线性代数-线代模拟题(III)
- 格式:docx
- 大小:225.94 KB
- 文档页数:8
考研数学三(线性代数)模拟试卷120(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于( ).A.A+BB.A-1+B-1C.A(A+B)-1BD.(A+B)-1正确答案:C解析:A(A+B)-1B(A-1+B-1)=[(A+B)A-1]-1(BA-1+E)=(BA-1+E)-1(BA-1+E)=E,选(C).知识模块:线性代数2.设则m,n可取( ).A.m=3,n=2B.m=3,n=5C.m=2,n=3D.m=2,n=2正确答案:B解析:P1mAP2n=经过了A的第1,2两行对调与第1,3两列对调,P1==E13,且Eij2=E,P1mAP2n=P1AP2,则m=3,n=5,选(B).知识模块:线性代数3.设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm ≠0,则( ).A.m>nB.m=nC.存在m阶可逆阵P,使得AP=D.若AB=O,则B=O正确答案:D解析:因为对任意不全为零的常数k1,k2,…,km,有k1α1+k2α2+…+kmαm≠0,所以向量组α1,α2,…,αm线性无关,即方程组AX=0只有零解,故若AB=O,则B=O,选(D).知识模块:线性代数4.设α1,α2,…,αM与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).A.两个向量组等价B.r(α1,α2,…,αm,β1,β2,…,βs)=r.C.若向量组α1,α1…,αm可由向量组β1,β2,…,βs线性表示,则两向量组等价D.两向量组构成的矩阵等价正确答案:C解析:不妨设向量组α1,α2,…,αm的极大线性无关组为α1,α2,…,αr,向量组β1,β2,…,βs的极大线性无关组为β1,β2,…,βr,若α1,α2,…,αm可由β1,β2,…,βs线性表示,则α1,α2,…,αr,也可由β1,β2,…,βαr,线性表示,若β1,β2,…,βr,不可由α1,α2,…,αr,线性表示,则β1,β2,…,βs也不可由α1,α2,…,αm线性表示,所以两向量组秩不等,矛盾,选(C).知识模块:线性代数5.设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是( ).A.r(A)=mB.r(A)=nC.A为可逆矩阵D.r(A)=n且b可由A的列向量组线性表示正确答案:D解析:方程组AX=b有解的充分必要条件是b可由矩阵A的列向量组线性表示,在方程组AX=b有解的情形下,其有唯一解的充分必要条件是r(A)=n,选(D).知识模块:线性代数6.设A为n阶矩阵,下列结论正确的是( ).A.矩阵A的秩与矩阵A的非零特征值的个数相等B.若A~B,则矩阵A与矩阵B相似于同一对角阵C.若r(A)=r<n,则A经过有限次初等行变换可化为D.若矩阵A可对角化,则A的秩与其非零特征值的个数相等正确答案:D解析:(A)不对,如A=,A的两个特征值都是0,但r(A)=1;(B)不对,因为A~B不一定保证A,B可以对角化;(C)不对,如A=,A经过有限次行变换化为,经过行变换不能化为;因为A可以对角化,所以存在可逆矩阵P,使得P -1AP=,于是r(A)=,故选(D).知识模块:线性代数填空题7.设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=______.正确答案:kn(n-1)an-1解析:因为(kA)*=kn-1A*,且|A*|=|A|n-1,所以|(kA)*|=|kn-1A*|=kn(n-1)|A|n-1=kn(n-1)an-1.知识模块:线性代数8.设A=,B≠O为三阶矩阵,且BA=O,则r(B)=______.正确答案:1解析:BA=Or(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠O,所以r(B)=1.知识模块:线性代数9.设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.正确答案:解析:P-1(A-1+2E)P-1A-1P+2E,而P-1A-1P=,所以P-1(A-1+2E)P=知识模块:线性代数10.设A=有三个线性无关的特征向量,则a=______.正确答案:0解析:由|λE-A|=0得A的特征值为λ1=-2,λ2=λ3=6.因为A 有三个线性无关的特征向量,所以A可以对角化,从而r(6E-A)=1,解得a=0.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(线性代数)模拟试卷108(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A,B均为n阶对称矩阵,则不正确的是()A.A+B是对称矩阵B.AB是对称矩阵C.A*+B*是对称矩阵D.A一2B是对称矩阵正确答案:B解析:由题设条件,则(A+B)T=AT+BT=A+B(kB)T=kBT=kB,所以有(A一2B)T=AT一(2BT)=A一2B,从而选项A、D是正确的。
首先来证明(A*)T=(AT)*,即只需证明等式两边(i,j)位置元素相等。
(A*)T在位置(i,j)的元素等于A*在(j,i)位置的元素,且为元素aij的代数余子式Aij。
而矩阵(AT)*在(i,j)位置的元素等于AT的(j,i)位置的元素的代数余子式,因A为对称矩阵,即aji=aij,则该元素仍为元素aij的代数余子式Aij。
从而(A*)T=(AT)*=A*,故A*为对称矩阵,同理,B*也为对称矩阵。
结合选项A可知选项C是正确的。
因为(AB)T=BTAT=BA,从而选项B不正确。
注意:当A、B均为对称矩阵时,AB为对称矩阵的充要条件是AB=BA。
所以应选B。
知识模块:线性代数2.A.P1P3AB.P2P3AC.AP3P2D.AP1P3正确答案:B解析:矩阵A作两次初等行变换可得到矩阵B,而AP3P2,AP1P3描述的是矩阵A作列变换,故应排除。
