频谱分析仪的几大技术指标
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
频谱分析仪基础知识性能指标及实用技巧频谱分析仪是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。
在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。
本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。
频谱分析仪的种类与应用频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号处理方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。
完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。
即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。
扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。
基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。
新型的频谱分析仪采用数位方式,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。
频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。
频谱分析仪知识一、概述(一)用途频谱分析仪是频域测试领域使用最广泛的一类仪器,可以测量连续波、脉冲及调制等多种信号的频谱,可以测试信号的频率、功率、带宽、调制等参数,增加选件可以进行相位噪声、噪声系数、信道功率、矢量信号、网络参数、故障定位、电磁兼容等测试分析,广泛应用于通信、雷达、导航、频谱管理、信号监测、信息安全等测试领域,还可以用于电子元器件、部件和设备的科研、生产、测试、试验以及计量等。
(二)分类与特点频谱分析仪按其工作原理可分为非实时频谱分析仪和实时频谱分析仪两大类。
●非实时频谱分析仪特点非实时频谱分析仪按工作原理分为扫描调谐型、超外差型等,它们首先对输入信号按时间顺序进行扫描式调谐变频,然后对变频后的信号进行中频滤波、包络检波、视频滤波等处理,最终得到信号的频谱信息。
这种扫描式频谱分析仪在某一瞬间只能“观看”一个频率,逐次“观看”待测信号的全部频率范围,因此,它们只能分析在规定时间内频谱几乎不变化的周期重复信号。
但是,扫本振型超外差式频谱分析仪具有频率范围宽、选择性好、灵敏度高、动态范围大等多项优点,是目前用途最广泛的一类频谱分析仪。
●实时频谱分析仪特点实时频谱分析仪通过FFT变换,能同时观测显示其规定频率范围内所有频率分量,而且保持了两个信号间的时间关系(相位关系),使得它不仅能分析周期信号、随机信号,而且能分析瞬时信号和猝发信号。
实时触发、无缝捕获和多域分析是实时频谱分析仪的几个主要特点。
实时频谱分析仪可以很好地解决现代雷达和通信系统中出现的脉冲压缩、捷变频、直扩、跳频、码分多址和自适应调制等各种复杂信号的测试需求。
频谱分析仪按其结构形式可分为台式、便携式、手持式和模块(VXI、PCI、PXI、LXI等总线形式)等类型产品。
(三)产品国内外现状国内生产频谱分析仪的厂家主要有:中国电子科技集团41所、成都前锋电子、天津德力、北京普源精电、安泰信电子、苏州同创电子等单位。
中国电子科技集团41所拥有台式、便携式、手持式和模块产品,频率范围覆盖3Hz~50GHz(通过外扩频方式可到110GHz)。
频谱仪简述摘要:在各个科学研究领域中,频谱仪是非常重要的一种电子测量工具。
为了更好的使用频谱仪,必须了解其工作原理和其主要的功能,技术参数等等,注意它在实际使用中的的问题。
关键词:主要功能;测量原理;技术指标;最新产品引言频谱仪作为一种测量工具,在电子通信领域被广泛的使用,所以了解频谱仪的主要功能测量原理和其技术指标才能在工作中更好的使用频谱仪,发挥更多的作用。
一、频谱仪介绍频谱分析是指在频域里显示输入信号的频谱特性。
扫描调谐式频谱分析仪大多采用超外差式,其工作原理和超外差式接收机基本类同。
傅里叶变换频谱分析仪首先对时域的信号数字化然后进行快速傅里叶变换,并显示变换后各频谱分量,可分析单次出现信号,可同时获得测量信号的幅度和相位,其频率范围、灵敏度和动态范围都不超过超外差式频谱分析仪。
二、功能介绍1.信道功率测试:测试指定区域内的中频功率之和与区域宽度。
