控制器局域网总线—CAN
- 格式:ppt
- 大小:3.06 MB
- 文档页数:37
can总线的国际标准CAN总线,全称为控制器局域网总线(Controller Area Network),是一种用于实时应用的串行通讯协议总线。
由于其高性能、高可靠性、以及灵活的通讯方式,CAN总线在工业自动化、船舶、医疗设备、航空航天等领域得到了广泛应用。
CAN总线的国际标准,具体为ISO 11898系列。
这一系列标准详细规定了CAN 总线的物理层、数据链路层以及应用层的规范。
1.物理层:ISO 11898-1至-3规定了CAN总线的物理层。
这部分标准主要定义了CAN总线的基本电气特性,如位速率、位编码、位同步等。
同时,这些标准还对CAN总线的物理接口,包括连接方式、信号幅度和阻抗等进行了规定。
2.数据链路层:ISO 11898-4至-7规定了CAN总线的数据链路层。
这部分标准主要定义了如何实现节点间的数据传输和错误检测。
标准中规定了如何使用标识符来标识信息,如何发送和接收数据,以及如何处理错误和故障等。
3.应用层:ISO 11898-8至-10规定了CAN总线的应用层。
这部分标准主要定义了如何实现节点间的信息交互和通讯控制。
标准中规定了如何定义通讯协议、如何进行信息交互、如何处理异常情况等。
此外,CAN总线还有几个子标准,包括CAN 2.0、CAN FD(快速数据)等。
这些子标准在原有的CAN总线基础上进行了扩展和改进,以适应更高的数据传输速率和更复杂的应用需求。
总的来说,CAN总线的国际标准为各种不同领域的应用提供了一个通用的通讯平台。
通过遵循这些标准,不同的设备和应用可以方便地实现相互之间的通讯和控制,从而提高了系统的效率和可靠性。
CAN总线:CAN 是控制器局域网总线(CAN,Controller Area Network),是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。
CAN协议由德国的Robert Bosch公司开发,用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。
该协议的健壮性使其用途延伸到其他自动化和工业应用。
CAN 协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。
CAN总线是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电子干扰性,并且能够检测出产生的任何错误。
CAN总线可以应用于汽车电控制系统、电梯控制系统、安全监测系统、医疗仪器、纺织机械、船舶运输等领域。
CAN总线特点:(1) 数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,靠各个节点信息优先级先后顺序来决定通信次序,高优先级节点信息在134μs通信;(2) 多个节点同时发起通信时,优先级低的避让优先级高的,不会对通信线路造成拥塞;(3) 通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);(4) CAN总线传输介质可以是双绞线,同轴电缆。
CAN总线适用于大数据量短距离通信或者长距离小数据量,实时性要求比较高,多主多从或者各个节点平等的现场中使用。
CAN总线在工控领域主要使用低速-容错CAN即ISO11898-3标准,在汽车领域常使用500Kbps的高速CAN。
某进口车型拥有,车身、舒适、多媒体等多个控制网络,其中车身控制使用CAN网络,舒适使用LIN网络,多媒体使用MOST网络,以CAN网为主网,控制发动机、变速箱、ABS等车身安全模块,并将转速、车速、油温等共享至全车,实现汽车智能化控制,如高速时自动锁闭车门,安全气囊弹出时,自动开启车门等功能。
汽车can总线协议汽车CAN总线协议。
汽车CAN总线协议是指控制器局域网(Controller Area Network)总线协议,它是一种串行通信协议,用于在汽车电子系统中传输数据和命令。
CAN总线协议最初由德国公司Bosch开发,现已成为汽车电子系统中最常用的通信协议之一。
CAN总线协议的特点之一是其高度可靠性。
由于汽车电子系统中存在大量的传感器和执行器,因此通信系统必须具备高度的稳定性和可靠性。
CAN总线协议采用差分信号传输方式,能够有效抵抗电磁干扰和噪声,从而保证数据传输的稳定性。
此外,CAN总线协议还采用了消息优先级机制,能够确保重要数据的及时传输,提高了系统的实时性和可靠性。
另一个重要特点是CAN总线协议的高效性。
在汽车电子系统中,存在大量的数据需要传输,包括传感器采集的各种参数、控制器发送的命令等。