该变换或者把矩阵A第一行的2倍加至第三行后,再第一、二两行互换可得到B;或者把矩阵A的第一、二两行互换后,再把第二行的2倍加至第三行也可得到B。
而P2P3,A正是后者,所以应选B。
知识模块:线性代数3.设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关正确答案:A解析:记B=(α1,α2,…,αs),则(Aα1,Aα2,…,Aαs)=AB。
考研数学三线性代数(向量)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,0,0)T;④(1,0,3,1)T,(一1,3,0,一2)T,(2,1,7,2)T,(4,2,14,5)T。
则下列结论正确的是( ) A.线性相关的向量组为①④;线性无关的向量组为②③。
B.线性相关的向量组为③④;线性无关的向量组为①②。
C.线性相关的向量组为①②;线性无关的向量组为③④。
D.线性相关的向量组为①③④;线性无关的向量组为②。
正确答案:D解析:向量组①是四个三维向量,从而线性相关,可排除B。
由于(1,0,0)T,(0,2,0)T,(0,0,3)T线性无关,添上两个分量就可得向量组②,故向量组②线性无关。
所以应排除C。
向量组③中前两个向量之差与最后一个向量对应分量成比例,于是α1,α2,α4线性相关,那么添加α3后,向量组③必线性相关。
应排除A。
由排除法,本题应选D。
知识模块:向量2.设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )A.若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs≠0,则α1,α2,…,αs线性无关。
B.若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs=0。
C.α1,α2,…,αs线性无关的充分必要条件是此向量组的秩为s。
D.α1,α2,…,αs线性无关的必要条件是其中任意两个向量线性无关。
正确答案:B解析:对于选项A,因为齐次线性方程组x1α1+x2α2+…+xsαs=0只有零解,故α1,α2,…,αs线性无关,A选项正确。
考研数学三(线性代数)模拟试卷99(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是n阶非零矩阵,E是n阶单位矩阵,若A3=0,则( ).A.E一A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E一A可逆,E+A不可逆正确答案:C 涉及知识点:线性代数2.A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于( ).A.B.C.D.正确答案:D解析:用排除法由于A2+2A=0,A的特征值满足λ2+2λ=0,因此只可能是0或一2.于是和它相似的矩阵的特征值也只可能是0或一2.AB中的矩阵的特征值中都有2因此不可能相似于A,都可排除.又r(A)=3,和它相似的矩阵的秩也应该是3,C中矩阵的秩为2,也可排除.知识模块:线性代数填空题3.设3阶矩阵A的特征值为2,3,λ.如果|2A|=一48,则λ=________.正确答案:一1解析:|2A|=8|A|,得|A|=一6.又|A|=2×3×λ.得λ=一1.知识模块:线性代数4.A是3阶矩阵,特征值为1,2,2.则|4A-1一E|=__________.正确答案:3解析:A一1的特征值为1,1/2,1/2.4A一1一E的特征值为3,1,1,|4A一1一E|=3 知识模块:线性代数5.A是3阶矩阵,它的特征值互不相等,并且|A|=0,则r(A)=________.正确答案:2解析:A的特征值互不相等,因此相似于对角矩阵,并且对角线上的元素就是A的特征值,为3个互不相等数.其中有一个为0(因为|A=0),则r(A)=2.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
6.已知3阶矩阵A满足|A+E|=|A—E|=|4E一2A|=0,求|A3一5A2|.正确答案:条件说明一1,1,2是A的特征值.得出A3-5A2的3个特征值:记f(x)=x3-5x2,则A3-5A2的3个特征值为f(一1) =一6,f(1)=一4,f(2)=一12.|A3-5A2|=(一4)×(一6)×(一12)=一288.涉及知识点:线性代数7.设α=(1,2,一1)T,β=(一2,1,一2)T,A=E一αβT.求|A2-2A+2E|.正确答案:用特征值计算.βTα=2,于是αβT的特征值为0,0,2,从而A的特征值为1,1,一1,A2-2A+2E的特征值为1,1,5.于是|A2-2A+2E|=1×1×5=5.涉及知识点:线性代数8.设α=(1,0,一1)T,A=ααT,求|aE—An|.正确答案:利用特征值计算.ααT的特征值为0,0,2.An的特征值为0,0,2n.aE—An的特征值为g,g,a一2n.|aE—An|=a2(a—2n).涉及知识点:线性代数9.计算正确答案:记矩阵则所求为|A|.A=B+cE,而于是B的特征值为0,0,0,ab+a2b2+a3b3+a4b4从而A的特征值为c,c,c,a1b1+a2b2+a3b3+a4b4+c.则|A|=c3(a1b1+a2b2+a3b3+a4b4+c) 涉及知识点:线性代数10.已知n阶矩阵A满足A3=E.(1)证明A2—2A一3E可逆.(2)证明A2+A+2E可逆.正确答案:通过特征值来证明,矩阵可逆的充要条件是0不是它的特征值.由于A3=E,A的特征值都满足λ3=1.(1)A2一2A一3E=(A一3E)(A+E),3和一1都不满足λ3=1,因此都不是A的特征值.于是(A一3E)和(A+E)都可逆,从而A2一2A一3E可逆.(2)设A的全体特征值为λ1,λ2,…,λn,则A2+A+2E 的特征值λi2+λi+2,i=1,2,….n.由于λi3=1,λi或者为1,或者满足λi2+λi+1=0.于是λi2+λi+2或者为4,或者为1,总之都不是0.因此A2+A+2E 可逆.涉及知识点:线性代数11.设n阶矩阵A满足A4+2A3一5A2+2A+5E=0.证明A一2E可逆.