降低催化汽油烯烃的措施正式版
- 格式:docx
- 大小:37.94 KB
- 文档页数:16
加工工艺石 油 炼 制 与 化 工PETROLEUMPROCESSINGANDPETROCHEMICALS2020年8月 第51卷第8期 收稿日期:2020 03 12;修改稿收到日期:2020 04 14。
作者简介:曹孙辉,高级工程师,长期从事炼油、化工企业生产和技术管理工作。
通讯联系人:谢海峰,E mail:xiehf2@cnooc.com.cn。
QR!"#"S'T,UVCDWXYZ曹孙辉,王 慧,谢海峰(中海油惠州石化有限公司,广东惠州516086)摘 要:为满足国Ⅵ(A)标准车用汽油生产,某公司4.8Mt?a催化裂化装置(MIP工艺)通过优化工艺条件以降低稳定汽油烯烃含量。
结果表明:在第一反应区出口温度提高4℃时,稳定汽油烯烃体积分数下降2.4百分点;在平衡剂微反活性提高2.8个单位时,稳定汽油烯烃体积分数降低4.6百分点;在粗汽油回炼量为15th时,稳定汽油烯烃体积分数降低1.3百分点;在稳定汽油终馏点提高4℃时,稳定汽油烯烃体积分数降低0.3百分点。
降低催化裂化汽油烯烃含量技术措施的方向主要是增强氢转移反应和小分子汽油烯烃选择性裂化反应,都属于二次反应,由此会导致焦炭产率增加。
大型炼油企业应综合考虑汽油调合池组分,以综合效益为目标选择合适的催化裂化稳定汽油烯烃含量。
关键词:稳定汽油 烯烃 氢转移 催化裂化为控制汽油污染物排放,我国加快了车用汽油质量升级的步伐,车用汽油向低硫、低烯烃和低芳烃含量方向发展。
2019年1月1日起,全国范围实施国Ⅵ(A)车用汽油标准,并将于2023年1月1日起执行国Ⅵ(B)车用汽油标准。
国Ⅵ标准对汽油烯烃、芳烃和苯含量提出了更高的要求,国Ⅵ(A)和国Ⅵ(B)车用汽油标准中汽油烯烃体积分数上限分别为18%和15%,芳烃和苯体积分数上限均为35%和0.8%[1 2]。
催化裂化汽油作为炼油厂汽油池中重要的调合组分,必须为达到指标要求而进行相应调整。
裂化汽油中含有烯烃,用什么方法能除去烯烃?
裂化汽油中的烯烃可以通过以下几种方法除去:
1.氢气处理(Hydrogenation):烯烃可以通过和氢气反应进
行加氢反应,将烯烃转化为相应的饱和烃。
这个过程通常
在催化剂的存在下进行,如铂、钯或镍等金属催化剂。
加
氢反应可以降低烯烃的含量,同时提高燃料的抗爆燃性能。
2.氧化处理(Oxidation):烯烃可以通过与氧气反应进行氧
化反应,将烯烃转化为相应的醇、醛或酸。
氧化剂如酸性
过氧化氢(H2O2)、高锰酸钾(KMnO4)、过氧化氢
(H2O2)等可以用来促进烯烃的氧化转化。
3.催化裂化再处理(Catalytic cracking reprocessing):裂化汽
油中的烯烃可以重新经过催化裂化反应,将烯烃转化为其
他所需的烃类。
在裂化再处理过程中,通过适当的催化剂、反应条件和温度,可以选择性地转化烯烃。
需要根据具体情况选择适合的方法。
这些方法可以针对不同的烯烃类型、反应条件和产品要求进行调整和优化。
降低催化裂化汽油硫和烯烃含量的技术途径1. 催化裂化汽油中硫含量的降低1.1 使用硫捕捉剂•步骤:1.在催化裂化汽油中添加硫捕捉剂,如钼酸、钼铜氧化物等。
2.与硫化物反应生成硫酸盐或硫酸铜,并沉淀出来。
3.通过过滤或离心分离,将含有硫的沉淀物从汽油中分离出来。
1.2 催化剂优化•步骤:1.选择合适的催化剂,如镍基、铜基等。
2.调整催化剂的组成和结构,以提高其硫容量和硫选择性。
3.优化反应条件,如温度、压力等,以增加催化剂对硫的捕捉效果。
1.3 原料预处理•步骤:1.在催化裂化之前,对原料进行预处理,如加氢脱硫等。
2.通过加氢作用,将原料中的硫化合物转化为硫化氢,从而减少催化裂化产物中的硫含量。
2. 催化裂化汽油中烯烃含量的降低2.1 使用选择性催化剂•步骤:1.选择具有选择性催化作用的催化剂,如蒙脱石、分子筛等。
2.通过催化剂的特殊结构和孔道,促使烯烃分子在裂化过程中发生骨架重排或异构化反应,生成相对含烯烃较低的产物。
2.2 调节裂化反应条件•步骤:1.调整反应温度和压力等条件,以控制烯烃分子的反应途径。
2.降低裂化温度和压力,有利于生成饱和碳氢化合物,减少烯烃产物的生成。