CAN总线协议采用了基于标识符的消息过滤和消息缓冲机制,能够有效地管理数据流量,提高了总线的利用率。
此外,CAN总线协议还支持多主机并行通信,能够实现多个控制器之间的快速数据交换,从而提高了系统的整体效率。
除此之外,CAN总线协议还具有良好的扩展性和灵活性。
随着汽车电子系统的不断发展,新的传感器和执行器不断涌现,系统的数据传输需求也在不断增加。
CAN总线协议能够通过简单的硬件和软件配置实现系统的扩展,同时还支持多种通信速率和网络拓扑结构,能够满足不同应用场景的需求。
总的来说,汽车CAN总线协议作为汽车电子系统中的重要通信协议,具有高度可靠性、高效性、扩展性和灵活性等特点。
它为汽车电子系统的设计和开发提供了良好的通信基础,同时也为汽车的安全性、舒适性和性能提供了有力支持。
随着汽车电子技术的不断进步,相信CAN总线协议将在未来发挥更加重要的作用。
CAN总线的查找及连接方法CAN(Controller Area Network,控制器局域网)是一种高度可靠的串行通信协议,在工业和汽车领域被广泛应用。
CAN总线是一组节点的集合,节点之间通过CAN总线进行通信。
下面将介绍CAN总线的查找及连接方法。
一、CAN总线的查找方法1.查询文档资料:在工业和汽车行业常见的设备和车辆中,都会有相关的文档资料,其中会详细介绍CAN总线的位置和连接方式。
可以通过查找设备或车辆的用户手册、维修手册或技术文档等来获取相关信息。
2.可视查找:通过观察设备或车辆的外观,可以找到与CAN总线相关的连接线或插座。
CAN总线通常使用9针或6针的DB9或DB6连接器作为接口。
这些接口通常位于设备或车辆的底部、背面或侧面,并与其他设备或部件连接。
二、CAN总线的连接方法1.物理连接:CAN总线的物理连接主要包括连接线和连接器。
连接线通常是双绞线或屏蔽电缆,其中包含两根线缆:CAN_H和CAN_L。
这两根线缆分别用于传输CAN总线的高电平和低电平信号。
连接器可选择DB9或DB6连接器,根据实际需求进行连接。
2.端子连接:CAN总线的连接需要通过终端电阻来完成。
终端电阻是在CAN总线的两端连接的电阻,用于调整CAN总线的终端阻抗,保证信号的质量。
一般情况下,CAN总线的端口会预留有终端电阻连接位置,用户只需将终端电阻连接至相应位置即可。
3.软件配置:在连接CAN总线后,还需要进行软件配置。
CAN总线通信需要设定波特率、帧格式和标识符等参数。
这些参数通常可以通过相关设备或车辆的控制软件进行设置。
软件配置完成后,即可开始使用CAN总线进行数据通信。
CAN总线系统概述CAN总线全称为“控制器局域网”,是德国搏世公司为解决现代汽车系统中众多电控单元(ECU)之间的数据交换而开发的一种串行通信协议;增加了控制器总线串行系统后,把车上相关控制器都联系起来,实现了各种控制器的相互通信,做到全车信息及时共享。
CAN总线系统不仅减少车上直接线束连接,使整车线束布置紧凑,车辆更安全,同时也确保整车在行驶过程中各个部件之间的匹配达到最佳状态,使故障率大大降低,整体安全性能大大提高。
CAN总线系统优点:•数据共享减少了数据的重复处理,节省成本。
例如。
在传统布线形式中,自动变速器、巡航定速控制等都会用到车速数据,结果这些电控单元内部都有一套车速处理电路,浪费了资源。
采用CAN总线技术以后,模块之间的数据信号可以从总线上直接下载共享,减少了车身布线,进一步节省成本。
采用总线技术,模块之间信号传递仅需要两条信号线,使布线局部化,除掉总线,其它横贯车身的线束都不需要了•具有诊断错误的能力和自动恢复能力,节省维护成本。
适当的CAN系统,分析模块可以对总线系统进行判断,如传感器故障判断、车身故障诊断、各个模块诊断以及线路故障诊断等。
对于内部错误,系统可以通过自身软件进行自动恢复。
•各电控单元对连接的CAN总线实时监控,出现故障时电控单元会存储故障码。
•可使用小型控制单元和小型插头,可节省空间。
•总线利用率高。
数据传输距离较长,可长达10km,数据的传输速度可达到1Mbit/s。
•CAN总线具有抗干扰能力强的优点。
•成本优势。
随着CAN总线技术发展,成本会进一步降低。
•CAN总线符合国际标准,因此可应用于不同型号控制单元间的传输。
CAN总线数据传输系统构成;CAN数据传输系统中每组控制单元内部都有一个CAN控制器,一个CAN收发器。
每组控制器外部连接了两条CAN数据总线。
如图:OBD车载自诊断系统与CAN总线:OBD是英文On-Board Diagnostics的缩写,中文翻译为“车载自动诊断系统”。
can总线的工作原理CAN(Controller Area Network,控制器局域网)总线是一种多节点、分布式的串行通信协议,用于在不同的设备(如汽车电子控制单元)之间进行通信。