正确答案:由定理5.1的推论的①,A一2E可逆2不是A的特征值.因为A4+2A3一5A2+2A+5E=0,所以A的特征值都是方程λ4+2λ3一5λ2+2λ+5=0.的根.显然2不是这个方程的根,从而不是A的特征值.涉及知识点:线性代数12.设B=U一1A*U.求B+2E的特征值和特征向量.正确答案:本题可先求出B+2E(先求A*,再求B,再求B+2E),然后求它的特征值与特征向量,这样做计算量大.一个简捷的解法是利用特征值与特征向量的性质来计算.①求特征值.A=C+E,其中则c的特征值为0,0,6,从而A 的特征值为1,1,7.|A|=1×|×7=7.根据定理5.5的②,A*的特征值为7,7,1.B~A*,从而B和A*特征值完全一样,也是7,7,1.用定理5.5的①,B+2E的特征值为9,9,3.②求特征向量.A*与A的对应特征值(指1与7,7与1)的特征向量一样,B+2E与B对应特征值(指7与9,1与3)的特征向量也一样,根据定理5.8的④,A*η=λη298λU一1η=λU一1η.于是可以由A的特征向量来得到B+2E的特征向量A的属于1的特征向量就是A*的属于7的特征向量,用U-1左乘后就是B的属于7的特征向量,也就是B+2E 的属于9的特征向量.A的属于1的特征向量,即(A—E)X=0的非零解.求得(A —E)X=0的基础解系η1=(1,一1,0)T,η2=(1,0,一1)T.于是A的属于1的特征向量的为c2η1+c2η2,c2,c2不全为0.求出ξ=U一1η1=(一1,1,0)T,ξ2=U一1η2=(1,1,一1)T,则B+2E的属于9的特征向量为c1ξ1+c2ξ2,c2,c2不全为0.同理,A的属于7的特征向量用U一1左乘后就是B+2E 的属于3的特征向量.求出A的属于7的特征向量(即(A一7E)X=0的非零解)为cη,c不为0,其中η=(1,1,1)T,记ξ=U一1η=(0,1,1)T,则B+2E的属于9的特征向量为cξ,c≠0.涉及知识点:线性代数13.设A和B都是可相似对角化的n阶矩阵,证明A和B相似A和B的特征值完全相同.正确答案:“→”是相似的重要性质.“←”设A和B的特征值完全相同.记全部特征值为λ1,λ2,…,λn,构造对角矩阵A,使得其对角线是的元素依次λ1,λ2,…,λn.由于A和B都是可相似对角化,有A一A,和B~A,再从相似关系的传递性,得到A—B.涉及知识点:线性代数14.已知3阶矩阵有一个二重特征值,求a,并讨论A是否相似于对角矩阵.正确答案:(1)求a.A的特征多项式为要使得它有二重根,有两种可能的情况:①2是二重根,即2是λ2一8λ+18+3a的根,即4一16+1 8+3a=0,求出a=一2,此时三个特征值为2,2,6.②2是一重根,则λ2一8λ+18+3a有二重根,λ2一8λ+18+3a=(x一4)2,求出a=一2/3.此时三个特征值为2,4,4.(2)讨论A是否相似于对角化矩阵.①当a=一2时,对二重特征值2,考察3一r(A 一2E)是否为2 7即r(A一2E)是否为1②当a=一2/3时,对二二重特征值4,考察3一r(A一4E)是否为2?即r(A一4E)是否为1 涉及知识点:线性代数设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.15.求A的特征值.正确答案:用矩阵分解:A(α1,α2,α3)=(α1+2α2+2α3,2α1+α2+2α3,2α1+2α2+α3)=(α1,α2,α3)B,这里从α1,α2,α3线性无关的条件知道,(α1,α2,α3)是可逆矩阵.于是A相似于B.的秩为1,其特征值为0,0,6.得B的征值为一1,一1,5.则A的征值也为一1,一1,5.涉及知识点:线性代数16.判断A是否相似于对角矩阵?正确答案:B是实对称矩阵,一定相似于对角矩阵,由相似的传递性,A也相似于对角矩阵.涉及知识点:线性代数17.求A的特征值.判断a,b取什么值时A相似于对角矩阵?正确答案:A的特征值0,5,b.①如果b≠0和5,则A的特征值两两不同,A相似于对角矩阵.②如果b=0,则A的特征值0,0,5.此时A相似于对角矩阵特征值0的重数2=3一r(A)r(A)=1a=0.于是a=0且b=0时A相似于对角矩阵;a≠0且b=0时A不相似于对角矩阵;③如果b=5,则A的特征值0,5,5.此时而r(A一5E)=2,特征值5的重数2>3一r(A一5E),A不相似于对角矩阵.涉及知识点:线性代数已知18.求x,y正确答案:A与B相似,从而有相同的特征值2,2,y.2是二重特征值,于是A与B相似从而tr(A)=tr(B),于是1+4+5=2+2+y.得y=6.涉及知识点:线性代数19.求作可逆矩阵U,使得U一1A U=B.正确答案:求属于2的两个线性无关的特征向量:即求(A一2E)X=0的基础解系:得(A一2E)X=0的同解方程组x1=一x2+x3,得基础解系η1=(1,一1,0)T,η2=(1,0,1)T.求属于6的一个特征向量:即求(A一6E)X=0的一个非零解:得(A一6E)X=0的同解方程组得解η3=(1,一2,3)T.令U=(η1,η2,η3),则涉及知识点:线性代数20.问k为何值时A可相似对角化?正确答案:求A的特征值:于是A的特征值为1(一重)和一1(二重).要使A可对角化,只需看特征值一1.要满足3一r(a+E)=2,即r(A+E)=1,得k=0,涉及知识点:线性代数21.此时作可逆矩阵U,使得U一1A U是对角矩阵.正确答案:求属于一1的两个线性无关的特征向量,即求(A+E)X=0的基础解系:得(A+E)X=0的同解方程组2x1+x2一x3=0得基础解系η1=(1,0,2)T,η2=(0,1,1)T.求属于1的一个特征向量,即求(A—E)X=0的一个非零解:得(A—E)X=0的同解方程组得解η3=(1,0,1)T.令U=(η1,η2,η3),则涉及知识点:线性代数已知a是一个实数.22.求作可逆矩阵U,使得U一1AU是对角矩阵.正确答案:先求A的特征值.A的特征值为a+1(二重)和a—2(一重).求属于a+1的两个线性无关的特征向量,即求[A一(a+1)E]X=0的基础解系:得[A一(a+1)E]X=0的同解方程组x1=x2+x3,得基础解系η1=(1,1,0)T,η2=(1,0,1)T.