 中是分式的有个x3a?ba?b?A、B、C、D、22、下列等式从左到右的变形正确的是bb2bb?1ababbmA、?B、?C、2? D、? aaaa?1baamb3、下列分式中是最简分式的是m2?142m?1A、 B、C、2D、 m?12a1?mm?14、下列计算正确的是11111?mB、?m?m??1 C、m4??m3?1 D、n?m?n? nmmmn 3m22n35、计算?的结果是 ?2n3mnn2n2nA、 B、?C、 D、?m3m3m3mA、m?n?6、计算xy的结果是 ?x?yx?yxyx?y D、 x?yx?yA、1 B、0C、m27、化简m?n?的结果是 m?nm2?n2mnA、 B、?C、 D、? m?nm?nnm8、下列计算正确的是A、??1B、9、如果关于x的方程0?1?1 C、3a?2?35?32??a D、ax?8k??8无解,那么k的值应为 x?77?xA、1B、-1C、?1D、910、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x天完成,则根据题意列出的方程是A、111111111111??B、??C、??D、?? xx?56xx?56xx?56xx?56a2?a二、填空题: 11、分式,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义12、x2?y22a?1a,2,2x?y.13、9?3aa?9a?6a?9的最简公分母是_____________. ?xa?1a?1ab??_____________.15、??_____________. abba?bb ?a116、?2?_____________. 17、把?0.0000000358用科学记数法表示为______________14、18、如果方程2则m=________ 19、如果x?x?1?5,则x2?x?2?___________ ?3的解是5,m20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x千米/时,则所列方程为___________________三、解答题21、计算:0?11?3??1x?yx??2??4???3?11x?12?3?2?23 232a2?? x?1x?212?21b?aa?b2a2?4??1?0 10baba?b??xy??2y?x?y?x2?2x2x?11?,其中x??2、先化简,再求值2x?13x?1 分式方程一.选择题1.分式方程1?1的解为x?3x?x?1x??1 x??22.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h。
八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。
八年级数学上册第十五章 第3节 分式方程 训练题 (38)一、单选题1.用换元法解方程-=1,如果设=y ,那么原方程可转化为 A .2y 2-y -1=0 B .2y 2+y -1=0C .y 2+y -2=0D .y 2-y+2=02.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x=+ 3.方程2152x x =+-的解是( ) A .1x =-B .5x =C .7x =D .9x = 4.由于新冠肺炎得到了有效控制,省教育厅要求各学校做好复课准备.某校计划对学校60个相同大小的教室进行全面清扫和消毒,在实际进行消毒时,每天消毒的教室数量是原计划的1.2倍,使得完成全部教室消毒的时间缩短了2天.设原计划每天可以清扫、消毒x 个教室,则下列符合题意的方程是( )A .60601.22x x-= B .60602 1.2x x += C .60602 1.2x x += D .606021.2x x += 5.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .20x 1015x 4+=+B .20x 1015x 4-=+C .20x 1015x 4+=-D .20x 1015x 4-=- 6.马虎同学的家距离学校1000米,一天马虎同学从家去上学,出发5分钟后爸爸发现他的数学课本忘记拿了,立刻带上课本去追他,在距离学校100米的地方追上了他,已知爸爸的速度是马虎同学速度的3倍,设马虎同学的速度为x 米/分钟,列方程为( ) A .1000100053x x += B .1000100053x x =+ C .1000100100010053x x --+= D .1000100100010053x x--=+ 7.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:信息一:甲单独完成任务所需时间比乙单独完成任务所需时间多5小时; 信息二:甲4小时完成的工作量与乙3小时完成的工作量相等;信息三:丙的工作效率是甲的工作效率的2倍.如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( ) A .1136小时 B .1132小时 C .1146小时 D .1142小时 8.若方程24022x x x x -=--有增根,则增根可能是( ) A .0或2 B .0或-2 C .2 D .09.若在去分母解分式方程122x k x x -=++时产生增根,则k =( ) A .﹣3B .﹣2C .﹣1D .1 10.方程23x 1x =-的解是 A .3B .2C .1D .0 11.分式方程的根为( ) A .﹣1或3B .﹣1C .3D .1或﹣3 12.关于分式方程的解的情况,下列说法正确的是( )A .