2.3 增加裂化催化剂与组分•步骤:1.在催化剂中添加合适的组分,如碱金属、稀土金属等。
2.通过与催化剂的相互作用,调节裂化反应中烯烃的生成和分解速率,降低烯烃含量。
2.4 使用催化剂再生技术•步骤:1.当催化剂活性降低时,进行再生处理,以恢复催化剂的活性和选择性。
2.进行焙烧、酸洗等处理,去除催化剂表面的积炭和杂质,提高其催化效果和稳定性。
总结通过使用硫捕捉剂、优化催化剂、原料预处理等方式,可以有效降低催化裂化汽油中的硫含量。
而选择性催化剂、调节反应条件、增加催化剂组分和使用催化剂再生技术等方法,则可以降低汽油中的烯烃含量。
这些技术途径的应用可以提高催化裂化汽油的质量,减少对环境的污染影响。
在实际工业生产中,需要综合考虑成本、效果和工艺等因素,选择合适的技术途径来进行催化裂化汽油的硫和烯烃含量降低。
降低催化裂化汽油硫和烯烃含量的技术途径降低催化裂化汽油硫和烯烃含量是石油化工领域中一个重要的技术挑战。
高含硫和高烯烃的汽油会对环境和健康造成严重影响,因此需要采取有效的技术途径来降低其含量。
本文将介绍几种常用的技术途径,包括催化剂改性、氢气处理和分子筛吸附等方法,以期提供一些有益的参考。
一、催化剂改性催化剂在催化裂化过程中起到关键作用,通过改良催化剂的组成和结构可以有效降低汽油中的硫和烯烃含量。
常用的改良方法包括增强活性组分的含量、提高催化剂的表面积和孔径分布、改善催化剂的抗积炭性能等。
通过这些改良措施,可以提高催化剂对硫化物和烯烃的吸附和转化能力,从而降低汽油中的硫和烯烃含量。
二、氢气处理氢气处理是一种常用的降低汽油硫含量的方法。
在氢气氛围下,硫化物可以与氢气发生反应生成硫化氢,从而降低汽油中的硫含量。
此外,氢气还可以与烯烃发生加氢反应,将其转化为饱和烃,从而降低汽油中的烯烃含量。
氢气处理可以通过调节反应温度、压力和氢气流量等参数来实现对硫和烯烃的选择性加氢,从而达到降低其含量的目的。
三、分子筛吸附分子筛是一种具有特定孔径和吸附性能的固体材料,可以用于汽油中硫和烯烃的吸附和分离。
分子筛吸附技术基于硫化物和烯烃与分子筛表面的相互作用,通过选择性吸附和解吸来实现对硫和烯烃的去除。
在实际应用中,可以通过调节分子筛的孔径和化学组成等因素来实现对不同大小和性质的硫化物和烯烃的选择性吸附,从而降低其在汽油中的含量。
降低催化裂化汽油硫和烯烃含量的技术途径主要包括催化剂改性、氢气处理和分子筛吸附等方法。
通过这些方法的应用,可以有效降低汽油中硫和烯烃的含量,减少对环境和健康的影响。
然而,不同的技术途径在实际应用中存在一定的局限性,需要根据具体情况选择合适的方法进行应用。
未来的研究还需要进一步探索新的催化剂材料和技术,以进一步提高汽油的质量和环境友好性。
降低汽油中的烯烃的方法
以下是降低汽油中烯烃含量的一些方法:
1. 催化重整:使用反应催化剂将烯烃转化为烷烃。
这种方法可以通过在高温下将烯烃与氢气反应来实现。
2. 烷烃化反应:将烯烃与饱和烃反应,使其转化为烷烃。
这种方法通常在高温和高压下进行。
3. 选择性氧化反应:使用氧化剂将烯烃转化为醇或酮等具有较低挥发性的化合物。
4. 加氢处理:将烯烃与氢气反应,将其转化为烷烃。
5. 存储和输送时的处理:通过使用适当的添加剂,如抗氧化剂、抗过度氧化剂等来减少烯烃的聚合和氧化反应。
需要注意的是,降低汽油中的烯烃含量需要专业化的炼油工艺和设备,只有炼油厂可以进行这些操作。
作为个人消费者,我们可以选择购买经过精细处理的汽油来降低对环境的影响。
同时,提倡节约能源、减少汽车行驶里程等方式也有助于减少对烯烃的需求和排放。
缓和重整降低催化裂化汽油的烯烃含量
赵志海
【期刊名称】《炼油技术与工程》
【年(卷),期】2008(038)003
【摘要】提出了缓和重整降低催化裂化汽油烯烃含量的技术路线,将催化裂化汽油切割为轻、重两种馏分,并对其中的重馏分先加氢精制,再进行缓和重整处理,使汽油的辛烷值得到恢复.该技术得到的汽油产品在满足汽油指标要求的条件下,辛烷值没有损失,总液体收率高,氢气能够自给且略有富余.介绍了两种工艺流程方案,均取得比较满意的结果,说明缓和重整降烯烃技术具有操作上的灵活性,通过技术路线及操作条件的凋整,可使炼油企业生产出符合汽油指标要求的汽油产品.