求属于a一2的一个特征向量,即求[A一(a一2)E]X=0的一个非零解:得[A一(a一2)E]X=0的同解方程组得解η3=(一1,1,1)T.令U=(η1,η2,η3),则涉及知识点:线性代数23.计算|A—E|.正确答案:A—E的特征值为a(二重)和a一3,于是|A—E|=a(a—3).涉及知识点:线性代数24.设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.正确答案:A的特征值为0,0,…,0,βTα.由相似对角化的判别法则二,只用对重数大于1的特征值0,检查其重数是否等于n—r(A—0E)=n一r(A)=n—1.当βTα=0时,0的重数是n,A不能相似对角化.当βTα≠0时,0的重数是n—1,A可相似对角化.涉及知识点:线性代数设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.25.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.正确答案:已经用矩阵分解求出涉及知识点:线性代数26.求A的特征值.正确答案:由于α1,α2,α3线性无关,(α1,α2,α3)是可逆矩阵,并且(α1,α2,α3)一1A(α1,α2,α3)=B,因此A和B相似,特征值相同.B的特征值为1,1,4.A的特征值也为1,1,4 涉及知识点:线性代数27.求作可逆矩阵P,使得P一1AP为对角矩阵.正确答案:先把B对角化.求出B的属于1的两个无关的特征向量(1,一1,0)T,(0,2,一1)T;求出B的属于4的一个特征向量(0,1,1)T.构造矩阵令P=(α1,α2,α3)D=(α1一α2,2α2一α3,α2+α3),则涉及知识点:线性代数28.已知n阶矩阵A满足(A—aE)(A一bE)=0,其中a≠b,证明A可对角化.正确答案:首先证明A的特征值只能是a或b.设A是A的特征值,则(λ—a)(λ一b)=0,即λ=a或λ=b.如果6不是A的特征值,则A一6E可逆,于是由(A一aE)(A一bE)=0推出A—aE=0,即A=aE是对角矩阵.如果b是A的特征值,则|A一bE|=0.设η1,η2,…,ηt是齐次方程组(A一6E)X=0的一个基础解系(这里t=n一r(A一bE)),它们都是属于b的特征向量.取A一bE 的列向量组的一个最大无关组γ1,γ2,…,γk,这里k=r(A一6E).则γ1,γ2,…,γk是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ1,γ2,…,γk;η1,η2,…,ηt,因此A可对角化.涉及知识点:线性代数29.A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A 一6E)=0.(2)r(A—aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.正确答案:不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE)(1)→(2)用关于矩阵的秩的性质,由(A一aE)(A一bE)=0.得到:r(A一aE)+r(A一bE)≤n,r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n,从而r(A 一aE)+r(A一bE)=n.(2)→(3)记ka,kb分别是a,b的重数,则有ka≥n—r(A 一aE)①kb≥n一r(A一bk)②两式相加得n≥ka+kb≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为”=”,从而①和②都是等式,并且ka+kb=n.ka+kb=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0.①和②都是等式,说明A相似于对角矩阵.(3)→(1)4的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有cz和6.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A—aE)(A一bE)=0.涉及知识点:线性代数30.构造正交矩阵Q.使得QTAQ是对角矩阵正确答案:(1)先求特征值A的特征值为0,2,6.再求单位正交特征向量组属于0的特征向量是齐次方程组AX=0的非零解,得AX=0的同解方程组求得一个非零解为(1,1,一1)T,单位化得属于2的特征向量是齐次方程组(A一2E)X=0的非零解,得AX=0的同解方程组求得一个非零解为(1,一1,0)T,单位化得属于6的特征向量是齐次方程组(A一6E)X=0的非零解,得AX=0的同解方程组求得一个非零解为(1,1,2)T,单位化得作正交矩阵Q=(γ1,γ2,γ3),则QTAQ=Q一1AQ=(2)先求特征值A的特征值为1,1,10.再求单位正交特征向量组属于1的特征向量是齐次方程组(A—E)X=0的非零解,得(A—E)X=0的同解方程组x1+2x2—2x4=0,显然α1=(0,1,1)T是一个解.第2个解取为α2=(c,一1,1)T(保证了与α1的正交性!),代入方程求出c=4,即α2=(4,一1,1)T.再求出属于10的特征向量是齐次方程组(A一10E)X=0的非零解(1,2,一2)T,令γ3=α3/‖α3‖=(1,2,一2)T/3.作正交矩阵Q=(γ1,γ2,γ3).则涉及知识点:线性代数设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解.31.求A的特征值和特征向量.正确答案:条件说明A(1,1,1)T=(3,3,3)T,即α0(1,1,1)T是A的特征向量,特征值为3.又α1,α2都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α1,α2线性无关,特征值0的重数大于1.于是A的特征值为3,0,0.属于3的特征向量:cα0,c≠0.属于0的特征向量:c1α1+c2α2 c1,c2不都为0.涉及知识点:线性代数32.求作正交矩阵Q和对角矩阵A,使得QTAQ=A.