有一个解是x=2B .有一个解是x=﹣2C .有两个解是x=2和x=﹣2D .没有解二、填空题13.如果关于x 的分式方程x m m x 1-=+的解是正数,则m 的取值范围为______. 14.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量 本.15.若关于x 的分式方程244-=--x m x x 无解,则m 的值为________. 16.方程04142=----x x x 的解是 . 17.方程4044033x x-= 的解是______. 18.若关于x 的方程4233k x x x-+=--有增根,则k 的值为________. 三、解答题19.六•一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A 品牌服装进价比B 品牌服装每套进价多25元,用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别为多少元;(2)该服装A 品牌每套售价为130元,B 品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.20.(1)化简1xx-÷(x﹣1x).(2)解方程:252112xx x+--=3.21.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?22.解下列分式方程:(1)235110(2)2 123443x xx x x--==----23.每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?24.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数. 25.某医疗器械生产厂家接到A型口罩40万只和B型口罩45万只的订单,该工厂有甲、乙两个车间,甲车间生产A型口罩,乙车间生产B型口罩,己知乙车间每天生产的口罩数量比甲车间每天生产的口罩数量多80%,结果乙车间比甲车间提前3天完成订单任务.求甲车间每天生产A型口罩多少万只?26.书店老板去图书批发市场购买某种图书,第一次用 1200 元购买若干本,按每本 10 元出售,很快售完.第二次购买时,每本书的进价比第一次提高了 20%,他用1500 元所购买的数量比第一次多 10 本.(1)求第一次购买的图书,每本进价多少元?(2)第二次购买的图书,按每本 10 元售出 200 本时,出现滞销,剩下的图书降价后全部售出,要使这两次销售的总利润不低于 2100 元,每本至多降价多少元?(利润=销售收入一进价)【答案与解析】一、单选题1.C解析:C解:原方程可化为:,方程两边都乘最简公分母y,得,把左边的各项移到右边整理得.故选C.2.B解析:B根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.解:根据题意得:2403006x x=+,故选B.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.3.D解析:D根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解.解:方程可化简为()225x x-=+245x x-=+9x=经检验9x=是原方程的解故选D【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键.4.D解析:D设原计划每天可以清扫、消毒x 个教室,则实际每天清扫、消毒1.2x 个教室,根据“实际消毒的天数比原计划少用2天”列出方程即可.设原计划每天可以清扫、消毒x 个教室,则实际每天清扫、消毒1.2x 个教室.根据题意,得606021.2x x+=. 故选D .【点睛】 此题考查了根据实际问题列分式方程,解答此题的关键是读懂题意,找出相等的数量关系.5.A解析:A试题分析:由原计划每天生产x 个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程:20x 1015x 4+=+.故选A . 6.D解析:D设马虎的速度为x 米/分,则爸爸的速度为3x 米/分,由题意得等量关系:马虎走所用时间=马虎爸爸所用时间+5分钟,根据等量关系列出方程即可.解:马虎的速度为x 米/分,则爸爸的速度为3x 米/分,由题意得1000100100010053x x--=+. 故选D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.7.C解析:C设甲单独完成任务需要x 小时,则乙单独完成任务需要(x−5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.设甲单独完成任务需要x 小时,则乙单独完成任务需要(x−5)小时,则435x x =-. 解得x =20经检验x =20是原方程的根,且符合题意. 则丙的工作效率是110. 所以一轮的工作量为:120+115+110=1360.所以4轮后剩余的工作量为:1−4×1360=215. 所以还需要甲、乙分别工作1小时后,丙需要的工作量为:215-120-115=160. 所以丙还需要工作160÷110=16小时. 故一共需要的时间是:3×4+2+16=1416小时. 故选:C .【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.8.C解析:C对分式方程去分母,变为一元一次方程,解出方程的根,然后根据增根的定义解答即可. 