【总页数】4页(P9-12)
【作者】赵志海
【作者单位】中国石油化工股份有限公司石油化工科学研究院,北京市,100083【正文语种】中文
【中图分类】TE6
【相关文献】
1.调整工艺参数降低催化裂化汽油的烯烃含量 [J], 黄富
2.降低催化裂化汽油烯烃含量的技术措施 [J], 李林;王树利
3.降低催化汽油烯烃含量的催化裂化工艺分析 [J], 李丹
4.降低催化裂化汽油烯烃含量技术措施探索 [J], 曹孙辉;王慧;谢海峰
5.降低催化裂化汽油烯烃含量的措施探讨 [J], 张晓国
因版权原因,仅展示原文概要,查看原文内容请购买。
降低催化裂化汽油硫和烯烃含量的技术途径降低催化裂化汽油硫和烯烃含量的技术途径催化裂化汽油是一种重要的石油产品,但其中含有大量的硫和烯烃,这些物质会对环境和人体健康造成危害。
因此,降低催化裂化汽油中硫和烯烃含量是一项重要的技术任务。
以下是几种降低催化裂化汽油中硫和烯烃含量的技术途径。
1. 催化剂改进催化剂是催化裂化汽油中硫和烯烃含量的关键因素。
通过改进催化剂的配方和制备工艺,可以有效地降低催化裂化汽油中硫和烯烃的含量。
例如,采用高活性的催化剂,可以提高反应效率,减少副反应产物的生成,从而降低硫和烯烃的含量。
2. 加氢处理加氢处理是一种常用的降低催化裂化汽油中硫和烯烃含量的方法。
在加氢反应中,硫和烯烃会与氢气反应生成硫化氢和烷烃,从而降低其含量。
加氢处理可以通过催化剂的选择和反应条件的调节来实现。
3. 溶剂抽提溶剂抽提是一种物理方法,通过溶剂的选择和抽提条件的调节,可以有效地降低催化裂化汽油中硫和烯烃的含量。
溶剂抽提的原理是利用不同物质在不同溶剂中的溶解度差异,将目标物质从混合物中分离出来。
溶剂抽提可以与其他方法结合使用,如加氢处理和催化剂改进,以达到更好的降低硫和烯烃含量的效果。
4. 分子筛技术分子筛技术是一种高效的降低催化裂化汽油中硫和烯烃含量的方法。
分子筛是一种具有特殊孔径和结构的材料,可以选择性地吸附和分离不同分子大小和形状的物质。
通过选择合适的分子筛材料和反应条件,可以将催化裂化汽油中的硫和烯烃分离出来,从而降低其含量。
总之,降低催化裂化汽油中硫和烯烃含量是一项重要的技术任务,可以通过催化剂改进、加氢处理、溶剂抽提和分子筛技术等多种途径来实现。
这些技术的应用可以有效地减少环境和人体健康的危害,促进石油工业的可持续发展。
降低催化汽油烯烃的措施何声强(中国石化安庆分公司炼油一部催化装置,安徽安庆246001)摘要催化裂化装置汽油烯烃含量与原料油性质、催化剂性质、反应温度、剂油比、反应时间等因素有关,通过采用新工艺,使用降烯烃催化剂,优化原料油性质等措施,可有效降低催化汽油烯烃含量。
关键词催化汽油烯烃措施烯烃主要来自催化裂化汽油,是不饱和烃类化合物,具有比较好的抗爆性。
但烯烃的稳定性较差,容易堵塞发动机喷嘴,在发动机进气阀及燃烧室中生成沉积物,一方面影响汽油的充分燃烧,加剧汽车尾气的排放污染,另一方面,挥发性较强的烯烃,容易蒸发排放入大气,加速对流层臭氧的生成,形成光化学烟雾。
由于我国车用汽油以催化裂化汽油为主,其中烯烃含量较高,达40%~50%,加工石蜡基原料的装置,烯烃含量更高,达60%以上,因此降低催化裂化汽油烯烃含量是解决车用汽油烯烃含量高的关键。
由于催化裂化装置汽油烯烃含量与原料油性质、催化剂性质、反应温度、剂油比、反应时间等因素有关,因此,解决汽油烯烃含量高的问题也应当从这些角度出发。
本文将对汽油烯烃含量高的原因进行分析,并提出解决措施。