正确答案:将α0单位化,得对α1,α2作施密特正交化,得作Q=(η0,η1,η2),则Q是正交矩阵,并且涉及知识点:线性代数33.求A及[A一(3/2)E]6.正确答案:建立矩阵方程A(α0,α1,α2)=(3α0,0,0),用初等变换法求解:得由得于是[A一(3/2)E]6=(3/2)6E.涉及知识点:线性代数34.正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.正确答案:Q-1AQ=QTAQ是对角矩阵,说明Q的列向量都是A的特征向量,于是(1,2,1)T也是A的特征向量.(1,2,1)T和(2,5+a,4+2a)T相关,得a=一1,并且(1,2,1)T的特征值为2.A的特征值为2,5,一4.下面来求它们的单位特征向量.是属于2的单位特征向量.则(1,一1,1)T是属于5的特征向量,单位化得则(1,0,一1)T是属于一4的特征向量,单位化得则Q=(α1,α2,α3),(不是唯一解,例如(α1,α3,α2),(α1,一α2,一α3),(α1,一α3,一α2)等也都适合要求.) 涉及知识点:线性代数35.设3阶实对称矩阵A的特征值为1,2,3,η1=(一1,一1,1)T和η2=(1,一2,一1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.正确答案:属于3的特征向量和η1,η2都正交,从而是齐次方程组的非零解.解此方程组,得η4=(1,0,1)T构成它的一个基础解系.于是属于3的特征向量应为(k,0,k)T.k≠0.建立矩阵方程A(η1,η2,η3)=(η1,2η2,3η3),用初等变换法解得涉及知识点:线性代数3阶实对称矩阵A的特征值为1,2,一2,α1=(1,一1,1)T是A的属于1的特征向量.记B=A5一4A3+E.36.求B的特征值和特征向量.正确答案:记f(x)=x5一4x3+1,则B的特征值为f(1)=一2,f(2)=1,f(一2)=1.α1=(1,一1,1)T是A的属于1的特征向量,则它也是B的特征向量,特征值一2.B的属于一2的特征向量为cα1,c≠0.B也是实对称矩阵,因此B的属于特征值1的特征向量是与α1正交的非零向量,即是x1一x2+x3=0的非零解.求出此方程的基础解系α2=(1,1,0)T,α3=(0,1,1)T,B的属于特征值1的特征向量为c1α2+c2α3,c1,c2不全为0.涉及知识点:线性代数37.求B.正确答案:B(α1,α2,α3)=(一2α1,α2,α3).解此矩阵方程得涉及知识点:线性代数。
试卷编号 1 拟题教研室(或教师)签名 教研室主任签名课程名称(含档次) 线性代数 课程代号 0701011 一、判断题(正确答案填√,错误答案填×。
每小题2分,共10分)1.设阶方阵可逆且满足,则必有 ( )2.设是的解,则是的解 ( )3.若矩阵的列向量组线性相关,则矩阵的行向量组不一定线性相关 ( )4.设表示向量的长度,则 ( )5.设是的解,则是的解 ( ) 二、填空题:(每小题5分,共20分)1.计算行列式 = ;2.若为的解,则或必为 的解;3.设n 维向量组,当时,一定线性 ,含有零向量的向量组一定线性 ;4.设三阶方阵有3个特征值2,1,-2,则的特征值为 ; 三、计算题(每小题10分,共60分)1.;2.若线性方程组有解,问常数应满足的条件?3.设是方程组的解向量,若也是的解,则;4.求齐次线性方程组的基础解系;5.已知矩阵与矩阵相似,求的值;6.设为正定二次型,求.四、证明题(10分):设向量组线性无关,证明线性无关。
n C B A ,,E ABC =E CBA =21,ηη==x x b AX =21ηη+=x b AX =A A x x x x λλ=21,ηη==x x b AX =21ηη-=x 0=AX 231013412-βα,)0(,≠=A b b X βα-αβ-m ααα,,,:21 T n m >T A 2A 2111121111211112⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 4321,,,a a a a s ηηη,,,21 b X =A )0(≠b s s k k k ηηη+++ 2211=+++s k k k 21⎪⎩⎪⎨⎧=++-=++-=++-020332202432143214321x x x x x x x x x x x x ⎪⎪⎭⎫ ⎝⎛=y x A 3122⎪⎪⎭⎫⎝⎛=4321B y x ,3231212322214225x x x x x ax x x x f +-+++=a 321,,ααα321211,,αααααα+++试卷编号 2 拟题教研室(或教师)签名 教研室主任签名 一、判断题:(正确填√,错误填×. 每小题2分,共10分)1.是阶矩阵,则;( )2.若均为阶矩阵,则;( )3.向量组线性相关,则至少含有一个零向量;( )4.若是齐次线性方程组的两个线性无关解向量,则不是的解; ( )5.设为阶矩阵,则与具有相同的特征向量。
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
考研数学三(线性代数)模拟试卷123(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则( ).A.r>mB.r=mC.r<mD.r≥m正确答案:C解析:显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n<m,所以选(C).知识模块:线性代数2.设A为四阶非零矩阵,且r(A*)=1,则( ).A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=4正确答案:C解析:因为r(A*)=1,所以r(A)=4—1=3,选(C).知识模块:线性代数3.设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).A.r(B)=nB.r(B)<nC.A2一B2=(A+B)(A—B)D.|A|=0正确答案:D解析:因为AB=0,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)<n,于是|A|=0,选(D).