概言之,就是测试指定频段内的信号总功率,或噪声总功率。
2.邻信道功率测试:可测邻道泄露的上下行载波功率强度。
概言之,可以选择多种测试方法包括总功率、参照电平强度、带内测试的方面精确测试载波功率强度。
3. 可测电路或者PCB板上器件和电路间的电磁场强度:频谱仪只可以测试电信号,但是配上天线和不同探头就可以测试场强。
例如DSA815可以测试1.5G以内信号,配上天线就可以测试物联网,RFID等信号,配上近场探头就可以测试电场和磁场的信号。
你也可以自己制作电场、磁场的感应器接到频谱仪上就可以测试了。
4.标记测量:例如MSA-338有两种模式:其一是常规模式,最多显示测试点的7个活动频点和最多3个活动的电平值;另一测试模式叫DELTA测试模式,可以对比2个测试点的频率与电平。
5.峰值查找:分两种,一种为全频峰值查找,一种为范围内查找。
6. 占用带宽测试二、工作原理频谱分析仪架构犹如时域用途的示波器,面板上布建许多功能控制按键,作为系统功能之调整与控制,实时频谱分析仪与扫瞄调谐频谱分析仪。
手持频谱分析仪技术要求1一般要求1.1环境条件●正常工作:0℃~50℃;●允许工作:-10℃~55℃;1.2相对湿度●正常工作:≤85%(20℃);●允许工作:≤90%(无结露);1.3大气压力●86kPa~106kPa;1.4满足国标或行标对电磁兼容的相关要求。
1.5设备要求体积小巧,携带方便,设备及其全部选件重量不超过3Kg。
2工作电源要求●可外接交流电工作,工作电压幅度:100V-240V;频率:50-60Hz;●在无外接交流电情况下由内置电池供电,设备工作状态下其持续供电时间不低于3小时。
3设备接口要求设备至少包括以下物理接口:●射频输入接口:N型接口,阴型,50Ω;●支持mini B USB接口;4手持频谱分析仪功能和指标要求●带有面板操作和显示,图形用户界面友好;●设备要求具备完整的频谱分析功能,具体技术指标要求具备:✓频率范围:9kHz-8GHz;频率分辨率1Hz;✓分辨率(RBW)带宽:最低分辨率不高于10 Hz,最高分辨率不低于3MHz;✓视频分辨率(VBW)带宽:最低视频分辨率不高于1Hz,最高视频分辨率不高于3MHz;✓预放关闭时本底噪声:10M-2GHz时,典型值优于-146 dBm;✓预放开启时本底噪声:10M-1GHz时,典型值优于-165 dBm;✓三阶截获点:300MHz-3.6GHz范围内典型值15 dBm;✓单边带相位噪声(SSB):500MHz(100KHz载波偏移,1Hz测量带宽时)典型值低于-110dBc;✓检波器检波方式至少包括:取样、最大/最小峰值、自动峰值、有效值4种检波方式;✓电平测试精度3.6GHz内达到0.5dB典型值;3.6G-8G范围内,典型值1 dB;✓参考电平设置范围至少满足-100 dBm-+30 dBm;●设备要求具备75欧姆输入阻抗选择及相关配套测试线套装.●设备操作部分指令须支持中文显示.●设备以后必须支持平滑升级频谱瀑布显示功能及遥控指令.●设备必须支持以后平滑升级手持定向天线(满足9K-7.5GHz频率范围),从而自动读取K系数测试辐射信号场强值(dBuV/m).5设备其他要求产品须满足3年保修;。
频谱分析仪基础知识一、频谱分析仪概述频谱分析仪是一种用于测量信号频率和功率的仪器。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
频谱分析仪广泛应用于电子、通信、雷达、声音和医疗等领域。
二、频谱分析仪工作原理频谱分析仪的工作原理是将输入信号通过混频器与本振信号进行混频,得到中频信号,再经过中频放大器放大后送入检波器进行解调,最后通过显示器将频率谱显示出来。
三、频谱分析仪主要技术指标1、频率范围:指频谱分析仪能够测量的频率范围。
2、分辨率带宽:指能够分辨出的最小频率间隔。
3、扫描时间:指从低频到高频一次扫描所需的时间。
4、灵敏度:指能够检测到的最小信号幅度。
5、非线性失真:指由于仪器内部非线性元件所引起的信号失真。
6、动态范围:指能够同时测量到的最大和最小信号幅度。
7、抗干扰能力:指仪器对外部干扰信号的抵抗能力。
四、频谱分析仪使用注意事项1、使用前应检查仪器是否正常,如发现异常应立即停止使用。
2、避免在强电磁场中使用,以免影响测量结果。
3、使用过程中应注意避免信号源与仪器之间的干扰。
4、使用完毕后应关闭仪器,并妥善保管。
五、总结频谱分析仪是电子、通信等领域中非常重要的测量仪器之一。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
在使用频谱分析仪时,应注意检查仪器是否正常、避免在强电磁场中使用、避免信号源与仪器之间的干扰以及使用完毕后应关闭仪器等事项。