1原因分析1.1原料油性质一般认为,催化裂化主要是正碳离子反应,汽油中烯烃主要来自于原料油中烷烃的裂化。
直链烷烃裂化一次生成一个烯烃和一个正碳离子,正碳离子二次裂化又生成一个烯烃和一个正碳离子。
烷烃分子越大,裂化次数越多,汽油中烯烃含量越高;环烷烃开环裂化生成两个小分子烯烃,但环烷烃也能够氢转移缩合芳构化。
因此,原料中链烷烃含量高,链烷烃分子大时,汽油中烯烃含量较高。
实验数据表明1:氢含量高、K值大的原料油,裂化转化率高,汽油产率高,汽油中烯烃含量也较高。
1.2催化剂活性一般来说,随着分子筛含量增高,氢转移活性也相应增加,因此,产品中的烯烃含量相对减少。
实验数据表明2:在相同的反应条件下随着催化剂平衡活性的提高,汽油中烯烃含量逐渐下降,当平衡剂的微反活性从50提高到60.8时,汽油烯烃由67.46%下降至55.33%。
催化裂化汽油降烯烃技术的现状及发展
近年来,催化裂化技术在汽油行业发挥了重要作用,特别是在降
低汽油的烯烃排放方面愈发受到重视。
催化裂化汽油降烯烃技术被认
为是降低汽油排放烯烃的有效途径之一,它能够有效减少汽油烯烃的
排放量,改善空气质量,实现更加可持续的发展。
催化裂化汽油降烯烃技术的优势在于可以有效分解烯烃,在不增
加平衡劣化产物(BTEX)和氢气的情况下,分解烯烃,有效实现汽油
的净化。
同时,催化裂化技术有利于汽油能效改善和硫含量的降低,
特别是使用微发动机的技术,可以实现有效的降解。
目前,催化裂化汽油技术已经在世界范围内普及,在很多国家和
地区受到了广泛采用,取得了显著的治污效果和经济效应。
在未来,
催化裂化技术也将会有更多发展,更加全面地把握和利用烯烃排放中
大量资源,为社会提供净化汽油和治理污染环境方面更大的支持力量。
In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.降低催化汽油烯烃的措施
正式版
降低催化汽油烯烃的措施正式版
下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。
文档可以直接使用,也可根据实际需要修订后使用。
摘要:催化裂化装置汽油烯烃含量与原料油性质、催化剂性质、反应温度、剂油比、反应时间等因素有关,通过采用新工艺,使用降烯烃催化剂,优化原料油性质等措施,可有效降低催化汽油烯烃含量。
主题词:降低催化汽油烯烃措施
烯烃主要来自催化裂化汽油,是不饱和烃类化合物,具有比较好的抗爆性。
但烯烃的稳定性较差,容易堵塞发动机喷嘴,在发动机进气阀及燃烧室中生成沉积物,一方面影响汽油的充分燃烧,加剧汽
车尾气的排放污染,另一方面,挥发性较强的烯烃,容易蒸发排放入大气,加速对流层臭氧的生成,形成光化学烟雾。
由于我国车用汽油以催化裂化汽油为主,其中烯烃含量较高,达40%~50%,加工石蜡基原料的装置,烯烃含量更高,达60%以上,因此降低催化裂化汽油烯烃含量是解决车用汽油烯烃含量高的关键。
由于催化裂化装置汽油烯烃含量与原料油性质、催化剂性质、反应温度、剂油比、反应时间等因素有关,因此,解决汽油烯烃含量高的问题也应当从这些角度出发。
本文将对汽油烯烃含量高的原因进行分析,并提出解决措施。
1.原因分析
1.1 原料油性质
一般认为,催化裂化主要是正碳离子反应,汽油中烯烃主要来自于原料油中烷烃的裂化。
直链烷烃裂化一次生成一个烯烃和一个正碳离子,正碳离子二次裂化又生成一个烯烃和一个正碳离子。
烷烃分子越大,裂化次数越多,汽油中烯烃含量越高;环烷烃开环裂化生成两个小分子烯烃,但环烷烃也能够氢转移缩合芳构化。