知识模块:线性代数4.设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为( ).A.B.C.D.正确答案:D解析:A,B都是可逆矩阵,因为所以选(D).知识模块:线性代数5.设则A,B的关系为( ).A.B=P1P2AB.B=P2P1AC.B=P2AP1D.B=AP2P1正确答案:D解析:P1=E12,P2=E23(2),显然A首先将第2列的两倍加到第3列,再将第1及第2列对调,所以B=AE23(2)E12=AP2P1,选(D).知识模块:线性代数6.设则( ).A.B=P1AP2B.B=P2AP1C.B=P2-1AP1D.B=P1-1AP2-1正确答案:D解析:显然因为P1-1=P1,所以选(D).知识模块:线性代数填空题7.设A为四阶矩阵,|A*|=8,则正确答案:因为A为四阶矩阵,且|A*|=8,所以|A*|=|A|3=8,于是|A|=2.又AA*=|A|E=2E,所以A*=2A-1,故涉及知识点:线性代数8.若矩阵B是三阶非零矩阵,满足AB=O,则t=__________.正确答案:由AB=0得r(A)+r(B)≤3,因为r(B)≥1,所以r(A)≤2,又因为矩阵A有两行不成比例,所以r(A)≥2,于是r(A)=2.涉及知识点:线性代数9.设则A-1=__________.正确答案:涉及知识点:线性代数10.设则A-1=_______.正确答案:涉及知识点:线性代数11.设则(A*)-1=___________.正确答案:|A|=10,因为A*=|A|A-1,所以A*=10A-1,故涉及知识点:线性代数12.设则(A一2E)-1=____________.正确答案:涉及知识点:线性代数13.设n阶矩阵A满足A2+A一3E,则(A一3E)-1=__________.正确答案:由A2+A=3E,得A2+A一3E=0,(A一3E)(A+4E)=一9E,涉及知识点:线性代数14.正确答案:令A=(α1,α2,α3),因为|A|=2,所以A*A=|A|E=2E,而A*A=(A*α1,A*α2,A*α3),所以于是涉及知识点:线性代数15.设n维列向量a=(a,0,…,0,a)T,其中a且B为A的逆矩阵,则a=__________.正确答案:由且ααT≠O,得解得a=一1.涉及知识点:线性代数16.设三阶矩阵A,B满足关系A-1BA=6A+BA,且则B=____________.正确答案:由A-1BA=6A+BA,得A-1B=6E+B,于是(A-1一E)B=6E,涉及知识点:线性代数17.设A是4×3阶矩阵且r(A)=2,则r(AB)=_____________.正确答案:因为|B|=10≠0,所以r(AB)=r(A)=2.涉及知识点:线性代数18.设B为三阶非零矩阵,且AB=O,则r(A)=____________.正确答案:因为AB=O,所以r(A)+r(B)≤3,又因为B≠O,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.涉及知识点:线性代数19.则P12009P2-1=_____________.正确答案:因为Eij-1=Eij,所以Eij2=E,于是涉及知识点:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
《线性代数》模拟试题一、填空题(30分)1.设A 是n 阶方阵(2n ≥),且||1A = 则|2|A =2.1301n⎛⎫= ⎪⎝⎭3.10m n 齐次线性方程组A 有非零解的充要条件是⨯⨯=n X4.线性表示式为,由),(则)(),(212134,1,1,12ααβααTT T =-==5.线性),,(),,(),,(向量组TT T 242,020,101321===ααα 6.的矩阵表示是)(二次型23312121321242,,x x x x x x x x x f +-+= 7.若向量组12,,s ααα可由向量组12,,t βββ线性表示, 则有1212(,,,,,)s t r αααβββ 12(,,)t r βββ8.实对称矩阵A 的不同特征值对应的特征向量一定9.三阶行矩阵的三个特征值分别为1, 2,3,则1-A =______ 10.若n 阶矩阵A 与B 相似,且A 2=A, 则B 2=二、单项选择题(10分)11.A B C ,,为同阶矩阵,若ABC E =,则下列各式成立的是 ( ).A.1A BC -=B.111C A B ---=C. 111A B C E ---=D.1B AC -= 12.设1234(1,0,0),(0,1,0),(2,2,0),(1,1,1)αααα====则对向量组1234,,,αααα说法正确的是( )A. 相关B. 无关C. 秩为4D.相互正交 13.n 阶矩阵A 经过若干次初等变换后化为A 为B ,则( )A.||||A B =B.()()r A r B =C.,A B 相似D.,A B 合同 14.n 阶矩阵A 与对角矩阵相似的充要条件是( )A.有n 个线性无关的特征向量.B.A 有n 个不同的特征值.C.A 的n 个列向量线性无关.D.A 有n 个非零的特征值.15. 二次型3222212132142),,(x x x x x x x x x f +++=的秩等于 ( ) A. 0 B. 1 C.2 D. 3三、计算题(54分)16.计算n 阶行列式0321021301321 ------n n n17.已知2111011,,001A A AB E B -⎛⎫ ⎪=-= ⎪ ⎪⎝⎭求.18.设有线性方程组123123123(1)0(1)3(1)x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩ 问λ取何值时此方程组(1)有唯一解(2)无解(3)有无穷多解?并在有无穷多解时求其通解. 19.给定向量组123(1,1,1,1),(3,1,1,3),(1,1,0,2)ααα=--==;12(2,0,1,1),(3,1,2,0)ββ==- 请求出123,,ααα和12,ββ的秩,并用123,,ααα表示12,ββ。