了解频谱分析仪的工作原理及主要技术指标,对于正确使用它进行测量和调试具有重要意义。
随着科技的快速发展,频谱分析在电子、通信、航空航天等领域的应用越来越广泛。
频谱分析仪作为频谱分析的核心工具,在科研和工业生产中发挥了重要的作用。
本文将介绍频谱分析原理、频谱分析仪使用技巧,以及如何根据输入的关键词和内容撰写文章。
频谱分析是指将信号分解成不同频率的正弦波成分,并分析这些成分的幅度、相位、频率等特性的一种方法。
频谱分析可以用于测量信号的频率范围、识别信号中的谐波成分、了解信号的调制方式和判断信号的来源等。
频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
HS6288B型噪声频谱分析仪技术说明书一、概述HS6288B型噪声频谱分析仪是一种袖珍式的智能化噪声测量仪器,它集积分、噪声统计、噪声采集等几种功能于一体,主要性能指标符合IEC61672标准和JJG188-2002声级计检定规程对2级声级计的规定要求。
HS6288B具有大屏幕液晶显示、时钟设置、自动测量并存储测量数据等特点,最多可存储500组单组数据、4组整时数据和50组滤波器自动测量数据,并且可以通过RS-232C口把数据传输给HS4784打印或传输给计算机进行处理,在设计上有许多创新,能满足多种测量要求。
本仪器结构紧凑、造型美观、功能多、自动化程度高,可广泛应用于环保、工厂、学校、科研等部门进行噪声测量及分析。
二、主要技术指标1.传声器:1/2英寸驻极体测试电容传声器(HS14423)2.测量范围:35dB~130dB(A、C); 40dB~130dB(Lin)3.频率计权:20Hz~10kHz4.时间计权:F( 快 )、 S( 慢 )5.滤波器:1/1倍频程6.自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。
7.测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。
8.时钟:年、月、日、时、分、秒设置运行。
9.测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。
10.接口:分析仪通过RS-232C将数据传输给HS4784打印或传输给计算机处理。
11.校准:使用HS6020校准至93.8dB。
12.显示器:使用专门为噪声测量仪器设计的LCD显示器。
13.电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。
14.外形尺寸:l×b×h 307mm×80mm×30mm15.重量:386g(不带电池)16.工作环境:温度-10℃~50℃、相对湿度 20%~90%三、结构特征仪器使用塑压成型的上下机壳,内侧喷涂导电漆形成屏蔽层,具有良好的抗电磁干扰性。
频谱分析仪的几大技术指标及解决方案频谱分析仪的几大技术指标频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
频谱分析仪的几大技术指标1、输入频率范围指频谱仪能够正常工作的最大频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决议,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。
2、辨别力带宽指辨别频谱中两个相邻重量之间的最小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处辨别开来的本领,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(仿佛钟形曲线),因此,辨别力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的辨别力带宽。
3、灵敏度指在给定辨别力带宽、显示方式和其他影响因素下,频谱仪显示最小信号电平的本领,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。
4、动态范围指能以规定的精准度测量同时显现在输入端的两个信号之间的最大差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。
5、频率扫描宽度(Span)另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。