因此,原料中链烷烃含量高,链烷烃分子大时,汽油中烯烃含量较高。
实验数据表明:氢含量高、K值大的原料油,裂化转化率高,汽油产率高,汽油中烯烃含量也较高。
1.2 催化剂活性
一般来说,随着分子筛含量增高,氢转移活性也相应增加,因此,产品中的烯烃含量相对减少。
实验数据表明:在相同的反应条件下随着催化剂平衡活性的提高,汽油中烯烃含量逐渐下降,当平衡剂的微反活性从50提高到60.8时,汽油烯烃由67.46%下降至55.33%。
1.3 反应温度
催化裂化过程中主要发生热裂化和催化裂化反应,催化反应主要有裂化、氢转移、异构化、芳构化等,裂化和芳构化反应是吸热反应,裂化反应生成烯烃,芳构化反应消耗烯烃;氢转移和异构化反应是放热反应,消耗烯烃。
提高反应温度,有利于裂化反应和芳构化反应,不利于氢转
移反应和异构化反应。
此外,随反应温度的提高,热烈化反应速度提高的幅度大于催化裂化反应速度提高的幅度,不利于汽油烯烃含量的降低。
实验数据表明:随反应温度的提高,汽油烯烃含量增加。
1.4 剂油比
增大剂油比对催化裂化反应主要有三个好处:(1)使原料油和催化剂接触更充分,有利于原料中胶质团的裂化。
(2)减少待生与再生剂的炭差,提高催化剂的有效活性中心。
(3)增加单位原料油接触的催化剂活性中心数,相应提高反应速度,有利于裂化、异构化和氢转移等反应。
实验数据表明:随剂油比的提高,转化率提高,液化气产率提高,汽油收率先增加后
略有下降,焦炭产率增加,氢转移反应指数提高,汽油烯烃含量下降,剂油比平均每提高1个单位,FIA法烯烃含量下降2.9%~3.4%(以剂油比4.8为基准)。
1.5 反应时间
催化裂化生成的汽油烯烃进行二次反应需要一定时间,延长反应时间是汽油烯烃组分氢转移反应的必要条件。
氢转移反应的速度一般较快,因此适当延长反应时间即可满足要求。
实验数据表明:增加提升管反应时间,液化气、汽油产率提高,干气和焦炭产率提高。
汽油辛烷值变化不大,汽油烯烃含量下降,芳烃含量提高,链烷烃和环烷烃含量几乎不变。
2.降低汽油烯烃的措施
2.1 采用新工艺
2.1.1 MIP工艺
此工艺采用新型串联提升管反应器,将反应器分成两个反应区,优化催化裂化的一次反应和二次反应,第一反应区以一次裂化反应为主采用较高的反应温度、较大的剂油比和较短的停留时间,裂解较重的原料油并生成较多的烯烃,第二反应区通过扩径和注入冷却介质等措施,降低油气和催化剂的流速及该区的反应温度,达到抑制二次裂化反应,增加氢转移和异构化反应,提高催化汽油中的异构烃和芳烃,降低烯烃含量。
20xx年,安庆分公司120×104t/a催化裂化装置MIP改造,投用后,汽油烯烃含量由45(V)%左右降至35
(V)%左右,有效解决了催化汽油烯烃含量高的问题。
2.1.2 MGD工艺
此工艺是结合重油催化裂化的反应特点,将催化裂化平行顺序反应和组分选择性裂化的机理,汽油裂化的反应规律以及反应深度控制原理有机结合在一起,对催化裂化反应进行精细控制,它将提升管反应器由下而上设为4个反应区:汽油反应区、重油反应区、轻质原料反应区和总反应深度控制区。
粗汽油(或稳定汽油)从MGD喷嘴进入提升管反应器,通过调节新鲜进料的反应环境和苛刻度,使回炼汽油中低碳烯烃裂化和部分烯烃异构化,可在降低汽油烯烃含量的同时增产柴油和液态
烃,提高汽油的辛烷值。
2.1.3 FDFCC工艺
此工艺采用双提升管反应器,实现工艺操作的可选择性,为汽油理想二次反应提供独立的改质空间和充分的反应时间,从而实现降低催化裂化汽油的烯烃和硫含量,改善柴汽比,提高催化汽油的辛烷值,同时增产液化气和丙烯的目的。