其工作原理如下:1. 总线结构:CAN总线包括两个主要组成部分:控制器和节点。
控制器负责管理总线上的通信,而节点则是实际的设备。
2. 通信速率:CAN总线使用串行通信方式,在一个时间周期内传输一位的数据。
通信速率可以根据需求进行调整,常见的有125kbps、250kbps和500kbps等。
3. 帧格式:CAN通信使用帧格式进行数据传输。
一个帧包括标识符、控制位、数据段和校验位等。
标识符用于确定帧的优先级和发送者的身份,控制位用于控制数据的传输方式,数据段用于传输实际的数据,校验位用于检查数据的完整性。
4. 预定位位:CAN总线使用预定位位来确保总线上的节点在发送数据之前处于同一状态。
当节点准备好发送数据时,首先发送一个断开位(Dominant),然后等待总线上所有节点一起发送一个随机位(Arbitration)。
节点在发送随机位时会检测总线上的信号,如果发现有其他节点同时发送了同样的位,则会停止发送,并等待下一个时间周期再次发送。
5. 碰撞检测:如果两个或多个节点同时发送数据,会发生碰撞(Collision)。
CAN总线通过监听总线上的信号来检测碰撞,并使用位优先级来解决冲突。
发送高优先级的节点会优先发送数据,低优先级的节点则会停止发送。
6. 增强型CAN(CAN FD):为了提高数据传输速率,增强型CAN通过增加数据段长度和引入一些新的特性来实现更高的传输速率。
总的来说,CAN总线的工作原理是通过预定位位和碰撞检测来保证多个节点间的通信正常进行,从而实现数据的可靠传输。
简述can控制器工作原理
CAN(Controller Area Network,控制器局域网)是一种在电
子设备中用于通信的高级总线系统。
CAN控制器是实现CAN
通信的核心部分,它负责CAN网络中信息的发送和接收。
CAN控制器工作原理如下:
1. 发送数据:当CAN控制器要发送数据时,它首先检查总线
上的状态。
如果总线空闲,控制器将发送帧信息(包括标识符、数据和其他控制信息)到总线上。
发送完成后,控制器会等待确认信号,如果收到来自其他节点的确认信号,说明数据已成功发送。
2. 接收数据:当总线上有其他节点发送数据时,CAN控制器
会监听总线状态。
如果控制器检测到总线上有数据帧,它会读取并解析该帧的信息,包括标识符、数据和其他控制信息。
然后,控制器将数据帧传递给接收缓冲区,供主机或其他应用程序处理。
3. 错误处理:CAN控制器还负责处理错误。
当控制器检测到
错误时(如总线冲突、位错误或校验错误),它会发送错误信号,并根据错误类型执行相应的错误处理机制,如重传数据或转发错误信息给其他节点。
总之,CAN控制器是CAN通信的关键组件,负责数据的发送、接收和错误处理。
它通过监听总线上的状态,并根据协议规定的规则执行相应的操作,实现可靠的高效通信。
CAN基本知识关键词:can总线can总线协议什么是can什么是can总线什么是CAN ?CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。
最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。
一个由CAN 总线构成的单一网络中,理论上可以挂接无数个节点。
实际应用中,节点数目受网络硬件的电气特性所限制。
例如,当使用Philips P82C250作为CAN收发器时,同一网络中允许挂接110个节点。
CAN 可提供高达1Mbit/s的数据传输速率,这使实时控制变得非常容易。
另外,硬件的错误检定特性也增强了CAN的抗电磁干扰能力。
CAN 是怎样发展起来的?CAN最初出现在80年代末的汽车工业中,由德国Bosch公司最先提出。
当时,由于消费者对于汽车功能的要求越来越多,而这些功能的实现大多是基于电子操作的,这就使得电子装置之间的通讯越来越复杂,同时意味着需要更多的连接信号线。
提出CAN总线的最初动机就是为了解决现代汽车中庞大的电子控制装置之间的通讯,减少不断增加的信号线。
于是,他们设计了一个单一的网络总线,所有的外围器件可以被挂接在该总线上。
1993年,CAN 已成为国际标准ISO11898(高速应用)和ISO11519(低速应用)。
CAN是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。
当信号传输距离达到10Km时,CAN 仍可提供高达50Kbit/s的数据传输速率。
由于CAN总线具有很高的实时性能,因此,CAN已经在汽车工业、航空工业、工业控制、安全防护等领域中得到了广泛应用。
CAN 是怎样工作的?CAN通讯协议主要描述设备之间的信息传递方式。