通常指频谱仪显示屏幕最左和最右垂直刻度线内所能显示的响应信号的频率范围(频谱宽度),依据测试需要自动调整,或人为设置,扫描宽度表示频谱仪在一次测量(也即一次频率扫描)过程中所显示的频率范围,可以小于或等于输入频率范围,频谱宽度通常又分为三种模式:①全扫频:频谱仪一次扫描它的有效频率范围;②每格扫频:频谱仪一次只扫描一个规定的频率范围,用每格表示的频谱宽度可以更改;③零扫频频率宽度为零,频谱仪不扫频,变成调谐接收机;6、扫描时间(Sweep Time,简作ST)即进行一次全频率范围的扫描、并完成测量所需的时间,也叫分析时间,通常扫描时间越短越好,但为保证测量精度,扫描时间必需适当,与扫描时间相关的因素紧要有频率扫描范围、辨别率带宽、视频滤波,现代频谱仪通常有多档扫描时间可选择,最小扫描时间由测量通道的电路响应时间决议。
频谱分析仪的七大性能指标
频谱分析仪是一种用于在频域中显示信号幅度的仪器。
它在射频领域有“射频万用表”的绰号。
在射频领域,传统的万用表无法有效测量信号的幅度,示波器很难测量高频信号,这是频谱分析仪的优势所在。
下面则对频谱分析仪的七大性能指标进行讲解。
1、输入频率范围
它指的是频谱分析仪可以正常工作的最大频率范围。
该范围的上限和下限由HZ表示,HZ由扫描本地振荡器的频率范围确定。
现代频谱分析仪的频率范围通常从低频段到射频频段,甚至微波频段,如1KHz到4GHz。
这里的频率是指中心频率,它是显示频谱宽度中心的频率。
2、分辨率带宽
光谱中两个相邻分量之间的最小行间距定义为HZ。
它表示光谱仪在指定的低点区分两个幅度相等的信号的能力。
在频谱分析仪的屏幕上看到的测量信号的频谱线实际上是窄带滤波器的动态幅频特性图(类似于钟形曲线)。
因此,分辨率取决于幅频带宽的带宽。
为窄带滤波器的幅度频率特性定义的。
频谱分析仪的几大技术指标
频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
频谱分析仪的几大技术指标
1、输入频率范围
指频谱仪能够正常工作的频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决定,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。
2、分辨力带宽
指分辨频谱中两个相邻分量之间的小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处分辨开来的能力,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(类似钟形曲线),因此,分辨力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的分辨力带宽。
3、灵敏度
指在给定分辨力带宽、显示方式和其他影响因素下,频谱仪显示小信号电平的能力,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。
4、动态范围
指能以规定的准确度测量同时出现在输入端的两个信号之间的差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。
5、频率扫描宽度(Span)
另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。
通常指频谱仪显示屏幕
左和右垂直刻度线内所能显示的响应信号的频率范围(频谱宽度),根据测试需要自动调节,或人为设置,扫描宽度表示频谱仪在一次测量(也即一次频率扫描)过程中所显示的频率范围,可以小于或等于输入频率范围,频谱宽度通常又分为三种模式:
①全扫频:频谱仪一次扫描它的有效频率范围;
②每格扫频:频谱仪一次只扫描一个规定的频率范围,用每格表示的频谱宽度可以改变;
③零扫频频率宽度为零,频谱仪不扫频,变成调谐接收机;
6、扫描时间(SweepTime,简作ST)
即进行一次全频率范围的扫描、并完成测量所需的时间,也叫分析时间,通常扫描时间越短越好,但为保证测量精度,扫描时间必须适当,与扫描时间相关的因素主要有频率扫描范围、分辨率带宽、视频滤波,现代频谱仪通常有多档扫描时间可选择,小扫描时间由测量通道的电路响应时间决定。
7、幅度测量精度
有幅度精度和相对幅度精度之分,均由多方面因素决定,幅度精度是针对满刻度信号的指标,受输入衰减、中频增益、分辨率带宽、刻度逼真度、频响及校准信号本身的精度等的综合影响;相对幅度精度与测量方式有关,在理想情况下仅有频响和校准信号精度两项误差来源,测量精度可以达到非常高,仪器在出厂前要经过校准,各种误差已被分别记录下来并用于对实测数据进行修正,显示出来的幅度精度已有所提高。
标签:
频谱分析仪。