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数模拟试题(Ⅲ)一 填空题◆1. 设3阶方阵],,[321ααα=A ,],,[321ααβ=B ,m A =,n B =,则______=+B A提示: B A B A 442,2,2,2,2,2,3213213211+=+=+=+ααβαααααβα答案: )(4n m +◆2. 设E A A A =-+23,且0≠-E A ,则______1=-A提示: 由条件得O E A E A A =+-+)()(2,O E A E A =-+)()(2由E A -可逆,得O E A =+2)(即O E A A =++22再变形E E A A -=+)2(从而A 可逆并且有下面答案答案: )2(1E A A +-=-◆3. 设T)3,2,1(=α,T)31,21,1(=β,T A αβ=,则______=n A 提示: )()()()(1Tn T T T T n A αβαββαβαβα-==Λ答案: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--12/333/2123/12/113311n n A◆4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=211b ,线性方程组b Ax =有解但不唯一,则____=a 提示: 0)1)(2(2=-+-=a a A ,2-=a 或1=a ,但1=a 时无解,应排除。
答案: 2-=a◆5. 设A 为n 阶方阵(2≥n ),0=A ,0*≠A ,则0=Ax 的基础解系中向量的个数(即解空间的的维数)是______提示: 参见教材P110第27题结论:⎪⎩⎪⎨⎧-≤-===2)(01)(1)()(*n A r n A r n A r n A r由此得知1)(-=n A r 答案: 1二 选择题◆1. 设321,,ααα是齐次线性方程组0=Ax 的一个基础解系,则( )也是一个基础解系。
(A)3213321,,,ααααααα++- (B)3221,αααα++; (C)133221,,αααααα--- (D)133221,,αααααα+++提示: 基础解系含3个向量,故(A)(B)排除,(C)(D)中向量虽都是解但要找线性 无关的,观察知(C)相关,因为组合系数全取1则等于零,剩下的只有(D)可选。
实际上教材P89例6已证明了此结论。
在前面的模拟题中重点强调了遇到一个 向量组表示另一个向量组的问题要转化为矩阵的乘法关系,这样可处理更复杂而不 易观察的问题。
比如对于(C)令133322211,,ααβααβααβ-=-=-=,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=110011101],,[],,[321321αααβββ],,[321ααα是列满秩,最右边的矩阵不可逆,故3)110011101(],,[321<⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=r r βββ,知321,,βββ线性相关答案: (D)◆2. 设O P ≠⨯33,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=96342321t Q ,且O PQ =,则( )。
(A)6=t 时,必有1)(=P r (B) 6=t 时,必有2)(=P r (C)6=/t 时,必有1)(=P r (D) 6=/t 时,必有2)(=P r提示: 再次强调,遇到O B A p n n m =⨯⨯要想到n B r A r ≤+)()(这里3)()(≤+Q r P r ,由假设1)(≥P r ,1)(≥Q r ,如果6=t ,则1)(=Q r ,此时)(P r 可以是1或2,故(A)(B)排除 当6=/t 时,此时2)(=Q r ,故只有1)(=P r答案: (C)◆3. 设A 与B 都是n 阶的方阵,则下面不对的是( )(A) BA AB = (B) AB 与BA 有相同的特征值 (C) AB 与BA 相似 (D) AB 与BA 的对角元素之和相等提示: 由行列式的乘法定理知(A)是对的;由教材P138习题10知,AB 与BA 有相同的非零特征值,又它们是同阶方阵,故 零特征值也相同,所以(B)是对的,从而(D)是对的,因为特征值之和等于对 角元素之和(见教材P119),根据排除法只能选(C)。
注意:如果A ,B 中有一个可逆,则AB 与BA 一定相似,这是教材P138习题13.。
举个例子吧:⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=0010B ,⎥⎦⎤⎢⎣⎡=0010AB ,⎥⎦⎤⎢⎣⎡=0000BA显然AB 与BA 不相似,因为如果O BA P AB P ==-)(1,则O AB =,矛盾。
答案: (C)◆4. 与矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100001011A 合同的矩阵是( ) (A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 (B )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111(C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111 (D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---111提示: 看一看两个矩阵正的特征值和负的特征值的个数(两正一负) 答案: (B)◆5. 设B A ,均为n 阶对称矩阵,则使B A ,合同的充要条件是( )(A )B A ,的秩相同 (B )B A ,都合同于对角矩阵 (C )B A ,有相同的特征值 (D )B A ,的二次型有相同的标准形提示: 两个对称矩阵合同等价地说法是它们的二次型等价(即可以用可逆变换互化)是否合同由它们的秩和正惯性指数(也是正的特征值的个数)所决定。
合同必秩相 等但反之不然,故(A)错。