分式方程24022x x x x -=--, 最简公分母x (x-2),去分母得:4-x 2=0,整理得:x 2=4,解得:x=±2,把x=2代入x (x-2)=0,则x=2是原分式方程的增根,原分式方程的解为-2.故选C .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.A解析:A先去分母化为整式方程,然后根据方程有增根可知x=-2,代入后即可求出k 的值. 去分母得:x ﹣1=k ,由分式方程有增根,得到x +2=0,即x =﹣2,把x =﹣2代入整式方程得:k =﹣3,故选:A .【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.A解析:A试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:2x=3x ﹣3,解得:x=3,经检验x=3是分式方程的解.故选A .11.C解析:C试题解析:去分母得:3=x2+x ﹣3x ,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C考点:解分式方程.12.D解析:D试题分析:方程两边都乘以最简公分母(x+2)(x ﹣2)把分式方程化为整式方程,求解,然后进行检验即可得解.解:方程两边都乘以(x+2)(x ﹣2)得,(x ﹣2)2﹣16=(x+2)(x ﹣2),解得x=﹣2,检验:当x=﹣2时,(x+2)(x ﹣2)=(﹣2+2)(﹣2﹣2)=0,所以,原分式方程无解.故选D .考点:分式方程的解.二、填空题13.{解析}方程两边同乘以化为整式方程求得x 再根据分式方程解的情况列不等式得出m 的取值范围解:方程两边同乘以得解得分式方程的解是正数且即故答案为:【点睛】本题考查了根据分式方程的解的情况求分式中参数的取 解析:01m <<{解析}方程两边同乘以1x +,化为整式方程,求得x ,再根据分式方程解的情况列不等式得出m 的取值范围. 解:m m 1x x -=+, 方程两边同乘以1x +,得,()m m 1x x -=+, 解得2m 1mx =-,分式方程m m 1x x -=+的解是正数,2m 01m ∴>-且10x +≠,即0m 1<<.故答案为:0m 1<<.【点睛】本题考查了根据分式方程的解的情况,求分式中参数的取值范围,掌握分式方程的解法和分式方程的增根的定义是解决此题的关键.14.20解析:20试题分析:设张明每分钟清点图书x 本,则李强每分钟清点图书(x+10)本,根据张明清点完200本图书所用时间与李强清点完300本图书所用时间相同列方程,解得x 的值,最后进行检验x 值是否符合题意.试题解析:设张明每分钟清点图书x 本,则李强每分钟清点图书(x+10)本,依题意得: 20030010x x =+,解得:x=20,经检验:x=20是原方程的解.答:张明平均每分钟清点图书20本.考点:列分式方程解应用题.15.-4解析:-4由题意得:x-4=0,x=4, ∴x m 2x 44x-=--, x-2x+8=-m,m=-4.16.3 解析:3试题分析:解分式方程的一般步骤:去分母,再去括号,移项,合并同类项,系数化为1;注意最后一步要写检验.04142=----xx x 012=-+x3-=-x3=x经检验:3=x 是原方程的解.考点:解分式方程点评:本题属于基础应用题,只需学生熟练掌握解分式方程的一般步骤,即可完成.17.x=20解析:x=20方程两边同时乘3x ,得120-4x=40,解得:x=20,检验:当x=20时,3x=60≠0,所以x=20是原方程的根,故答案为x=20.18.1解析:1增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,有增根,那么最简公分母x−3=0,所以增根是x =3,把增根代入化为整式方程的方程即可求出k 的值. 方程两边都乘(x−3),得k +2(x−3)=4−x ,∵原方程有增根,∴最简公分母x−3=0,即增根为x =3,把x =3代入整式方程,得k =1,故答案为:1.【点睛】此题考查了分式的增根问题,增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值,掌握知识点是解题关键.三、解答题19.(1)A 、B 两种品牌服装每套进价分别为100元、75元;(2)17套.(1)首先设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A 种服装数量是用750元购进B 种服装数量的2倍.”列出方程,解方程即可;(2)首先设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可. 解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为()25x -元,由题意得:2000750225x x =⨯-, 解得:100x =,经检验:100x =是原分式方程的解,251002575x -=-=,答:A 、B 两种品牌服装每套进价分别为100元、75元;(2)设购进A 品牌的服装a 套,则购进B 品牌服装()24a +套,由题意得: ()()()1301009575241200a a -+-+>,解得:16a >,答:至少购进A 品牌服装的数量是17套.【点睛】本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A 、B 两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.20.(1)11x +;(2)x=﹣12. 