工业实验数据表明,采用该项工艺技术与常规催化裂化工艺相比,催化汽油烯烃含量降低了20~30个体积百分点。
如长岭分公司1套120×104t/a同轴式常规重油催化裂化装置于20xx年5月改造为FDFCC双提升管催化裂化装置,改造后,经过一段时间的摸索、调整和完善,FDFCC双提升管新工艺
技术的特长得到了充分发挥,装置的液态烃及丙烯收率明显提高,汽油烯烃含量大幅下降。
2.2 结合新工艺,采用降烯烃催化剂
2.2.1 安庆分公司120×104t/a 催化MIP工艺改造后开工初期阶段,汽油中的烯烃含量在35~42(V)%范围内波动,为了满足车用汽油新标准,装置在20xx年3月21日至20xx年5月19日试用了长岭炼油厂催化剂厂生产的降烯烃COR-C型催化剂,在原料油性质、处理量、掺渣率相近的情况下,汽油烯烃含量由40.9%降至35.4%,下降了5.5个百分点,说明COR-C 催化剂具有一定的氢转移活性,见表1。
表1 加COR-C型催化剂前后汽油中烯烃含量对照表
加COR-C型催化剂前汽油中的烯烃含量, % (平均值) 加COR-C型催化剂后
汽油中的烯烃含量, %(平均值)
2月3月13~ 3月21日3月22~4月21日(焦蜡抽余油进催化期间)4月22~ 4月29日4月30~5月19日
40.2 40.9 29.2 35.5 35.4
COR-C型催化剂实际降低烯烃含量为40.9%-35.4%=5.5%
从表1可以看出,投用该剂后较投用前实际能降低烯烃汽油中的烯烃含量为5.5个百分点。
2.2.2 结合MIP工艺的自身特点
和在安庆分公司催化装置的实际应用情况,北京石科院研制出与该工艺配套的专用催化剂CRMI-2,并于2004底至20xx年初在催化装置进行试用,在原料油性质、处理量、掺渣率相近的情况下,汽油中的烯烃含量由试用前的35%左右降至30%以下,降烯烃效果明显,如图1所示。
图1 CRMI-2加入前后稳汽烯烃变化趋势图
2.3 优化原料油性质
原料油(如焦化蜡油、减压渣油)加氢预处理可显著改善裂化性能,脱除杂质,减少生焦,降低再生温度和催化剂减活效应,有利于增加剂油比和保持催化剂活性,增加催化裂化反应尤其是氢转移反
应,降低汽油中烯烃含量。
2.4 其他措施
2.4.1 由于汽油烯烃主要集中在C5至C8组分中,C9以后的组分烯烃很少,因此,汽油干点提高,相应的烯烃含量降低。
汽油干点降低约20℃,相应的汽油烯烃含量增加3.2%~6.1%。
实际操作中,适当提高分馏塔顶温,降低顶温,降低顶循流量,以提高汽油干点,有利于增加汽油收率,降低汽油烯烃含量。
2.4.2 吸收稳定系统操作中,适当提高稳定塔底和塔顶温度,使汽油深度稳定,降低汽油中气含量,特别是降低C=4含量,有利于汽油中轻烯烃含量的下降。
3.结论
催化装置汽油烯烃含量与原料油性质,催化剂性质,反应温度,剂油比,反应时间等因素有关,通过采用新工艺,使用降烯烃催化剂,优化原料油性质等措施可有效降低汽油烯烃含量。
参考文献:
1 《催化裂化装置技术问答》中国石化出版社 1997年3月北京第二次印刷
2 《催化裂化装置培训教程(技师、高级技师)》化学工业出版社 20xx年1月第1版
3 《催化裂化装置工艺技术规
程》安庆分公司 20xx年7月
4 徐思伟范宜俊催化裂化MIP工艺专用剂CRMI-2使用初步评价
5 徐思伟 COR-C型降烯烃催化剂的工业应用总结
——此位置可填写公司或团队名字——。