任何对称矩阵都与对角矩阵合同(也就是任何二次型 都可化为标准形),故(B)错。
有相同的特征值一定合同,但合同不一定有相同的特征值,故(C)错。
自己想想为什么(D)对。
答案: (D)三 计算题◆1. 计算行列式121111a x a a a x xxD n n n +---=-ΛOO (教材P27习题5(5))提示 [方法一]按第1列展开得递推关系式n n n a xD D +=-1[方法二]从最后一列开始每一列乘x 加到其前一列上1101010a x t D n +⨯⨯---=ΛOO 其中n n n n a x a x a x t ++++=--111Λ再按第1列展开t t D n n n =---⨯-⨯=-+11111)1(On n n n a x a x a x ++++=--111Λ◆2. 解矩阵方程E XA AXA 311+=--,其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=8030010100100001*A (教材P55习题22) 提示 由1*-=n AA (教材P55习题18),得8*=A ,2=A ,方程两边右乘A 左乘*AA A X A AX A ***3+=,E A X A X A 3*+=,E X A E 6)2(*=-1*)2(6--=A E X⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=-60300101001000012*A E 用教材P56习题29(2)求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----11111B CA B O A BC O A 求*2A E -逆,()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=--6/102/1001010010000121*AE ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1030606606X◆3. 问b a ,为何值时,方程组⎪⎩⎪⎨⎧=---=+++=+-+bx x x x x ax x x x x x x 261723032432143214321 有解,无解,有解时求通解。
提示 由于该方程组系数矩阵A 不是方阵,只能用初等变换的方法进行讨论。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=b a b b b a A r 108002210140121611172303211~ 当8-≠a 时,b 任意,43)~()(<==A r A r ,方程组有无穷多解;当8-=a 且1≠b 时,)~()(,3)~(,2)(A r A r A r A r ≠==,方程组无解; 当8-=a 且1=b 时,42)~()(<==A r A r ,方程组有无穷多解。
求通解你自己来完成。
◆4. 设向量组()T T T)9,2,2,1(,)6,6,1,1(,3,4,1,2321---=--==αααT T )9,4,4,2(,)7,2,1,1(54=-=αα求此向量组的一个极大无关组,并把其余向量用该极大无关组线性表示。
提示 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−→−=00000310003011040101],,,,[54321rA ααααα 其余的你来完成◆5. 设二次型Ax x x x x f T=),,(321经正交变换Py x =化为标准形2322213y y y f ++=并已知A 的对应于特征值3=λ的一个特征向量为T)0,1,1(-,求原二次型),,(321x x x f 。
提示 此题与模拟题(II )第3个计算题实质是一样的。
)1,3,1(1diag AP P AP P T ==-,A 的特征值为1,3321===λλλ且31=λ对应的特征向量为T)0,1,1(1-=α,要求原二次型相当于求对称矩阵A解01=x Tα即021=-x x 即得基础解系(这里直接求得正交的):T T )1,0,0(,)0,1,1(32==αα32,αα就是属于132==λλ的特征向量,把三个特征向量单位T )0,1,1(211-=β,T )0,1,1(212=β,T )1,0,0(3=β把它们排成矩阵(注意顺序)即得正交矩阵:==],,[312βββP ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-10021******* 则)1,3,1(1diag AP P AP P T ==-,由此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100021012)1,3,1(T P Pdiag A所以原二次型为21232221321222),,(x x x x x Ax x x x x f T -++==四 证明题(1,2,3任选一个,4必做)◆1. 设x 是n 维列向量,1=x x T,令Txx E H 2-=,证明H 是对称正交矩阵。
提示 直接用定义证明(这是教材P138习题3)◆2. 证明正交的向量组一定是线性无关的。
提示 见教材P114定理1◆3. 设1λ和2λ是矩阵A 的两个不同的特征值,对应的特征向量依次为1α和2α,证明2211ααk k +(其中0,021≠≠k k )不是A 的特征向量提示 仿教材P123例10◆4. 证明二次型Ax x f T=,在1=x 时最大(小)值为A 的最大(小)特征值。
提示 这是教材P140习题29。
设n λλ,1分别是A 的最小,最大的特征值,存在正交变换Qy x =使2222211n n T y y y Ax x f λλλ+++==Λ再由假设n i λλλ≤≤1得y y y y y Ax x f y y T n n n T T λλλλλ≤+++==≤22222111Λ又y y Qy Q y x x TT T T ==(正交变换保持向量长度不变),所以x x Ax x x x Tn TTλλ≤≤1,即n T T xx Axx λλ≤≤1。