【分析】(1)括号内先通分进行分式加减运算,然后再与括号外的分式进行分式的乘除运算即可;(2)两边都乘以2x ﹣1,化为整式方程,解整式方程后进行检验即可得.【详解】(1)原式=211x x x x x ⎛⎫-÷- ⎪⎝⎭=()()111x x x x x+--÷ =()()1·11x x x x x -+- =11x +; (2)两边都乘以2x ﹣1,得:2x ﹣5=3(2x ﹣1),解得:x=﹣12, 检验:当x=﹣12时,2x ﹣1=﹣2≠0, 所以分式方程的解为x=﹣12. 【点睛】本题主要考查分式的混合运算与解分式方程,解题的关键是掌握解分式方程和分式混合运算的步骤.21.(1)甲车单独运完需18趟,乙车单独运完需36趟;(2)单独租用一台车,租用乙车合算.(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运2x 趟,根据总工作效率112得出等式方程求出即可.(2)分别表示出甲、乙两车单独运每一趟所需费用,再根据关键语句“两车各运12趟可完成,需支付运费4800元”可得方程,再解出方程,再分别计算出利用甲或乙所需费用进行比较即可.解:(1)∴甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据题意得出:111x2x12+=,解得:x=18,则2x=36.经检验得出:x=18是原方程的解.答:甲车单独运完需18趟,乙车单独运完需36趟;(2)设甲车每一趟的运费是a元,由题意得:12a+12(a﹣200)=4800,解得:a=300.则乙车每一趟的费用是:300﹣200=100(元),单独租用甲车总费用是:18×300=5400(元),单独租用乙车总费用是:36×100=3600(元).∵3600<5400,故单独租用一台车,租用乙车合算.22.(1)x=1 (2)x=7 11两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)去分母得:2x-3-1+2x=0,移项合并得:4x=4,解得:x=1.(2)去分母得:5x+1=-6x+8, 移项合并得:11x=7, 解得:x=7 11.【点睛】本题考查了分式方程,解题的关键是掌握分式方程的计算方法,根据题目先将分式方程去分母转化为整式方程,在求出整式方程的解得到x的值.23.这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.根据等量关系“1号楼住户的人数比2号楼住户人数的2倍多20人”列出方程并解答.解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.由题意,得460218420 x x⨯=+.解得x=4.6.经检验,x=4.6是原方程的解,且符合题意.答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本.【点睛】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键. 24.45设小明每小时加工零件x 个,则小华每小时加工(x-15)个, 根据时间关系,得 30020015x x =- 解:设小明每小时加工零件x 个,则小华每小时加工(x-15)个由题意,得30020015x x =- 解得:x =45 经检验:x =45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.25.甲车间每天生产A 型口罩5万只.设甲车间每天生产A 型口罩x 万只,则乙车间每天生产B 型口罩(1+80%)x 万只,根据工作时间=工作总量÷工作效率,结合乙车间比甲车间提前3天完成订单任务,即可得出关于x 的分式方程,解之,经检验后即可得出结论.设甲车间每天生产A 型口罩x 万只. 根据题意,得()40453180%x x-=+ 解这个方程得:x=5经检验,x=5是原方程的解,且符合题意答:甲车间每天生产A 型口罩5万只.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)5元(2)2元.(1)设第一次购买的图书的进价为x 元/本,则第二次购买图书的进价为1.2x 元/本,根据数量=总价÷单价结合第二次比第一次多购进10本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一次购进图书的数量,将其+10可求出第二次购进图书的数量,设每本降价y 元,根据利润=销售收入一进价结合两次销售的总利润不低于2100元,即可得出关于y 的一元一次不等式,解之取其中的最大值即可得出结论. (1)设第一次购买的图书的进价为x 元/本,则第二次购买图书的进价为1.2x 元/本, 根据题意得:150********.2x x-= 解得:x =5,经检验,x =5是原分式方程的解,且符合题意.答:第一次购买的图书,每本进价为5元.(2)第一次购进数量为1200÷5=240(本),第二次购进数量为240+10=250(本).设每本降价y元,根据题意得:240×10+200×10+(250−200)(10−y)−1200−1500≥2100,解得:y≤2.答:每本至多降价2元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.。
八年级数学下册《分式方程》练习题
一 ;填空题
1.当x =______时,
15x x
++的值等于12. 2.当x =______时,424x x --的值与54
x x --的值相等. 3.若11x -与11x +互为相反数,则可得方程___________,解得x =_________.
4.若方程
212
x a x +=--的解是最小的正整数,则a 的值为________. 5. 分式方程2131
x x =+的解是_________ 6. 若关于x 的分式方程311x a x x --=-无解,则a = . 二、选择题
7.下列方程中是分式方程的是( )
(A )
(0)x x x ππ=≠ (B)111235x y -= (C)32x x x π=+ (D)11132
x x +--=- 8.解分式方程12133x x x
+-=,去分母后所得的方程是( ) (A)13(21)3x -+= (B)13(21)3x x -+=
(C )13(21)9x x -+= (D)1639x x -+=
9..化分式方程
2213405511x x x
--=---为整式方程时,方程两边必须同乘( )
(A)22(55)(1)(1)x x x --- (B)25(1)(1)x x --
(C )25(1)(1)x x -- (D )5(1)(1)x x +-
10.下列说法中错误的是( )
(A)分式方程的解等于0,就说明这个分式方程无解
(B )解分式方程的基本思路是把分式方程转化为整式方程
(C)检验是解分式方程必不可少的步骤
(D)能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.
11.解分式方程2236111
x x x +=+--,下列说法中错误的是( ) (A)方程两边分式的最简公分母是(1)(1)x x +-
(B)方程两边乘以(1)(1)x x +-,得整式方程2(1)3(1)6x x -++=
(C)解这个整式方程,得1x =
(D) 原方程的解为1x =
12.下列结论中,不正确的是( )
(A )方程231x x =
+的解是2x = (B)方程2311
x x =+-的解是5x =- C)方程2122
x x x =-++的解是4x = (D)方程3233x x x =+--的解是3x = 13.关于x 的方程
211x a
x +=-的解是正数,则a的取值范围是 A .a >-1 B.a>-1且a ≠0
C.a <-1
D .a <-1且a≠-2 三、解答题
14.解方程:(1)
512552x x x +=-- (2) 2373226x x +=++
(3)
2236111
x x x +=+-- (4) 214111x x x +-=--
15若关于x 的方程
233
x k x x =+--无解,求k 的值.
16. 方程2512x x =-的解是 . 17.当m 取 时,方程
323-=--x m x x 会产生增根. 18..已知关于x 的方程
32
2=-+x m x 的解是正数,则m 的取值范围为 . 19.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .
20.甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.
21.轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是_________千米/时.
二、选择题
1.一件工程甲单独做a 小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是 ( )
(A)a +b (B )b a 11
+ (C )b a +1 (D)b
a a
b + 2.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,
可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x
x 上述所列方程,正确的有( )个
A 1 B 2 C 3 D 4
3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
A .8 B.7 C .6 D .5
4.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为 A.
18%)201(400160=++x x B .18%)201(160400160=+-+x x C.18%20160400160=-+x
x D.18%)201(160400400=+-+x x 5.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他
们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
6.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,
农民购买人选产品,政府按原价购买总额的
.....13%
...给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?
(1)设购买电视机x台,依题意填充下列表格:
(2)列出方程(组)并解答.
7. .解方程:
(1)6122x x x +=-+
(2)163104245--+=--x x x x 8. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?
9.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
10.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工
程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
11.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.。